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Introduccion

Actualmente, no existen muchos trabajos referentes a las formas diferenciales
y mucho menos en espanol, aunado a lo anterior, los libros y tesis que abordan
este tema no lo hacen de manera completa o de facil comprensién para el lector,
es por ello que para este trabajo de tesis se decidié por abordar a las formas dife-
renciales, desde su definiciéon hasta sus aplicaciones, de una forma que clara para
el lector, para lograr este objetivo, las demostraciones de teoremas y explicaciones
de ejercicios seran lo mas detalladamente posible, asimismo, habra comentarios
en distintas partes de este escrito que ayudaran a comprender mejor el cémo se
desenvuelve este trabajo.
Este trabajo estd conformado de siete capitulos, en el primero de ellos se abor-
daran distintas definiciones, ejemplos y teoremas que se usaran en los capitulos
restantes. Posteriormente, en el segundo capitulo, se presentard la nocion de k-
tensor, lo que permite definir y estudiar a las k-formas y sus propiedades en el
tercer capitulo. El cuarto capitulo introducird un nuevo concepto: m-cubos sin-
gulares, el cual nos sera ttil para poder integrar k-formas. En el quinto capitulo
se abordaran las variedades en R", sus tipos, ejemplos y teoremas, esto, con el fin
de que varios de los conceptos mostrados previamente puedan ser generalizados
al contexto de variedades en el capitulo seis. Por ltimo, el capitulo siete esta
enfocado a mostrar algunas aplicaciones de las formas diferenciales.
Todas las definiciones, teoremas, proposiciones y corolarios aqui presentados y que
no cuentan con una cita, fueron adquiridos del libro Calculus on manifolds de

Michael Spivak (Spivak, 1995).






Capitulo 1
Preliminares

Con el fin de comprender las diferentes definiciones, teoremas, ejemplos y apli-
caciones presentados en esta tesis, es necesario presentar conceptos previos de
diferentes areas de las matematicas, tales como algebra lineal, teoria de la me-
dida, trigonometria, y las mas relevantes, Calculo diferencial e integral en varias

variables.

1.1. Espacio dual

Definicién 1.1. Sea V un espacio vectorial de dimension finita sobre un campo
FF. El espacio dual de V' denotado por V* o V' se define como el conjunto de todas
las transformaciones lineales V' — FF, con operaciones lineales definidas punto a

punto:

(¢ +¥)(x) = o(x) + (),
(Ad)(x) == Ao ().

A los elementos de V' se les llama funcionales lineales (Maximenko, 2020c).

Definicién 1.2. Sean n € N, V un espacio vectorial sobre F y A = {ay,...,a,}
una base de V. Para todo ¢ € {1, ...,n}, denotemos por x; al funcional cuyo valor
en un vector v € V' es igual a la i-ésima coordenada del vector de coordenadas de
v respecto a la base A.

En otras palabras, si v = 2?21 Aja;, entonces,
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Teorema 1.1. (Teorema de la base dual). Sean n € N, V' un espacio vectorial
sobre F y A = {ay, ...,a,} una base de V, entonces, existe una base {x1, ..., Xn}

del espacio V* tal que:
= Se tiene la siguiente relacién entre los vectores a; y los funcionales y; :
1, sii=yj,

xi(aj) =
0, otro caso,

para cada i,j € {1,...,n}.

= Todo funcional ¢ € V* se escribe como una combinacion lineal de los fun-

cionales x4, ..., Xn de la siguiente manera:
¢ = Z ¢(ai)xi,
i=1

donde ¢(a;) € F, para todo i € {1,...,n}.

La base {x1,..., xn} del espacio V* definida en Teorema 1.1 es llamada la
base dual a la base A (Maximenko, 2020a).

Ejemplo 1.1. Seann € Ny V = R" y B = {ej, €9, ...,€,} la base canénica de

R™ y el conjunto de funcionales lineales B* = {e], e, ..., e: }, definidos como,
*
er(v1, .oy V) = 0,

para cada i € {1,...,n} y v = (vy,...,v,) € R", luego,

. 1, sii =y,
e;(ej) = 0i; =
0, otro caso.

Por el Teorema 1.1 se tiene que B* es una base para (R™)*.

1.2. Permutaciones

Definicién 1.3. Sean Kk € Ny d: {1,....k} — {1,...,k}. A la funcién § se llama
permutacién del conjunto {1,...,k} si es biyectiva. Al conjunto de todas las
permutaciones del conjunto {1,...,k} se le denota por Sg, este conjunto cuenta

con k! elementos.
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Las permutaciones suelen representarse de la siguiente manera:

1 2 -k
51) 8(2) - (k)

Ejemplo 1.2. Sean el conjunto A = {1,2,3,4,5} y la funcién § : A — A dada

por:

i+1, siie {1,234},
1, sii=H5,

3(i) =

es facil ver que 0 es una funcién biyectiva, ademads, la representacién de esta

permutacién es la siguiente,

1 2 3 45
2 3451

Definicién 1.4. Sean r, k € N, tales que r < k y aq,...,a, € {1,...,k}, tales que
a; # a; si i # j, para cada 4, j € {1,..,7}. La permutacién § tal que,

para todo p € {1,....,7 — 1}, d(ap) := api1;
d(a,) == ay;
para todo j & {ay,...,a.}, §(j) :=J,

se llama ciclo de los elementos ay, ..., a,, se dird que este ciclo tiene longitud r y
serd denotado por c¢(ay, as, ..., a,).

Para una mejor explicacion de ejemplos y definiciones, se le agregara un subindice
p a la representacion usual de ciclo, el cual indicara el nimero que le corresponde

al ciclo de acuerdo al orden que se definirda mas adelante.
Definicién 1.5. Un ciclo de dos elementos se llama transposiciéon.
Explicacién detallada: si p,q € {1, ...,k}, p # g, entonces:
p, sij=gq
c,)4) § ¢ sij=p;
j. sij € {1l ... k\{p, q}.
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(Maximenko, 2023c). A ¢(p, ¢) lo denotaremos como 7, .

Definicién 1.6. Sean k € Ny §,¢ € Sy, el producto § - ¢ : {1,....,k} — {1,....k}
se define como sigue, (§ - ¢)(7) = 6(¢(7)), para todo j € {1,...,k}. Notemos que
J - ¢ es una funcién biyectiva y por lo tanto d - ¢ € Sy (Maximenko, 2023d).

Ademas, 6 - ¢ = 0 o ¢, es decir, el producto de dos permutaciones es igual a la
composicion de dichas permutaciones.

Propiedades:
1. Asociatividad:
para todo 0,0, € Sy, (6-0) - =08 (0- ).

2. La permutacién identidad, denotada por id o por e,

1d =

es un elemento neutro con respecto a la multiplicacion de las permutaciones:
d-e=¢e-0 =29, para todo d € 5.

5. Sik =10k =2, entonces la multiplicaciéon en S; es conmutativa. Si k > 3,

entonces la multiplicacién en S no es conmutativa.

Cuando los conjuntos {ay,i, ..., a1}, {@21, .., G2y by ooy {@p15 oy App, } sOD dis-

juntos a pares, diremos que los ciclos
cr(ann, o @ ), C2(A2,1, 0y Q2,0y )5 oy Cplp1s vy Gp )
son ciclos disjuntos (Maximenko, 2020b).

Teorema 1.2. Sea k € N. Toda permutacion § € Sy, se puede ver como el producto
de ciclos disjuntos (Fraleigh, 1987).

Es decir, podemos ver a ¢ de la siguiente manera,

5 = cl(alvl, cees al’rl)CQ(CLQ’l, ceey CLQ’W) s cp(apjl, ceey CLp7Tp).

Para poder descomponer a una permutacion § € Sy en un producto de p ciclos

disjuntos, primero construimos al ciclo que contiene al elemento 1:
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Cl<a1,l> a1,2, .- al,rl) = 01(1, a1,2, .- al,rl),

posteriormente, tomamos al primer elemento de {1,...,k} que no pertenece al
conjunto {ay1,a1,...,a1,, } y construimos un segundo ciclo, el cual empieza en

dicho elemento:

C2(a2,17 a2, ..., a2,r2)7

y asi sucesivamente se construyen todos los ciclos de § hasta que cada elemento
de {1, ..., k} pertenezca a algin ciclo, luego, § se descompone en un producto de

p ciclos disjuntos de la siguiente manera:
0= Cl(al,h a1, - alﬂ"l) T cp(ap,l’ Ap,2y --+s apﬂ"p)’

Ejemplo 1.3. Sea la permutacién ¢ : {1,2,3,4} — {1,2,3,4} dada como sigue,

1 2 3 4
341 2

(o)
S
|

para poder descomponer a 0 como un producto de ciclos, primero nos fijamos en el
ciclo que contiene al elemento 1, dado que 6(1) = 3 y §(3) = 1, entonces definimos

al primer ciclo como sigue,

1 2 3 4
321 4

c1(1,3) =

luego, para poder definir al siguiente ciclo, nos fijamos en el primer elemento de
{1,2,3,4} que no pertenece a {1,3}, en este caso, dicho elemento es 2, con esto
y debido a que §(2) = 4y §(4) = 2, el segundo y tltimo ciclo se define de la
siguiente manera,

1 2 3 4

1 4 3 2

2(2,4) =

asi, 0 = c1(1,3) - 2(2,4).

Definicién 1.7. Sean k,p € N. Representando a € S, como un producto de p

ciclos disjuntos:

0= 01(611,17 a2 1y - al,rl) e 'Cp(ap,h Ap2y -+ ap,?“p)a
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con p < k, y donde cada ciclo tiene longitud r;, i € {1,...,p}. Se define al decre-

mento de una permutacién como sigue:
dio)=(r1—1)+---+(r, —1).
Definicién 1.8. El signo o signatura de J se define de la siguiente manera:
sgn(d) = (—1)49,

Proposicién 1.1. Sean k € Ny p,q € {1,..., k} tales que p # g. Se cumple que

sgn(7,4) = —1.
Teorema 1.3. Sea k € N. Dadas las permutaciones 91, d € Si, se cumple que:
sgn(dy - 62) = sgn(d1)sgn(dz).
Corolario 1.1. Sea § € Sy, y sean p,q € {1,...,k} con p # ¢. Entonces,
sgn(o - 7,,) = —sgn(d) (Maximenko, 2023e).

Ejemplo 1.4. Sea el conjunto {1,2}, luego, las permutaciones posibles de este

conjunto y sus respectivos signos son:

1.
1 2
51 = ;
1 2
asi, 01 = c1(1)ce(2), luego, d(d1) = (1 —1) 4+ (1 — 1) = 0, con esto,
sgn(d;) = (—1)" = 1.
2.
1 2
52 = )
2 1

asi, 93 = ¢1(1,2), luego, d(d2) = (2 — 1) = 1, con esto,
sgn(dy) = (—1)t = —1.

Ejemplo 1.5. Sea el conjunto {1, 2,3}, luego, las permutaciones posibles de este

conjunto y sus respectivos signos son:
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1 2 3
51: 9
1 2 3

asi, 01 = ¢1(1)ca(2)es(3), luego, d(d1) = (1—1)+(1—1)+ (1 —1) =0, con

esto, sgn(d;) = (—1)" = 1.

1 2 3
52 = ;
(1 3 2)

ast, 0y = c¢1(1)e2(2,3), luego, d(dy) = (1 — 1)+ (2 — 1)

sgn(dy) = (—1) = —1.

1 2 3
53 = 5
(3 2 1)

asi, 03 = ¢1(1,3)c2(2), luego, d(d3) = (2 —1) 4+ (1 — 1)

sgn(dz) = (1) = —1.

1 2 3
54 = )
(2 1 3)

asi, 0, = ¢1(1,2)c2(3), luego, d(dy) = (2 —1) + (1 — 1)

sgn(dy) = (1) = —1.

1 2 3
65 = 9
(2 3 1)

1, con esto,

1, con esto,

1, con esto,

ast, 05 = ¢1(1,2,3), luego, d(d5) = 3 — 1 =2, con esto, sgn(ds) = (—1)* = 1.

1 2 3
56 = )
(3 1 2)

asi, 0 = ¢1(1,2,3), luego, d(d) = 3 — 1 = 2, con esto, sgn(dg) = (—1)? = 1.

Ejemplo 1.6. Sea § : {1,2,3,4,5} — {1,2,3,4,5} una permutacién dada como
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sigue,
1 2 3 45
2 3 15 4

asi,
)= 01(17273) : 62(47 5)7

luego, d(6) = (3 — 1)+ (2 —1) = 3, con esto sgn(d) = (—1)3 = —1.
Por otro lado, consideremos a la transposicién 745 : {1,2,3,4,5} — {1,2,3,4,5}

que esta dada como sigue,

1 2 3 45
123 5 4

T45 =

luego,

5. B 1 2 3 4 5
sy s 83 66) 6
1 2 3 4 5

2 3145

ast, 6 145 = c1(1,2,3)-ca(4) - c3(5), luego, d(0-745) = (3—1)+(1—-1)+(1-1) =2,

con esto,
sgn(d - 145) = (—1)* = —(=1) = —sgn(J).

Teorema 1.4. Si 6 € Si. Entonces existen d(§) transposiciones 71, ..., 74s) tales
que § = Ty - - Tys). Sim < d(6), entonces no existen m transposiciones By, ..., B,
tales que 6 = f; - - - B, (Maximenko, 2023a).

Recordemos que por definicién, una permutacion ¢ es una funcién biyectiva,

con esto, podemos asegurar la existencia de 6.

Definicién 1.9. La inversa de una permutaciéon 0 es simplemente la funcién
inversa 6. Esto significa que si §(p) = ¢, entonces 6 !(q) = p (Maximenko,
2023b).
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1.3. Determinantes

Definicién 1.10. Sean n € Ny A = [4;,], con i,j € {1,...,n}, una matriz
cuadrada de orden n. El determinante de A, denotado por det(A) o |A| se

define de la siguiente manera

det(A) = Z sgn(0) A1 s1)A262) *** Anbn)-
5E€Sn

(Lipschutz & Lipson, 2009).
Propiedades

» Los determinantes de una matriz y de su transpuesta son iguales; es decir,
det(AT) = det(A).

» Siuna fila (columna) de A consta solo de ceros, entonces det(A) = 0.

= Si dos filas (columnas) de A son linealmente dependientes, entonces,

det(A) = 0.
» Si la matriz B se obtiene intercambiando dos filas o intercambiando dos
columnas de A, entonces det(B) = —det(A).

= Si B se obtiene a partir de A multiplicando una fila (columna) de A por un

numero real ¢, entonces det(B) = ¢ - det(A).

» Si B = [b;;] se obtiene de A = [a;;] sumando a cada elemento de la r-ésima
fila (columna) de A una constante ¢ por el elemento correspondiente de la
s-ésima fila (columna) de A, r # s, entonces det(B) = det(A).

= El determinante del producto de dos matrices es el producto de sus deter-
minantes; es decir, det(AB) = det(A) - det(B) (Kolman & Hill, 2006).

Definicién 1.11. Sean n € N y A una matriz cuadrada de orden n. La

matriz cuadrada B de orden n que satisface las siguientes condiciones
A-B=1, B-A=1,,

es llamada la matriz inversa de A y es denotada por A~! (Meyer, 2001).
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Teorema 1.5. Sean n € N y A una matriz cuadrada de orden n. Las
proposiciones siguientes son equivalentes:

e A es invertible.

e rango(A) = n.

e Si Az =0, entonces z = 0 (Meyer, 2001).

1.4. Funciones y continuidad

Definicién 1.12. Sea n € N, a;,b; € R para todo ¢ € {1,...,n}. El conjunto
(a1,b1) X+ X (an,b,) C R™ donde (a;,b;) es un intervalo abierto de R, es llamado
rectdngulo abierto en R”, mientras que el conjunto [ay, by X - -+ X [a,, b,] C R”

es llamado rectangulo cerrado en R".

Definicién 1.13. Sea n € N. Un conjunto U C R" es llamado abierto en R" si

para cada x € U existe un rectangulo abierto A tal que x € A C U.

Definicién 1.14. Sea A C R". El conjunto de puntos de = € A para los cuales
existe un rectangulo abierto A tal que x € A C U, es llamado interior de A y
denotado por int(A).

Definicién 1.15. Sean A C R”. El conjunto de puntos x € R" para los cuales

para todo r > 0 se cumple que

B(xz,r) N (A\{z}) # 0,
es llamado conjunto derivado de A y denotado por A" (Apostol, 2006).

Teorema 1.6. Sean A C R"™ B C R" y C C R™ tales que A = B x C. El
conjunto A es un conjunto abierto si y solo si B y C' son conjuntos abiertos en R”

y en R™ respectivamente.

Sean f = (f1,.... fm) : ACR" - R" ya € A luego,

lim f(x) = (1 f1(2). ... i f,, ().

T—ra

Definicién 1.16. Sean n,m e Ny ACR"y f: A — R™ una funcién. La funcién

f es llamada continua en a si

lim f(z) = f(a).

r—a
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f es continua en A si es continua en cada a € A.

Teorema 1.7. Sean n € N, A C R". Una funcién f : A — R™ es continua en A si

y solo si para cada conjunto abierto U C R™ existe un conjunto abierto V' C R"
tal que f~Y(U) =V N A.

1.5. Diferenciabilidad

Definicién 1.17. Sean n € N, A C R", a € int(A) y f: A — R™. Diremos que

f es diferenciable en a, si existe una transformacién lineal A : R — R™ tal que

oy 1@ 1) = f(@) = AW

=0.
h—0 1]

Si A es abierto en R™ vy f es diferenciable en cada a € A, entonces diremos que f

es diferenciable en A

Proposicion 1.2. Sean n,m € NN A CR", a € Ay f: A — R™ Si f es

diferenciable en a € R™, entonces f es continua en a.

Definicién 1.18. La transformacion lineal A dada en la Definicion 1.17, es

llamada la derivada de f en a, y es denotada por D f(a).

Definicién 1.19. Sean A C R", a € (A) y f : A — R™. Si el siguiente limite

existe,

f(al,...,CLi‘I’h,...,(ln)*f(CLl,...,Cbn)
h

limy,_

)

entonces es denotado como D; f(a) y es llamado la i-ésima derivada parcial de

fena.

Es importante ver que D;f(a) es la derivada ordinaria de una cierta funcién;
de hecho, si g(z) = f(aq, ..., x, ..., a,), entonces, D, f(a) = ¢'(a;). Esto significa que
D;f(a) es la pendiente de la recta tangente en (a, f(a)) a la curva obtenida por
la interseccién de la grafica de f con el plano z; = a;, con j # i. Si f(z1,..., %)
es dado por alguna férmula involucrando zq, ..., x,, entonces podemos encontrar
a D;f(x1,...,z,) diferenciando la funcién cuyo valor en x; es dado por la férmula

cuando las variables x; son pensadas como constantes cuando j # 7.

Ejemplo 1.7. Sea la funcién f : R? — R dada por f(x1,x5) =sen(z23), asf,
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D f(x1, x2) = x3cos(z123),

Dy f (21, 2) = 23129c08(1173).

Teorema 1.8. Seann,m € Ny ACR"y f = (f1,..., fm) : A — R™ una funcién,
donde para todo i € {1,...,m} se tiene que f; : R — R. Si f es diferenciable en
a € A, entonces D f;(a) existe para cada j € {1,...,n}, para cada i € {1,...,m}
Y,

Difi(a) Dsfi(a) -+ Dyfi(a)
D12a D22a Dnga
o= | P B - B
lem(a) D2fm(a) anm(a)

La matriz f’(a) consta de m filas y n columnas, ademés, representa la derivada
de f en a con respecto a las bases candénicas del dominio y cododominio de f. A

f'(a) le llamaremos la matriz Jacobiana de f en a.

Ejemplo 1.8. Continuando con la funcién dada en el Ejemplo 1.7, se tiene que

la matriz Jacobiana de f en (a1, z5) € R? es,

f'(w1,29) =(D1f(z1,72) Daf(x1,72))

=(23cos(1173) 2x129c08(7173)).

Teorema 1.9. Sean n,m,pe NN ACR", BCR" f: A—-R"yg: B — RP.
Dado a € A tal que f(a) € B, si f es diferenciable en a y g es diferenciable en

f(a), entonces, g o f es diferenciable en a y

(g0 f)(a) =g'(f(a)) - f(a).
Teorema 1.10. Sean n,m € Ny f:R" — R™ donde f = (f1,..., fmm)-

1. Si f es una funcién constante, entonces D f(a) = 0, para todo a € R". En

este caso 0 denota a la funcién nula.
2. Si f es una transformacién lineal, entonces D f(a) = f, para todo a € R".

3. f es diferenciable en a € R™ si y solo si cada f; es diferenciable en a € R" y

Df(a)(z) = (Dfi(a)(z), ..., Dfn(a)(x)), para todo x € R",
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donde Df;(a)(x) = f/(a) - ', para todo i € {1,...,n}.

Corolario 1.2. Sean n € Ny A, B C R” conjuntos abiertos y f : A — B una

funcién biyectiva y diferenciable en a € A. Si f~! es diferenciable en f(a), entonces

det(f'(a)) # 0.

Teorema 1.11. Sean n,m € Ny f: A C R" — R™ una funcién. D f(a) existe si
las funciones D; fi(a) existen en un conjunto abierto que contiene al punto a y son
continuas en a, para todo j € {1,...,n} y para todo ¢ € {1,...,m}. En tal caso, se

dice que f es continuamente diferenciable.
Es facil ver que toda funcién continuamente diferenciable es diferenciable.

Definicién 1.20. Sea f: A C R" — R™. Si f tiene derivadas parciales de todos

los 6rdenes en un conjunto abierto, se dice que f es de clase C'*°.

1.6. Funciones inversas

Teorema 1.12. Sean n,m € N; A C R" abierto, a € Ay una funcién f : A — R"™.
Si f es continuamente diferenciable en A y det(f'(a)) # 0, entonces, existe un
conjunto abierto V' C A que contiene al punto a y un conjunto abierto W que
contiene a f(a) tales que f : V' — W tiene una inversa continua y diferenciable

f~1: W — V. Ademés, para todo y € W se satisface que:

Teorema 1.13. Sean n,p € N, con p < n, A CR"y f: A — RP una funcién
continuamente diferenciable en un conjunto abierto que contiene al punto a. Si
f(a) = 0 y la matriz f'(a) tiene rango p, entonces, existen conjuntos abiertos
W,U C R" tales que a € U, ademas, existe una funcién diferenciable h : W — U
con inversa diferenciable tal que h(W) C Ay

(f o h)(x) =(f o h) (21, ..., 2n)

:(mnprrl; 3} .73”),

para todo x € W.
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1.7. Integracién

Teorema 1.14. Sean n € N, A C R" un conjunto abierto y g : A — R" una
funcién inyectiva y continuamente diferenciable tal que det(g'(x)) # 0, para todo

x € A. Sila funcién f: g(A) — R es integrable, entonces:

Sy £ = Ju(f 0 g)ldety|.
Las siguientes dos definiciones fueron obtenidas de (Cardenas, 2012).

Definicién 1.21. Sean n € N, K un subconjunto de R”, F : U C R” — R",
donde F' = (Fi,...,F,), un campo vectorial continuo en el conjunto abierto y
conexo U, una curva ' C U y v : [a,b] — R™ una funcién derivable a trozos tal que
I' = y([a, b]). Definimos la integral de F' sobre la curva I" segin la parametrizacién

7 como:

[ Far- / PG A i,

Definicién 1.22. Sean F : S C R?* — R3 un campo vectorial continuo y S C R?
una superficie parametrizada por la funcién o : A C R? — R3. Definimos la

integral de F sobre S, que denotamos como | g F'+do, como:

do  Oo
F'da—/Fax, C— X —.
/ [ Ploew) - x5

Teorema 1.15. (Regla de Leibniz para integrales). Sea f : [a, b] X [¢,d] — R una
funcién continua. Si Dy f es una funcién continua y definiendo F'(y) = ab f(z,y)dz,

entonces F' es derivable y

F'(y) = / Dy f(x,y)dz.

Teorema 1.16. (Corolario del Teorema de Fubini). Sean n € N, a;,b; € R, para
todo i € {1,...,n}, R = [a1,b1] X -+ X [an,b,] v f: R — R. Si f es continua,

entonces:
bi,
[z, %)dﬂfil) dﬂé’iz) T ) diﬂin_l) dzxi,

bin bip,_q biy
Jor= [0
R Qiy, @i, _4 @iy a;

1

donde iy, ...,4, € {1,...,n} son distintos a pares, visto de otra manera, se cumple
la siguiente igualdad: {i1,...,i,} = {1,...,n} (Céardenas, 2012).
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El siguiente corolario se obtuvo de (Spivak, 2017).

Teorema 1.17. (Corolario del primer Teorema Fundamental del Célculo). Sea

f:R—TR.Sifescontinuaen [0,1] y f = ¢ para alguna funcién g, entonces

b
/ f = () - g(a).

1.8. Medida exterior de Lebesgue en R"

Definicién 1.23. La medida exterior de Lebesgue de A C R" se denota como

1 (A) y se define de la siguiente manera

p(A) = inf{Zu*(Ui) A C UUZ} ;

donde {U, };en es una coleccién contable de rectangulos cerrados, estos rectdngulos
tienen la forma U; = [by;, a1 X - -+ X [bpi, ani] y p* estéd dada de la siguiente manera
,U*(Ul) = (blz — CLM) R (bm — am) (Hunter, 2007)

Definicién 1.24. Seann € N, A C R”. El conjunto A tiene medida cero si para

todo € > 0 existe una cubierta {U; };en de A compuesta por rectdngulos, tal que
(o]
Z M*<UZ) <§€
i=1

en otras palabras, A tiene medida cero si p*(A) = 0.

Teorema 1.18. Sean n,m € N, I = [0, 1]™ el cubo unitario de R™ y una funcién
f:I™ — R" tal que f € C'. Si m < n, entonces f(I™) tiene medida cero. Si
m=ny A C I"™ tiene medida cero, entonces f(A) tiene medida cero (Gualtieri,
2017).

Teorema 1.19. Sean n € N, A C R" un conjunto compacto de medida cero y

f:A— R.Si f esuna funcién continua, entonces [ 4 f=0.

Demostracion: Dado que f es una funcién continua sobre un conjunto compac-

to, se sigue que f es una funcién acotada en dicho conjunto, es decir, existe M € R
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tal que |f(z)] < M, para todo x € A, asi,

/Afs /Af‘S/AIHS/AM:M-m*(A)ZO.

Por lo tanto, se da por demostrado el teorema. O

Proposicién 1.3. Sin € N, A = [ay,by] X -+ X [a,,b,] CR" y A la frontera de

A, entonces, 0A tiene medida cero.

1.9. Identidades trigonométricas

1 |yl

» cos(arctan(x)) = 7 8L & = £ se sigue que cos(arctan(x)) = Tt
V2 ty
= sen(arctan(r)) = —=—, si z = Z se sigue que sen(arctan(z)) = e
+1 v y\/22+y?
» sen(arccos(z)) = V1 — 2.

tan(x + m) = tan(x).

1.10. Particiéon de unidad

Teorema 1.20. Si A C R" y O es una cubierta abierta de A, entonces, existe una
coleccién @ de funciones ¢ € C'*™ definidas en un conjunto abierto que contiene a

A, con las siguientes propiedades:
1. Para cada = € A, se cumple que 0 < ¢(x) < 1.

2. Para cada z € A, existe un conjunto abierto V' que contiene a x, tal que

todas las funciones ¢ € ¢, a excepcion de un nimero finito, son 0 en V.
3. Para cada z € A, se cumple que: }_, 4 d(z) = 1.

A la coleccion @ se le llama particion de la unidad para A de clase C*.



Capitulo 2
K-tensores

En este capitulo se presentaran la definicion y propiedades de los k-tensores.
Asimismo, se explicaran las operaciones fundamentales que se pueden realizar con

ellos y su forma general de representacion.

2.1. K-tensores de V

Definicién 2.1. Sea V un espacio vectorial sobre R. Denotaremos el k-producto
cartesiano V x V x---xV por V¥ con k € N. Una funcién 7 : V¥ — R es llamada

multilineal si para todo i € {1, ..., k}, para todo ¢ € R, tenemos,
T(vy, .oy c(v; +vi), oy v) = ¢ T(V1, oy Uiy ooy Ug) F €= T(V1, oy Vgry oy V).

Una funcién multilineal 7 : V¥ — R se llama k-tensor en V.

Ejemplo 2.1. Sean V = R? y T : R? x R? — R dada por,
T((xla xQ)? (y1, yQ)) = T1Y1 + T2Y2.
Sean (1, %2), (y1,42) ¥ (21, 22) € R? y ¢ € R, luego,

T(c((@1, 2) + (21, 22)), (Y1, y2)) =c(@1 + 21)y1 + (2 + 22)y2
=CX1Y1 + C21Y1 + CT2Y2 + CZ2Yo2
=c(z1y1 + Tay2) + c(z1y1 + 2292)
=c - T((x1,%2), (y1,42))
+c-T((21,22), (Y1, 92)),

19
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ademas,

T((w1,22), c((y1,92) + (21, 22))) =210(y1 + 21) + T2c(y2 + 22)
=CT1Y1 + CT121 + CTaY2 + CT229
=c(z1y1 + T2y2) + c(T121 + T222)
=c - T((x1,22), (y1,92))

+c-T((x1,x2), (21, 22)).

Asi, T es un 2-tensor.

Ejemplo 2.2. Una generalizaciéon para todo k£ € N del ejemplo anterior es el
k-tensor T : R? x --- x R? = (R?)* — R dado por,

T((Ilh $12), ($217 $22), ey (Ikla iUkQ)) = 211%21 " " Tk1 + T12T22 * * - Tga.

Ejemplo 2.3. Toda transformacion lineal T': V' — R es un 1-tensor, esto se debe

a que para todo z1,x, € V' y para todo ¢ € R, se cumple que,
T(c(zy + x3)) = cT(x1 + x2) = c(T(x1) + T(2v)) = - T(x1) + - T(x2).

Proposiciéon 2.1. Sea V un espacio vectorial sobre R. El conjunto de k-tensores
denotado como .7*(V), con k € N, es un espacio vectorial sobre R con las opera-

ciones dadas por:

(S +T)(v1, .y v) = S(v1, ey v) + T'(v1, ..., ),
(eS) (v, ..cyvg) = ¢ - S(vy, ..., Ug),

para todo S, T € 7*(V)yceR.

Demostracién: Sean S,T,R € 7*(V)yceR.

1. Cerradura sobre la suma.

(T + S)(v1, .y (v + Vi1 oy )
=T (1, e, c(V; + Vi) ooy Ug) + S (v, oy c(v; + Vi), ooy V)
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=c-T(V1, .0y Uiy ey V) + ¢ T (01, ooy Vgry ey V)

+c Sy Uiy ey Ug) + €0 S(U1, 0y Vit o, Ug)
=c(T(V1, eey Viy ooy Ug) + S(V1, ey Uy ey Ug))

+ (T (v1y ooy Uity ooy Ug) + S(V1, oy Viry ooy V)
=c(T + S)(v1, ey Viy ooy V) + (T 4+ S) (V1 oeey Viry ooy U ).

Con esto, S +T € TH(V).

Debido a que T'(vy,...,vx), S(vy, ..., vx), R(v1,...,ux) € R, es sencillo ver que se

cumplen las siguientes dos propiedades.

2. Conmutatividad de la suma.

(T + S)(Ul, ...,Uk) :T(Ul, ...,Uk) + S(Ul, ...,Uk)
=S (01, s 04) + (01, oy 1)
=(S+T)(v1, ..., vg).

3. Asociatividad de la suma.

(T+ (S+ R))(v1, ..., )

(v1, .y vg) + (S + R)(v1, ..., vk)

=T(v1, ..., vx) + (S(v1, ..., V) + R(vy, ..oy vk))
(U1, ooy vk) + S(v1, ooy vg) + R(v1, ..., Ug)

(T(Ul,...,vk) + S(vg, .y vr)) + R(ve, ..oy Uk)

=(T + S)(v1, ..., vr) + R(v1, ..., vg)

(T4 S) + R) (v, ..., vg).

4. Existencia de neutro aditivo.
Sea O : V¥ — R? definida como sigue, O(vy, ...,v;) = 0, luego, O satisface

lo siguiente,

O(v1, ...y (v +vir), ooy v) =0
=c-0+c-0
=C- O('Ul, .y Vg, ...,Uk)

+ ¢ OV, ey Uity ooy UE),
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ast, O € T*(V), luego,

(T + O)(Ul, ...,Uk) = T(Ul, ...,Uk) + O(Ul, ...,Uk>
(vla "'7Uk) + 0

T
T

(U1, .oy VR ),

con esto, existe un elemento neutro aditivo O en Z*(V). A O le llamaremos

k-tensor nulo.

5. Existencia de inverso aditivo.

Debido a que T' es un k-tensor, se sigue que,

T(vy,...,c(v; + vir)y .. y0k)

=c-T(v1y .y Uiy ooy Ug) + - T(V1, ooy Vi1 oy V),
luego,

—T(v1,y .y c(Vi40i7), ooy UE)

= —(cT(v1, ey Uiy ey 0g) + T (V1 ooy Vg1 oy V)
(=D T(vy, .oy U3y ey v) + (=1)c - T(v1, ey Uity ooy UE)
c(=1)T(v1, ... V4, .oy vg) + c(=1)T (1, ..., Vyr, ..., UR)
(=T) (1, ey Vgy ooy V) + (=T) (01, oey Vgry ooy V).

Ast, =T € T*(V), ademss,

(T+ (=7))(v1, .o, vg) =T (1, ey v) + (=T) (01, ..., V)
=T(vi,...,vp) — T(vq, ..., vk)
=0
:O(vl,...,vk),

por ende existe un inverso aditivo en 7*(V).

6. Cerradura sobre el producto por un escalar.

Sea a € R, luego,

(@T)(v1, .oy c(V; +vir)y ooy ) = - T(v1, .oy (V5 + Vi), ooy UE)
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=a(c-T(v1, ey Vs ooy U) + €= T(V1, 00y Vi1 oy U ))
=ac-T(v1, .y Vg, ey U) + - T(V1, ooy Vit oy V)
=cla-T(v1, ..o, Viy oy g)) + (- T(v1, .oy Vyry ooy UE))
= c(aT)(v1, .oy Viy ooy ) + c(@T) (U1, ooy Uity oy VE).©

Por lo anterior, T € T*(V).

7. Asociatividad del producto de escalares.

Sean «, § € R, tenemos que,

((aB)T)(v1,...,vp) = aff - T(vy, ..., vg)
=a(f-T(v1,..., %))
=a- (BT)(vq,..., )
= (a(BT)) (v, vy Vg).

8. Distribucion de la suma escalar.
Sean «a, § € R,

((a+ B)T)(v1, .oy vi) =(a+ B) - T(vq, ..., vg)
=a-T(v1,...,0x) + B -T(vq,..., )
=(aT + BT)(vy, ..., k).

9. Distribucion de suma vectorial.
Sea a € R,

(Oé(T"F S))(Ul, ...,’le) :Oé(T + S)(Ul, ...,Uk)
=a - T(vy,...,vp) + - S(v1y ..., Vg)
=(aT + aS)(v1, ..., vg).

10. Unitaridad.

Tenemos que 1 € R, luego,

(1-T)(v1,.,vp) = 1-T(v1,...,vp) = T(v1, ..., vg).

Con esto, se concluye que .7%(V) es un espacio vectorial. O



24 CAPITULO 2. K-TENSORES

Dados un k-tensor y un [-tensor, es posible obtener un k + [-tensor como

resultado de la operacién definida a continuacién.

Definicién 2.2. Sea V un espacio vectorial sobre R. Tomando S € (V) y
T € JYV), con k,l € N, definimos al producto tensorial S ® T : V¥ — R

CcOomao:
(S ® T)<U17 ooy Uky Ukt1, "'7Uk+l) = S<U17 ) Uk;) ’ T(Uk’Jrla "'7Uk+l)‘

Propiedades. Si 51,5, € 75(V), U e g™(V), T1,Ty € T(V), cona € R y

k,l,m € N, entonces,

(S14+9) Ty =51 @T + S, @Th.

1@ (T +T5) =5 T + 5, @ Ts.

(Ole) X T1 == Sl X (Ole) == O./(Sl & Tl)

Proposicién 2.2. Sea V un espacio vectorial sobre R. Dados S € J*V) y
T € TYV), con k,l € N, se tiene que S® T € T+(V).

Demostracién: Sean S € T5(V), T € 7Y(V),ceReie{l,...k+1}.

m Caso 1. 1 <i<k.

(S®T)(v1, .oy c(vy 4+ Vi), ooy Upyr)
= S(v1, e, (Vi + Vi), ooy V) - T(Vkg1y ooy Vktr)
= (c-S(v1y .y Uiy oy Ug) + - S(01, o, Viry oy Ug)) = T(Vka1y vy Uptr)
=c-S(V1, ey Viy ooy V) - T(Vks1y oy Vkpr)
+c SV, ey Uity ooy V) - T(Vgt1y ooy Vktr)
=c- (SRT)(v1, ..y Vi eey Vrr)
+ - (ST (U1, eey Viry ooy Vgt -
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m Caso 2. k+1<i<Ek—+1.

<S®T)<U17 ) C(Ui + Ui’)? ey Uk-i—l)
=S,y ) - T (Vgs1y eoey (U + Vi1, ey Vgopg)
= S(U1, . )

(
=cC S(Ula "'7/Uk) T<Uk+17 ceey Ugy oeny Uk-i—l)
)

+C'S(Ul7' - Uk T(Uk+17"'>vi’7“'7vk+l)
<S®T)(U17"'7 Uk+l)
¢ (S@T)(vy, .. oy Ukt

Asf, S®T € TV,

Ejemplo 2.4. Sean S € 73(R?) y T € 7'(R?), dadas como sigue:

S((x1,x2), (Y1, y2), (21, 22)) = T1Y121 + T2Y22s.

T(’LUl, wz) = Wq.
Luego,

(S@T)((21,22), (Y1, 42), (21, 22), (w1, w2))
:S(($1> ‘1'2)’ (yla y2)> (Zh 22)) ) T(wla w2)
=(x19121 + Tay229)wn

=X1Y121W1 + ToY222W1.
Sean (z1,2), (Y1, y2), (21, 22), (U1, us), (w1, ws) € R?* y ¢ € R, con esto,

(S @T)(c((21,22) + (u1,u2)), (Y1, y2), (21, 22), (w1, w2))

=S(c((w1, 22) + (w1, u2)), (Y1, y2), (21, 22)) - T'(wy, wo)

=S(c((z1 + w1, 22 + u2)), (Y1, y2), (21, 22)) - T'(w1, w)
=(c(w1 + ur)yr21 + e + uz)y2z0)wr
=CT1Y121W1 + CU1Y121W1 + CT2Y222W1 + CUY222W1
=c(T1y121W1 + Taypzowi) + c(Ury121W1 + UnY22pW1 )
=c- (S T)((21,22), (Y1, ¥2), (21, 22), (w1, w2))

¢ (S@T)((ur,u2), (Y1,92), (21, 22), (Wi, w2)).

25

C T (Vggts ooy Uiy ooy Upt) + €= T(Vpg1s ooy Uity ey Ukay))
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De manera analoga, se demuestran las siguientes igualdades:

(S @ T)((z1,22), c((y1,y2) + (w1, u2)), (21, 22), (wr, w2))
=c- (S @T)((z1,22), (Y1, 92), (21, 22), (w1, w2))
+c- (SRT)((x1,ma), (ur,us), (21, 22), (w1, ws)),
(S @ T)((w1, x2), (Y1, y2), c((21, 22) + (ur, u2)), (w1, w2))
=c- (S @ T)((x1,22), (y1,42), (21, 22), (w1, w2))
+c- (S@T)((x1,x2), (ur,us), (ur, uz), (wy, ws)),

ademas,

(S @T)((21,22), (Y1, Y2),(21, 22), c((w1, w2) + (w1, u2)))
=S((@1,22), (41, 92), (21, 22)) - T(c((w1, w2) + (w1, u2)))
=(z1y121 + T2y222)c(wy + 1)
=c(z1y121 + Taypz2)wi + c(T1y121 + Tay222)u
=c- (S®T)((w1,22), (Y1, ¥2), (21, 22), (w1, w2))
+c- (S@T)((w1,22), (Y1, 92), (21, 22), (U1, uz)).

Con esto se concluye que S ®@ T € T*(R?).

Notemos que 7 !(V) es el conjunto de todas las funciones multilineales de una
sola entrada, es decir, es el conjunto de todas las transformaciones lineales cuyo

dominio es V' y codominio es R, con esto, es facil notar que J1(V) = V*.

Teorema 2.1. Sean V' un espacio vectorial sobre R de dimension finita n y una ba-
se {vy, ..., v} de V. Si{¢1, @2, ..., &n} es la base dual correspondiente a {vy, ..., v, },

entonces el conjunto de todos los productos tensoriales,

(b’il ®.”®¢Z’k7 1 Slll;)?‘k‘ §n7

es una base para 7*(V), que ademds tiene dimensién n*.

Demostracién: Sean {vy,...,v,} una base para V, y {¢1, ¢, ..., &, } la base dual

correspondiente. Dados wy, ..., wy, vectores de V' y T € T*(V), tenemos que,

n

w; = E aijvj,

J=1
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donde a;; € R, para todo i € {1,2,...,k} y para todo j € {1,2,...,n}. Ademas,

Gm(W;i) = b (i %’Uj)

j=1

= dmlayv;)
j=1

= ayém(vy)
j=1

= Qjm,

para todo m € {1, ..., k}, con esto,

n n
T(wl,...,wk) =T E A1Vjy ey E a5 |,
j=1 j=1

debido a que tenemos k sumas donde el indice j aparece en todas, cambiaremos

el indice de la suma en la entrada [ por j;, para todo [ € {1, ..., k}, con esto,

n n
T(wl,...,wk):T E aljl’Ujl,...,E Ak Vg

J1=1 Jr=1

- § : § :aljl' ak]k UJN"'?Ujk)

Jji=1 Je=1

= Z e Z ¢jl (wl) T ijk(wk)T(Uju "'7Ujk>‘

Ji=1 Jrk=1

Haciendo un cambio de j; por 7;, se llega a lo siguiente,

T(wy,...,w Z Z@l wy) - Gy (W) T (V45 ..., 03,

i1=1 =1
= Z e Z ¢7L1 ® e ® gbik(u}l, ...,’U}k)T<UZ'1, "'7vik)
i1=1 ik—l

(Z ZT Uiy s -oes Uiy, ¢11 ®¢Zk>(w1,,wk)

7,11 Zkl
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Entonces,

T = ZZT(U1177U%)¢11®®¢%’

i1=1 tp=1
debido a que T'(vj,, ..., v;,) es un nimero real, podemos decir que el conjunto de
todos los k-tensores de la forma ¢;, ® -+ ® ¢;, genera a 7*(V). Por otro lado,

¢i1 K- ¢ik<vj17 -'-7Ujk) = ¢i1 (Uj1) T ¢ik(vjk)7
dado que ¢;,(v;,) = 1 solo si i; = ji;, para todo [ € {1,2, ..., k}, entonces,

1, sij; =1, para todo [ € {1,2,...,k},
gbil (Uj1) ) ¢Zk(vjk) =

0, otro caso.

Sea O € J%(V) el k-tensor nulo y supongamos que existen nimeros de la forma

a;, ..., tales que,

Z e Z ai1,‘..,ik¢i1 K- ® ¢Zk = O7

ii=1 =1

luego, al evaluar en vj,, ..., v;, , resulta lo siguiente:

(Z e Z% ..... 03P ® - ® ¢ik)(vju s 0,) = O(vjy, .0y v5,) =0,

i1=1 =1

visto de otra forma,
Z T Z ail,---7ik(¢i1 Q- ® ¢ik(vj1v "'7Ujk))

=1 =1
n n
=3 > i (V) - i, (07,)
i1=1 ip=1
=0,
notemos que ¢;, (v;,) - - ¢j, (v;,) = 1, asi,

Wr,i @ia (V31) - D (V5) = @y, gy - 1 =10,

lo que implica que a;,.. ; = 0, para todo j; € {1,...,n}, I € {1,...,k}. Por otro
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lado, dado que para ¢;, para todo i; € {1,...,n} y para todo [ € {1, ..., k}, existen
n posibles elecciones de funciones, se sigue que existen n* formas distintas de

combinar,
¢i1 ®®¢Zk7

asi, el conjunto de todos los productos tensoriales,
¢i1 Q- ®¢lk7 1 S ila 7Zk; S n,

es linealmente independiente y .7%(V) tiene dimensién n*. O

2.2. K-tensores alternantes

Definicién 2.3. Sean V' un espacio vectorial sobre R y & > 2. Un k-tensor
w € Jk(V) se llama alternante si, para i # j, con 4,5 € {1,...,k}, se cumple

que para todo vq,...,v, € V:
W(U1, ooy Uiy oy Uy ooy V) = —W(V1, oy Ujy ooy Vg ooy V).
Ejemplo 2.5. Sean V = R? y w : R? x R? — R dada por
w((21,22), (Y1,Y2)) = T1y2 — T2Y1.
Sean (z1,72), (y1,v2) v (21,22) € R? y ¢ € R, luego,

w(c((w1, x2) + (21, 22)), (Y1, ¥2)) =c(z1 + 21)y2 — c(@2 + 22)11
=CT1Y2 + CZ1Y2 — CT2Y1 — CZ2W1
=c(x1y2 — Tay1) + c(21y2 — 221)
=c - w((x1,22), (Y1, ¥2)) + ¢ - w((z1, 22), (Y1, ¥2)),

analogamente,
w((21,22), c((Y1,42) + (21, 22))) =c - w((21, T2), (1, 92)) + ¢ - w((w1, 22), (21, 22)).

Asi, w es un 2-tensor, ademas,

w((xla IQ)? (yl,y2)) = T1Y2 — T2H
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= —(—z1y2 + T211)
= _($2y1 - $192>
= —(?/1962 - yle)

= —w((y1,v2), (71, 72)).
Con esto, w es un 2-tensor alternante de R2.

A diferencia del Ejemplo 2.1, el Ejemplo 2.5 no puede ser generalizado para

todo k € N| pero si para R™ como explica en el siguiente ejemplo.

Ejemplo 2.6. Sean V =R", n par y w: R* x R" — R dada por

w((gjla I, ...711/’”)7 (ylv Y2, .-y yn)) =T1Yn — Tnlh + To2Yn—1 — Tn-1Y2

teotTayng —rnpayn.
Se tiene que w es 2-tensor alternante de R™.

Proposiciéon 2.3. Sea V espacio vectorial sobre R. El conjunto de k-tensores

alternantes, denotado por A*(V), es un subespacio de 7*(V).
Demostracién: Sean w,n € A*¥(V)yceR.

1. Cerradura sobre la suma.

Como ya se vi6 anteriormente w + 7 es un k-tensor, ademas,

(w+n)(v1, .oy Viy oo, U oo, U)
=W(V1, ooy Uiy eoey Ujy ooy V) + 1(V1, ooy Uy oo, Vjy e,y V)
= — WV, ety Vjy ooy Uiy oy V) — (01 ey Uy ooy Uiy ooy V)
= — (W(V1, ey Uy ooy Uiy ooy Uk) + (U1, ooy Uy oo, Uiy oy V)

=— (WH+n)(V1, ., Vj, ey Uiy ooy V).
Por lo tanto, w +v € A¥(V).

2. Cerradura sobre el producto por un escalar.

Sea a € R, luego,

(QW) (U1, ooy Viy oy Vjy ooy V) = - W(V, ey Uy, ooy Uy oo, V)
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= a(—w(v1, ..., V), ooy Uiy ooy Ug))
= —a - wW(V1, .oy Ujy ooy Vg ooy V)

= (—aW) (V1 ooy Vjy ooy Uiy ooy Ug).

Con esto, aw € A*(V).

Por lo tanto, A*(V') es un subespacio de 7*(V). O

Si k > n el Unico tensor alternante es el k-tensor nulo. Por otro lado, dados
w e A (V) y n e AYV), no siempre se cumple que w ® n € A (1), tal como lo

ilustra el siguiente ejemplo.
Ejemplo 2.7. Sean w € A%(R?) y n € A*(R?), dadas como sigue,
w((w1,72), (Y1,Y2)) = T1Y2 — Tay,
n((z1, 22), (U1, uz)) = z1us — 29Uy.
Intercambiando el vector (y1,y2) con el vector (ug,us) se sigue que,
w @ n((z1,22), (u1, u2), (21, 22), (Y1,92))

=w((1,w2), (w1, u2))n((21, 22), (Y1, ¥2))

=(r1up — 2ou1)(21Y2 — 2201).
Sean (21, 22) = (y1,42) = (1,1) v (21, 22) = (u1,u2) = (1, %% asi,

w® 77((951:352% (yla y2>7 (Zh Z2)> (Ul, ’LL2>> =w® 77((17 1)7 (17 1)7 (17 %)7 (%a 1))
—(1-1—1-1)(1-1=1.1)
:O’

por otro lado, al intercambiar el vector (y;,y2) con el vector (uy, us) se obtiene el

siguiente resultado,

9

167
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Con esto,

w @ n((w1,22), (Y1, v2), (21, 22), (U1, uz))

= —wn((z1,22), (u1,uz), (21, 22), (Y1, Y2))-

Definicién 2.4. Sea V un espacio vectorial sobre R. Dado T' € Z*(V) con k € N,
definimos a Alt(T) : V¥ — R como sigue:

1
AT (v, oy 08) = 75 > sgn(8) T(vsq), -, vser))-
6€Sk
Notemos que cuando k£ = 1, se tiene que:
1
AL(T) (1) = > " sgn(8) T(vsy) = T(v1).
dEST

Recordemos que por definicion, los k-tensores alternantes solo existen cuando

k > 2, pero, por la igualdad previa, diremos que todo 1-tensor es alternante, asi,

AY(V) = TYV).
Ejemplo 2.8. Sea T € 73(R?) dado por:

T((z1,22), (Y1, Y2), (21, 22)) = T1y121 + TaYa2a.

Considerando las permutaciones §;, ¢ € {1,2,3,4,5,6} dadas en el Ejemplo 1.5

y tomando vy = (21, %2), va = (y1,¥y2) ¥ v3 = (21, 22), resulta,

AT (w1, 72), (Y1, Y2), (21, 22))
=Alt(T)(vy, va, v3)
:%[Sgﬂ((sl)T(Ual(l), Vs, (2), Vs, (3)) + 580(02)T (Vs (1), Vsy(2)5 Vsa(3))
+ 5g0(03)T (Usa (1), Vs (2), Vsa(3)) + 581(04) T (Vs (1), Vsy(2): Veu(3))
+ 580(05) T (s (1), Vs5(2)5 Vs5(3)) + 581(06) T (Vs5(1)5 Vss(2)5 Vss(3))]
:é[l - T'(v1,v9,v3) + (—=1) - T'(v1,v3, v2)
+ (—1) - T(v3,v9,v1) + (—1) - T(vg,v1,v3)
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+1- T(Ug,l)g,?]l) +1- T(Ug, U1, UQ)]

=T, 22), (01,00), (21, 22)) = TG, ), (21,2, (o, 02)

- T((Zb ZQ)? (yh y2)7 (xlv x2)) -T

+T((y1,92), (21, 22), (v1,22)) + T

1
:6[13131121 — XTolyaZo — T121Y1 — T222Y2

((?Jb 3/2), (36’1, 902)7 (21, Zz))
((Zh Z?)? (‘/L‘h ZUQ), (yh y2>)]
— 21Y1T1 — 22Y2X2 — Y1T121 — Y2222

+ Y1211 + Yo2oTo + 21T1Y1 + 22T2Y2)
=0.

Ejemplo 2.9. Sea {ej, e} la base canénica de R? y {¢1, @2} la base dual corres-
pondiente. Considerando las permutaciones ¢;, para cada i € {1,2} dadas como

en el Ejemplo 1.4 y tomando v; = (z1,22) ¥ v2 = (y1,92) € R?, resulta,

Alt(gbl ® ¢2)(U1, 1}2 ' Z Qsl & ¢2 Vs(1), Vs( ))

5652

o] Z d1(vs(r)) - P2(vs(2))

6€Sy

:i[(bl('l)l) * Ga(v2) — d1(v2) - P2(v1)]

1
25[% Y2 — Y1 5(72]

1|x1 2

2 Y1 Y2 '

Teorema 2.2. Sean V un espacio vectorial sobre R y k£ > 2.
1) Si T € T*V), entonces Alt(T) € A*(V).
2) Siw e A¥(V), entonces Alt(w) = w.
3) SiT € T*(V), entonces Alt(Alt(T)) = Alt(T).

Demostraciéon:

1. Sean T' € Z*(V) y la transposicién 7,, € Si. Dado § € Si definimos a
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§' =6 - 7,4, notemos que ¢’ cumple lo siguiente,

5(r 5
§'(q) =(0- Tp,q)(cI) = 5( (q)) - 5(19)
' o(m, 6(j), para todo j € {1,...,k}\{p, q},

ademads, ¢’ € Si. Sin pérdida de generalidad, supongamos que p < ¢, luego,

Alt(T) (v1, vy Upy ey Vs - vk)

' ngn v5(p),...,v(;(q),...,v(;(k))
565k

' ngﬂ U(S’ (1)s - 71}5’(11)7"'7U5’(p)a"'7v(5’(k))7
0€S

por Corolario 1.1 se tiene que,

sgn(0') =sgn(d - 7,,4)
= —sgn(9),
es decir, sgn(d) = —sgn(d’). Por otro lado, debido a que para cada § € Sy

se define a 0’ =6 -7,,y &' € S, se puede cambiar el indice de la suma de &

!/
por ¢, con esto,

' Z Sgn 'Ug/ (1)« U/ (q)s -+ Vs (p)s +++» "U(g/(k))
dESK

‘ Z —sgn 5/ U(;/ oo U1 (q) s vy VS () s +oos U(g/(k))
5/€Sk

Z Sgn v5/ (1)5 -+ Vs (q) 5 +++5 Vs (p)> ...,U(;/(k))
5/€Sk
= — Alt(T)(v1, vy Vgs ovey Upy vy U ).
Asi,

Alt(T) (01, -y Upy ooy Ugy ooy V) = — Al (T) (V1 .0y Vg oy Upy oo,y V).

Con esto, Alt(T) € Ak(V).
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2. Sean w € A*(V) y la transposicién 7, ,, asi,

W(V1, ooy Upy ey Ugy ooy V) = — W(U1, ooy Ugy ooy Upy oevy V)

- w(Uprq(l)’ Tt va,q(p)’ e UTp,q(Q)7 Tt U’rp,q(k’)%

con esto,

WUz, (1) oo Vrp o (k) = —W(V1, ooy V) = SU(Tp, g )W (V1 ..., V). (2.1)

Por otro lado, sea § € Sy. Por Teorema 1.4, existen d(d) transposiciones
1, ..., Ta(s) tales que
§ = T1 - Tas) (2.2)

De (2.1), (2.2) y del Teorema 1.3, se sigue que,

W(Vs(1ys -+ Vo(i) ) :w(v(Tll..Td@)(l), s U(TI...Td(6>)(k))
=W(Vry (72 (rag5) (D)) > Vi (ra((ragsy ()
=071 (Vry (- (1405 (1)) -+ Ura (- (ragay (k)
=50 (71)SGN(T2 )W (Vry (- (405 (1)) -3 Vs (g (1))
=sgn(71)sgn(72) - - - sgn(Tyes) )w (v, ..., Uk)
=sgn(7y - - - Ta(5))wW(V1, ..oy V)

(

=sgn 5)w(v1, ey Uk),

asi,

Alt(w)(vy, ...y vg) =7 Z sgn(0) w(vs(1ys -5 Vs(k))
" 6eSy
1
:H Z Sgn((g)sgn(d) W(Uh R Uk)
0€Sk
1
:w(vl, . Uk)y Z(Sgn((s))Q
5esk
:CU<’01, Z 1
5esk
=w(vy, ... )klk;l

=w(v1, ..., Vg),
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(sgn(8))? = 1 debido a que el signo de una permutacién es igual a 1 0 a —1.

3. Sea T € Z%(V). Por 1) se cumple que Alt(T) € A¥(V), asi, aplicando 2) se
concluye que Alt(Alt(T)) = Alt(T).

Por lo tanto, se da por demostrado el teorema. O

Ejemplo 2.10. Sea w dado como en el Ejemplo 2.5, recordemos que w es un

2-tensor alternante, para este ejemplo nos apoyaremos del Ejemplo 1.4, tomando

a vy = (11,72) y v2 = (y1,%2) se tiene que,

1
Alt(w)(v1,v2) Ig[sgn(fﬁ)w(val(l), s,(2)) + 580(02)w (Vs (1), Vsy(2))]

=511 wfvr, ) + (=1) (w2, )]

1

:§[w((a:1, 72), (Y1,92))) — w((y1, ¥2), (71, 22))]

1

:§[$1y2 — 22y1 — (172 — Y211)]

1

25[93192 — Zay1 — (T2y1 — T1Y2)]

25[1’1?/2 — Toy1 — T2y1 + T1Yo]

1
:§[Q$1y2 — 2% |

=T1Y2 — Ta2Y1
=w((71, 22), (Y192))

=w(vy, va).

Definicién 2.5. Sean V' y W espacios vectoriales sobre R. Dada una transforma-

ciéon lineal f: V — W, se puede definir una transformacion lineal
forTHW) = THV),
dada por,
feT(vy,yor) =T(f(v1), .oy f(01)),
para algin T € Z*(W) y para cada vy, ...,v, € V.

Definicién 2.6. Sea V espacio vectorial sobre R. Dados dos tensores, T € (V)
y S € Z4V), con k,l € N. Se define al producto cuna T' A S como sigue:
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TAS=%DAT®S).

Propiedades. Sea V un espacio vectorial sobre R. Dados wy,w, € A*(V),

m,ne € AL(V), con k,l €N, y a € R, se cumple lo siguiente,

(Wi wo) Ay =wi Amy +wa Ay

ufl/\(771+772)Zw1/\771—|—wl/\772.

(awr) A =wi A (amy) = alwy An).

Sean W un espacio vectorial sobre R y una transformacién lineal f : W — V|

entonces
fHwr Am) = f(wi) A fo(m).

Proposicion 2.4. Sean V' espacio vectorial sobre R y k&, € N. Tomando T €
TEV)y S e TYV), se cample que T A S € AF(V).

Demostracién: Sean T' € I*(V)y S € 7(V), luego, por la Proposicién 2.2
se tiene que T'® S € T*(V), asi, aplicando el Teorema 2.2, 1), se sigue que
Alt(T® S) € A*(V), debido a que A" (V) es un subespacio vectorial, entonces,

TAS=E0 Al (wen) € AF(V).

Por lo tanto, queda demostrada la proposicién. O

Notemos que 7' y S son arbitrarios, con esto, podemos considerar el caso
cuando ambos son k-tensores alternantes, asi, el hecho de que el producto cuna
de dos tensores alternantes de como resultado un tensor alternante nos serda muy

ttil para poder determinar una base para A*(V).

Proposicién 2.5. Sea V' un espacio vectorial sobre R. Tomando w € A*(V) y

n € AY(V), con k,I € N, se cumple la siguiente igualdad,

wAn=(=1)"nAw.
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Demostracién: Sean w € A*(V), n € A (V) y vy, ..., Uk, Vks1, -, Uit € V/, luego,

w A 77(”17 <oy Uk Vb1, -1y Uk-i—l)

kE+D)!
:( o ) A[t(u) ® 77)(1)1, ooy Uky Uk 1y ey Uk-‘rl)
E+0! 1
( k! ) i) Z sgn(d)(w ® 77)(7)5(1)7 oy US(k) s Vg(k+1)5 s U(;(k+l)>
0€Sk 41
E+0)! 1
_( o ) (k - l)l Z Sgn(5>w(v6(1), cen U&(k)) . 77(@6(k+1)> e Ué(k—i—l))
6€Sk41
E+0D! 1
_( k‘l' ) (l{ + l)' Z Sgn(5)77(U§(k+1), ceey U(s(k+l)) . W(U5(1), o U(S(k))
d€Sk 11
E+10)! 1
:( k!l!) (k+1)! Z Sgn(5)(n®w)(va(k+1),-'.,Ua(km,vg(l),...,v(;(k))
d€Sk 11
(k+1)!

ATT Alt(n @ W) (Vks1, s Vketd, V1,5 -os Vi),

ahora modificaremos el orden de las entradas de (vgy1, ..., Vkts, U1, ..., Uk ), Para esto,

primero trasladaremos al vector v; a la primera entrada,

Alt(n @ W) (Vkg1s oy Vktds V1, oo, Vi)
=(—1)Alt(N @ W)(Vig1, -+, Vkgi—1, V1, Vg, V2, -.vy Vi)

=(—1)?Alt(N @ W) (Vki1s v, Vht1—2, V15 Vki—15 Vkpls V2 vy Uk)

=(—1)lAlt(7] ® w)(vh Vkt1y ooy Vk+1—25 Vk+1—1, Uk+1, U2, -y Uk);

repitiendo el proceso para el vector vs,

Alt(n @ W) (Vg 1y vy Vptty V1 +vy Ug)
=(—1)" Alt(n ® W) (V1, Vg1, -+ Vkti=2, Vti—15 Ukl V2, -5 V)
:(_1)l(_1)Alt(T/ ® W)(Ul, Vk415 -5 Vk41—25 Vk4i—1, V2, Ug41, U3, ..o, Uk’)

:(_1)1(_1)2Alt(77 ® w)(”l? Uk41y -5 Uk1—25 V25 V-1, V41, U3, -+, Uk)

(—1)1(—1)114“(?7 & w)(vl, V2, V41 ooy Upti—1, Vkt1, U3, -, ’Uk)

((—1)1)2Alt(n Q W) (V15 U2y Ukt 1y vy Vktl—1s Ukt ly U3y -vy Uk ),
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siguiendo el mismo proceso para los vectores vs, ..., v;, notemos que son k — 2

vectores, se concluye lo siguiente,

Alt(ﬁ ® W)(UkH, cory U1, V1, -ony Uk)
:((—1>l>2((—1)l>k72Alt(n & (A))(Ul, V2,V3, ooy Uy Ukt 1y ovey Ukl —1, Uk+l)
:((_Ul)kAlt(U ® W)(Uh V2,U3, ...; Uk U415 -v5 Ukt1—1, Uk+z)

=(—1)MAlt(n @ w)(v1, V2, U3, .., Vky Ukt s +vr Vktd—1> V)
asi,

w A n(vla ooy Uy Uk 1y -0y vk-‘rl)

kE+1)!

:< k'l'> Alt(n @ W) (Vkg1, oy Vet V1, vy V)
k+1)!

:< k'l') (_1)klAlt(n®W)(U1,...7/Uk,/l]k+1,...,vk+l>

k+1)!
k!

:<_1)kl77 A Cd(’Uh cory Uky Uk4-15 +-0y Uk-i—l)‘

:< 1)kl(

Alt(n ® W)(’Ul, ooy Uk Ukt 1y -0y Uk—i—l)

Por lo tanto, queda demostrada la proposicion. O

Ejemplo 2.11. Sean S € 2(R?) y T € 7(R?), dadas como sigue:

S((ﬂﬂl, 532), (be/Q)) = T1Y1 + T2Yo2,

T(Ul, ’02) = 1.

Luego, considerando las permutaciones ¢;, i € {1,2,3,4,5,6} dadas en el Ejemplo

1.5 y los vectores vy = (1, x2), Vo = (y1,Y2) y v3 = (21, 22), resulta,

(S ®T)(v1,v2,v3) =(S @ T)((1,72), (Y1, Y2), (21, 22))
=S((21,72), (y1,2)) - T (21, 22)
=(z1y1 + Toy2) 21

=Z1Y121 + ToY221.
Asi,

(2+ 1!

~—————Alt(T @ S)(v1, v, v3)
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3!
== > (S®T)(vs(1), Vs(2), Vs(3))

0ES3

6
) > S(vsa), vs) - Tlvs(s)
0€Ss3

=3[sgn(01)S(vy,v9) - T'(v3) + sgn(ds)S(vy,vs) - T'(vs)
+ sgn(03)S(vs, va) - T'(vy) + sgn(dy)S(ve, v1) - T'(
+ sgn(05)S(ve, v3) - T'(v1) + sgn(dg)S(ve, v1) - T'(va)]
=3[S((z1,22), (Y1, 92)) - T'(21, 22) — S((21,22), (21, 22)) - T (1, 2)
— S((21, 22), (y1,92)) - T(1, w2) = S((Y1, 92), (21, 32)) - T'(21, 22)
+ S((y1,92), (21, 22)) - T(w1, w2) + S((21, 22), (w1, 22)) - T(y1, y2)]

=3[r1y121 + Toy221 — T121Y1 — TaZay1 — 21101 — ZoYely

Ug)

— Y1121 — Y2221 + Y1210 + Y2292 + 2111 + ZQIgyl]

=0.

Proposicién 2.6. Sea V un espacio vectorial sobre R. Sean T; € 7% (V), con

i € {l,...,n}. Si para algin j, con j € {1,...,n}, se tiene que T; = O, entonces:

TyN---NT;N---NT,, = O, para todo j € {1,...,n}.

Demostracién: Sean T; € Z%(V), coni € {1,...n}, ¥ =k + - +k, y
U1, ..., v € V. Supongamos que T; = O, donde j € {1,...,n}, luego,

T1 VAR /\Tn(vl, ...,Uk/)

k'
- kl' .k lAlt(Tl - ® Tn)<U1, ...7?]k/)
k' 1
Tl kKN Z sgn(0)(T1 ® « -+ @ Tp) (V51 -5 Vo(k))
v n ’ 6€Sk/
1
T kgl k) > sen(O)T1(vsq), -, Vs(en)

’ ‘SESk’

(Vs dorky_1)s oor Us(hroky)) T (Vs (k=) s s Vs ()

1
AN Z sgN(0)T1(Vs(1), -+ Vo(hr)) =~ - O Tn(Vs(rr k) -5 Vs(rr))
1 n ‘SESk’
kgl k! Z

’ 5€Sk’



2.2. K-TENSORES ALTERNANTES 41

=0
— O(Ulv ’ Uk’)
Por lo tanto, queda demostrada la proposicién. O

Teorema 2.3. Sea V' un espacio vectorial sobre R.
1) SiSe V), TeTYV)y Alt(S) = O, entonces:
Alt(S®T) = Alt(T ® S) = O.

2) Siwe ARV), ne AYV)y 6 e A™(V), entonces:
Alt(Alt(w @ n) ® 0) = Alt(w @ n ® 0) = Alt(w ® Alt(n ® 6)).

3) Siwe Ak(V), ne AYV)y 6 e A™(V), entonces:

(k+1+m)!

(WANANO=wA (NN = T ~Alt(w @1 ® 0).

Demostracién: En efecto:

1. Sean S € T*(V), T € TYV) y supongamos que Alt(S) = O, tenemos que,

(k + DLAI(S & T) (01, - .0051)
= Z sgn(0)(S @ T)(vs(1), -+ Vs(kt1))

5€Sk+l

= Z sgn(é)S(v5(1), o U&(k))T(Ué(k+1)7 e Ua(k+1))-

5€Sk+l

Sea G C Sky; el conjunto de permutaciones que solo dejan fijos a los ele-
mentos k+ 1, ...,k + [, asi,

Z sgn(5) (S & T) (U(g(l), ...,Ug(kH))
0eG

= Z sgn(0)S(Vs(1), s Vo)) T (Vs(hs1)s -+ Vs(ri))

= sgn(8)S(V5(1), -+os V(1)) T (Vks1, ey Vis)

=T (Vkt1, s Vtt) Z sgn(6)S(Vs(1)s -+ Va(k))-
sea
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Dado que toda permutacién de G solo cambia a los elementos 1,...,k y .S se
evalia en k vectores, podemos reescribir la sumatoria anterior de la siguiente

manera,

Z sgn U(; (1) -+ J(k)) = Z sgn(5’)5(05/(1), ceey UJ’(k)); (23)

e 8’ €Sk
luego,
T (Vkg1s oo Uk Z sgn (o ey Us(k))
0eG
:T(Uk+1, . Uk:—i—l) Z sgn(5')5(v5/ (1)9 +++s U(;/(k))
J’ESk
IT(Uk+1, ey UkJrl Z Sgl’l Uy(l), ceey U§’(k))
6’ESk
1
=T (Vy1, -y Vg1 K! Lﬂ' Z Sgn((s/)S(Ua/(n,---,Uaf(k))
' €Sk
:T(Uk+1, ceny Uk+l)k"Alt(S) (2}5/(1), cees U&’(k))
:T(’l}k+1, ceny Uk+l)k! -0
=0.
Es decir,

> “sgn(0)(S @ T)(vy, ..., vkyr) = 0.
0eG

Sea 0p € Sk \G, definamos ahora a G’ de la siguiente manera,
G ={o=4-9:0¢€G},
y consideremos el cambio, vs,;y = w;, para todo ¢ € {1,..., k + [}, asf,

Z sgn(0)(S @ T)(Vo(1)s -+ Vo(kt))

oceG’

= Z SgH(U)S(UU(l), o Ua(k))T(Ua(k+1)a e 'Ua(k-l-l))

e’

= Z sgN(0 - 00) S (V(5.50)(1)5 -+ V(5-50) (k) )T (V(5:80) (k1) -+ V(5-80) (k1))
5eG
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= Z sgn(0)sgn(do)S (Vs(ss(1))s -+ Vs (o (k) )L (Vs(60(k-+1)) > Vs(60 (k1))

5€G

= 52n(8)sgn(00) S (Us(1), -+ sk)T (Us(h 1), - Usrtr))
5eqG

= Z sgn(6)sgn(6o)S (ws(1ys - Us(r)) T (Ukg1s -y Ukt
5eG

=sgn(00)T (Uks1s -y Ugt1) Z sgn(6)S(Vs(rys - Vs(ky ),

oeG

siguiendo un razonamiento similar al usado en (2.3), se sigue que,

sgn(ég)T(ukH, ...,ukH) Z sgn(é)S(v(s(l), ceey U(;(k))

5€G
=sgn(00)T (W1, ---» U41) Z Sgn(5/)s(?}5/(1), ey Vsl (k)
5 €S,
1
=sgn(00) T (Uk41 - Up11) k! [E Z sgn(0')S (Vs (1), - Vo ()
’ ' €Sk

:sgn(éo)T(ukH, ceey ukH)k! -0
=0.

De aqui, se tiene que,

Z sgn(0)(S @ T)(Vs(1), -+ Vo(kr)) = 0.

oceG’
A continuacién demostraremos por contradiccién que Gy G’ son conjuntos
disjuntos. Supongamos que GNG’ # (), asi, existe al menos alguna permuta-
cién &, € GNG', luego, existe alguna permutacion d; € G tal que 61 = do-dp,

lo que implica lo siguiente,

(02) ™"+ 61 =(82)~" - (62 - o)
=((62)7"62) - 6o

asi, 0p € G, lo cual es una contradiccién. Repitiendo el proceso de fragmentar
a Sky; en conjuntos disjuntos, donde la suma sobre cada conjunto es 0,

entonces, la suma sobre Sk, es 0, con lo cual Alt(S ® T) = O. La igualdad
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Alt(T ® S) = O se demuestra de manera similar.

2. Sean w € A*(V), ne A((V)y 0 e A™(V). Dados S, T € T¥(V) y a € R, se

cumple que:

Alt(T 4 - S)(vy, ..., Ug)

1
= E Z Sgl’l((;) (T_'_ - S)(U§(1)7 ...,Ug(m)

dESkK
1 1
= > sgn(8) T(vsq), - vsry) + o > " sgn(d) o+ S(vsy, oo Vsry)
0ESK 0ESk

= Alt(T)(vq, ..., o) + a - Alt(S) (v, ..., vx)
= (Alt(T) 4+ a - Alt(S))(v1, ..., vg).

Luego,
Alt(Alt(n ®0) —n® 0) = Alt(Alt(n ® 0)) — Alt(n ® 0)
=Alt(n®0) — Alt(n ® 0) (2.4)
ademas,

Alt(Alt(w @ n) —w@n) = Alt(Alt(w @ 0)) — Alt(w @)
= Alt(w ®@n) — Alt(w ®@n) (2.5)
= 0.

Por (2.4) y por 1), se tiene que:

O =Alt(w ® [Alt(n® 0) —n @ n))
=Alt(w @ Alt(n®0) —wn®0)
=Alt(w @ Alt(n® 0)) — Alt(w @n ® ),

asi,

Alt(w @ Alt(n® 0)) = Alt(w @ n ® 0). (2.6)

Por otro lado, de (2.5) e 1), se sigue que,

O =Alt([Alt(w®n) —w @1 R0)
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=Alt(Altlw®n) @0 —wen®0)
=Alt(Alt(w @ n) ®0) — Alt(w @ N ® ),

asi,

Alt(Alt(w®@n) ®0) = Alt(w @ n @ 0). (2.7)

De (2.5) y (2.6) se concluye lo siguiente,

Alt(Alt(w @ n) ® 0) =Alt(w @ n ® 0)
=Alt(w @ Alt(n ® 0)).

3. Sean w € A¥(V), n e A (V) y 6 € A™(V), luego,

(WA A= WAH(@ An) ®0)
_ (’Z'l: +l ;'ZR Al <kkT“l>!AZt(w ® 1) ® 6)
— (IEILZ ;)r':;)' (k];“l)!Alt(Alt(w ®n)®0)
= %Alt(w ®n®0).
Por lo tanto, queda demostrado el teorema. ]

Teorema 2.4. Sea V un espacio vectorial sobre R y {vy,...,v,} una base del
mismo. Si {¢1, @2, ..., on} es la base dual correspondiente a {vy, ..., v,}, entonces

el conjunto de todos los k-tensores alternantes:
es una base para A*(V), que ademas tiene dimension:

n

k

Demostracién: Sea w € A¥(V) c 7%(V), por Teorema 2.1, podemos ver a w

de la siguiente manera:

=1 =1
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Entonces, dado que w € A*(V), por el Teorema 2.2, 2), se sigue que:

w =Alt(w)
_Alt (Z Z bu ..... zk¢11 : ® QSlk)
i1=1 =1
:Z . Z b, Alt(ds, @ - ® b5,).
i1=1 ip=1

Por Teorema 2.3, 3) se tiene que,

(14---41)!

¢Z1/\/\¢Zk: 1!_..1!

Alt(¢z1 2 ¢zk)7

lo que implica que, Alt(¢;, ® --- ® ¢;,) = %gb“ A+ A ¢, , con esto,

W=D by ik%@l XN
i1:1 ikzl (28)
= Z Z Cip,..., zk¢11 “A ¢ik7
i1=1 =1

,,,,, i €s un escalar. Por lo tanto, se concluye que el conjunto de todos los
k-tensores ¢;, A --- A ¢;, genera a A*(V). La demostracién de que este conjunto
es linealmente independiente es andloga a la demostracién del Teorema 2.1. Asi,
este conjunto es una base para A*(V).

A continuacion se dara la razén de que los indices de las sumas cumplen que
1 <4 < - < i <ny posteriormente se encontrard la dimension del conjunto

mencionado anteriormente. Sean wy,ws € V, luego, para todo | € {1,....,k} se

cumple,
1+
Giy N diy (w1, W) _{ 1'1'> Alt(¢i, @ bi,)(wy, ws)
211
~12 Z sgn(6)(¢i, @ ¢3)(ws(1), Ws(2))
6€Sy
- Z sgn(0) (i, (ws)) - b3 (ws2))]
6€S2

=sgn(01) @i, (ws, (1)) Pi, (Ws,(2)) + 580(52) bi, (Ws, (1)) i, (W5, 2)
:sz‘l(wl)% (w2) - Cbil(wz)% (wl)
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=0
:O<w17 wg),

donde O es el 2-tensor nulo; con esto, si i; = i, con 7 # Ly j,l € {1,...,

entonces,

Cirpnin@in N oo N\ @i,

=Ciypin@in N NQig N N iy Ne oo Ny,

:(_1)1'(1—1)61.1 i Gy N iy N A Qbi]- Ao Ny [ N Ay,
== =DM i Ay A A Ay A Ay, A
( 1)l+J 2021, i (@l A ¢”) A gy N A ¢ij71 A A ¢iz—1 A A @k
( 1)l+y 20“’ ¥ O/\¢n "/\¢z‘j,1 /\.../\%71 A"'A¢ik

=0,

luego, trabajando con las primeras dos sumatorias,

n n
W= E e E CiryoiPin N0 N\ Giy,
i1=1 ik—l
n
= E E § Ciq,..., zk¢z1 A Qszk
=1 io=1141=1
n n

= Z o Z[Cl,ig,...,ik(bl N Gig N+ NPy + Coiy iy @2 N iy N+ Ny

ik=1  do=1

+ C3in i P3N Qig N AN iy o F Crig i@ N Pig N A ]

n n
= Z e Z[Cl,l,...,ik(bl NI N N@iy +Cra. @1 N2 N Ny,

=1 is=1

+eis i D1 ANGIN NGy A+ Cip i D1 A O AN N Dy
o, i P2 NP N NGy +CopinP2 NP2 N Ny,

+ o3 i P2 N3N Ny o+ Cop i @2 NP AN N Dy
+e30,0 P3NOL A Ny, +C32 i O3 NP2 N N Dy,

+ 33, P3 NP3 NNyt i @3N P N Ny,
+o et i O NOLAN NGy Cpo i O NP2 N Ny,

+ cn,3,...,ik¢n A ¢3 ARV szk + -+ Cn,n,...,ik¢n A ¢n JAERWAN szk]

47

kY,

N @i,
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_ Z .. Z[O o g DL AN DA Ay,

ig=1  iz=1

+e13, i PLNOIN NGy e Cip i D1 AN O AN N Dy
+ (=DM eor o1 Apa A Ay, + O
+ a3 i P2 NP3N NGy Ao P2 N O N N Dy

+O+ -+ P3NP N NPy,
o (DM LA G A ANy A (1) i P2 AN G A A g,
+ (_1)1.lcn,3,...,ik¢3 A ¢n ANRRA ¢zk +- 1+ (_1)1‘1cn,n71,...,ik¢nfl A ¢n
AN, + O]

= Z EE Z[(C”Zk —Co1, i )DL NP2 N Ny,

ig=1  iz=1

+ (€13, = C31it)OL A P3N - A @y

A (Clmiy, = Cndin )JPL N G AN N i,

+ (€23, — C32,in ) P2 N D3N -+ N @y

o (Comyiy, = Cn2in)P2 N G N N i

+ (C34,iy = Ca3in )O3 NP4 N -+ N Py

+ o (Campiy = Cnpin )O3 N O A - N i,

+ o (Crtmin = Crn—1,in)Pr—1 AN O A= N 4,

n n
= Z e Z[dl,Q,...,ik¢1 N N Ny +dis, iyt NP3 A= N iy

=1 ig=1
+o At dig, i DL AP AN N D,

+daz. i P2 NP3 N NGy e Fdop, i P2 N O NN Dy
+dsa. i3 NPa N Ny,

ot dyn, i @3 AP N N @y

ot dp i Pn1 AP A A B

n n n n—1
= Z e Z Z Z Qi ig,.in @iy N Qig N+ N Oy

=1 i3=110=0i1+121=1

para fines practicos, en lugar de escribir i5 = 71 +1, se escribira 75 > 4;. Trabajando

con las demés sumatorias de una forma similar a lo anterior mostrado, se concluira
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que i3 > iy y asi sucesivamente 7, > iy_1, por todo lo anterior explicado, podemos

ver al k-tensor alternante w de la siguiente manera,

n—(k—1) n—(k—2)

Z Z Z Z ai1,~~~,ik¢i1 ARERRA ¢ik7

i1=1 i9>11 Gp—1>0k—92 T >k —1

dado que 7, > i1 e i puede ser igual a n, entonces el valor maximo que puede
tomar el indice i;_1 es n — 1, siguiendo este mismo argumento se puede encontrar
a los valores maximos de las demés sumatorias.

Para un mejor aprovechamiento del espacio, se reescribird a las k sumatorias de

la siguiente manera,

n—(k—1) n—(k—2)

SED ST S Sa

i1=1 i9>11 T >te—1 11 <t <-<ip

y por ende,

w= Z biy,in®in N N @ -

1 <ig<-<ig

Sean los conjuntos de indices {iy,...,ix} v {j1, .-, Jr}, con i;, j; € {1,...,n}, para

todo € {1,...,k}, se probara que si {i1,...,1} # {J1, ..., jr}, entonces,

tomemos a la base canénica de R", {eq,....e, renombremos a los vectores
) ) b )

v = e;,, para todo [ € {1, ..., k} luego,

¢i1 FANKIRIRIVAN ¢ik(€i17 ceny eik) :¢7L1 FANKIRIRIVAN ¢ik(vlv ...,Uk)

k!
:1| Alt(¢ll '®¢ik)(1}1,...,/0k>
_k'— Z sgn(6)(¢i, ® -+ - ® ¢4, ) (Vs(1)s -+ Vs(k+1))
5€Sk
= Z Sgn ¢i1 (Ué(l)) Py (’U(s(k+l))
0ESK

:Sgn(6)¢i1(ve ) szk( k+l)
+ Z sgn(0) i, (vs(r) - - - diy (Vo))

5€Sk\{e}
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=1- i, (v1) -+~ by, (Vrga)
+ Z sgn(0) i, (vs1)) - - - Giy, (Vs (k1))

seSi\{e}
=1- ¢i1 (62'1) t ¢zk (eikH)
+ Z Sgn(5)¢i1 (U(S(l)) e Cblk (UJ(kH))

seS\ie)
1+ Z Sgn ¢11 (Ué(l ) ¢zk (W l<:+l))
5ESk\{e}
:]. + Z Sgn(é)gb“ (U(S(l)) o« e ¢7,k (Ué(k—i—l));
6eSk\{e}

debido a que en toda permutacion diferente de la permutacién identidad se cumple

que §(m) = m’ # m, para algin m € {1, ..., k}, se sigue que,

IR (blk (62'17 ) eik) =1+ Z Sgn(5)¢i1 (Ué(l)) T ¢Zk (Ué(k—i-l))

5€Sk\{e}

=1+ Z sgn(0) i, (Ué(l)) C Qi (Ué(m)) SRR (U§(k+l))

=1+ Z sgn(0) @i, (Vs(1)) * ** Pi (Vi) - -+ Dy, (Vs(141))

6eSk\{e}

=1+ Z sgn(0) by, (Ué(l)) T ¢z‘m(€z’m/) g, (Ua(k+l))

seSK\{e}

=1+ Y sen(0)i, (vsr)) -0+ i, (Vsrsny)

por otro lado, dado que {i1, ..., ix} # {Jj1, ..., jr }, existe algin j,,, conm € {1, ..., k}
tal que jn, & {i1,..., %}, luego ¢, (e;,) =0, para todo [ € {1, ..., k}, asi,

¢j1 ARERRA ¢jk (6i17 s eik) = Z Sgn( )¢J1 (Ué(l ) ¢jk (Ué k+l))

6€Sk

= Z sgn ¢]1 Vs(1) ) ¢jm (Ué ) T ¢jk (U5(k+l))

6ESE

= Z sgn qb]l Us(1) ) %m(vm ) e '¢jk(v5(k+l))

6€Sk
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= sen(0)ds, (vsn) -+~ D (€3, - B (V5010

6€SK

=D sen(0)ds, (vsn) -+~ 0+ 65, (Vs(ayn))

0ESK

luego, @i, A+~ A @i (€iyy -y €i) F iy A+ A @j, (€4, ..., €5, ), debido a que existe al
menos un conjunto de vectores que cumplen la desigualdad anterior, se concluye

que,

Giy N NGy, F Pjy N Ny

Aunado a lo anterior, no importa el orden en que se acomoden los indices {41, ..., i }
en el producto cuna, ya que como se vio anteriormente, se estaria obteniendo
practicamente el mismo k-tensor en cualquier orden.

Asi, el nimero de formas posibles de combinar k de los n elementos de la base

dual en el producto cuna es,

Por lo tanto, se da por demostrado el teorema. O

Ejemplo 2.12. Sean {ej, e, e3,e4} la base canénica de R* y {d1, ¢2, ¢3, ¢4} la
base dual correspondiente. Para este ejemplo, primero encontraremos el producto
tensorial de todos los pares posibles de elementos de la base dual, ¢; ® ¢; tales
que i < jeid,j € {1,2,3,4}. Sean vy = (21,2, 23, 74),V2 = (Y1, Y0, Y3, ys) € R,

luego,
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P2 @ Pa(v1,v2) =pa(v1) - Pa(v2) = Taya,
$3 @ P4(v1,v2) =a(v1) - Pa(v2) = oy,

luego, apoyandonos del Ejemplo 2.9, se sigue que,

¢1 A pa(v1,v2) = 11?1,1 Alt(¢r ® ¢2)(v1,v2)
=2 = Z sgn(0) (1 ® ¢2)(vs1y, Vs(2))
5652

=T1Y2 — T2

Ty T2

Y1 Y2

=dety o(v1, v2),

b1 A\ ¢3(v1,v2) :%Alt(qx ® ¢3)(v1,v2)

—2. — Z sgn(8)(¢1 @ d3) (Vs Vs(2))

T 5eSy
=T1Y3 — T3Y1

xr1p T3

Y1 Y3

:det1 3 (’Ul, UQ)

¢1 A pa(v1,v2) = Alt(¢1 ® ¢4)(v1, v2)

1|1|
—2. —ngn D1 @ ¢4)(Vs(1), Vs(2))

6ES2
=T1Ys — Taa

Tr1 T4

Y1 Ya

=dety 4(vy, v2),

P2 A p3(v1,v2) = 1;—1,1 Alt(p2 @ ¢3)(v1,02)
=2 Z sgn(8)(¢2 ® ¢3)(vs(), vs(2))
T 5eSy

=T2Y3 — T3Y2
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To X3

Y2 Y3

=dety 3(v1, v2),

1
11,+1, Alt(9© 62)(1r, )

=9. 21 Z sgn(9)(¢2 ® ¢4)(U5(1)7'Uz5( ))

dE Sy

P2 N pa(v1,09) =

=T2Y4 — T4lY2

Ty T4

Y2 Ya
=dety 4(x,y),

1
1;1, Alt(64 6:) (01, v2)

=2 Z sgn(0)(ds @ ¢4)(vs1), Vs(2))

d€ Sy

¢35 N pa(v1,09) =

=XT3Y4 — T4Y3

T3 T4

Ys Ya

:d€t3’4<?}1 s 'UQ) .

Por el Teorema 2.4, podemos decir que {det o, dety 3, dety 4, dets 3, dets 4, dets 4 }
es una base para A?(R%), aunque técnicamente es igual a la base dual dada al
inicio, existe una gran diferencia, ya que es mucho méas facil manejar 2-tensores
con esta nueva base.

Mas atn, el Ejemplo 2.12 ilustra el hecho de que el producto cuna de dos tensores
se puede ver como el determinante de una matriz cuadrada de orden 2, esto sera

generalizado y demostrado como un teorema para todo n € N.

Proposicién 2.7. Sean ¢1,...,or € (V) , con k € N. Dados vy, ...,v, € V se
cumple que p1 A -+ A @g(v, ..., ;) = det(A), donde A estd dada de la siguiente
manera,

pi(vi) - pi(vk)

e . .

or(ve) - pr(vr)
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Demostracién: Sean ¢y, ..., € THV) y vy, ...,v € V, luego,

144 1))
©¥1 VANRIRIVAN QOk(’Uh ceey Uk) :%Alt(@l Q- Q& QOk)(Ul, ...,Uk)
1
=kl > sen(8)(p1 @ -+ @ 9r) (V51 -0 Vi (k)
6ESK
= Z sgn(6)e1(vsy) - - - or(Vsry ),
6€Sk

consideremos a la siguiente matriz,
pr(vr) oo (o)
A= S : :
er(vr) - pnlve)

luego, usando la definicién de determinante dada en la Definicién 1.10, de la

Seccion 1.3, se sigue que,

1A AN pg(vg, e, ) = Z sgn(0)e1(vsy) - - - pr(Vsry) = det(A).
6ESE

Por lo tanto, queda demostrada la proposicién. O

En el siguiente ejemplo se definird un nuevo n-tensor alternante que nos sera
muy util para la demostracién de un teorema que se presentara paginas mas ade-
lante. A este nuevo tensor lo denotaremos por det y debido a que esta relaciona-
do con la funcién determinante que conocemos usualmente, es posible que existan
confusiones, asi, se usara det para hacer referencia a la funciéon determinante usual

empleado en matrices.

Ejemplo 2.13. Sea el n-tensor det : (R™)" — R, definido como sigue:

det((:cn, ey xln); ey (I‘nl, ceey xnn)) = det

Tpl °° Tpn

Sean n+1 vectores (T11, ..., T1p)s s (Tuls ooy Tnn)s (21, -0y 2n) € R™ y ¢ € R, primero
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se demostrard que det es un n-tensor,

det((@11, ooy T1n)y ooy (@1, ooy Tin) + (21, s 20)), oy (Tnds ooy Tiin))

T11 T12 ce Tin
=det cxji+ ez CxjpFCz o CTy, +C2y
Tt Tno - Tom
11 Tz - Tip 11 T2 - Tin
=det CTj1 CTjp **+ CLjn +det] czy ez o ez,
Tni Tn2 e Tnn Tpl Tp2 " Tnn
Ti1 T2 o Tin 11 T2 o Tin
—c - det T Tjp o Ty + ¢ - det 21 Zy o Zn
Tn1 Tn2 *° Tnn Tn1 Tn2 *° Tnn

=c-det((T11, s T1n), oos (Tj15 ooy Tjn)s ooes (Tnds oves Tin))

+ - det((T11, ey T1n)y ooy (215 o0y Zn)y ooy (Tidy oovy Tim))-

Por lo tanto, det es un n- tensor de R™. Ahora se demostrara que es un n- tensor

alternante,

det((mn, ...,ZL‘ln), cees (ZEil, ...,ZL‘in), ceey (fL’jl, ...,fL’jn), ...,(lL‘nl, ...,I‘nn))

T11 T12 o Tin

Tyl X2 o Tin
=det

Tj1 Tj2 -t Tjn

Tn1 Tp2 - Tnn
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i1 Tiz "t Tin

Tj1 Tz "t Tjn
= —det

Tip Lz o Tin

Tnl Tp2 - Tpn

= —det<<$11, “wxln)a ceey (ley ...7.%']'”), vy (1'2'1, ...,xin), ceey (xnla ,.ZCnn))
Con esto, det € A"(R").

Si V' es un espacio vectorial de dimension n, entonces, por el Teorema 2.4, se
tiene que A™(V') tiene dimension 1. Visto de otra forma, todo n-tensor alternante

de V' es multiplo de algtin n-tensor alternante diferente del n-tensor nulo O de V.

Teorema 2.5. Sean V' un espacio vectorial sobre R, {vy,...,v,} de V yw € A™(V).

Siw; = Z?Zl a;;vj son n vectores en V, a;; € R, con 4, j € {1,...,n}, entonces,
w(wy, ..., w,) = det(a;;) - w(vy, ..., Uy).

Demostracién: Sea n: (R")" — R definida como sigue,

n n
N((@11, ooy Q1 )y ooey (A1 ooy Q) ) = w(z aivj, ..., Zanjvj)
j=1 j=1

Primero veamos que n € A™(R").

Sean n + 1 vectores (a1, ..., 1)y -y (An1y ooy G ), (b1, .., 0,) € Ry v € R, asi,

(@11, ey 1)y ooy ((@r1y ooy @) + (b1, o3 00))5 ooy (An1y -oey Q)

n

n n
=W E A1Vj, ..., E oz(alj +bj)?]j,..., E Ap U
j=1 j=1

Jj=1

n n n
=W E A1Vj, ..., X E ApVj, ..., E Apj U
j=1 7=1 7=1
n n n
+w E A1Vj, ..., X E bjl)j,..., E Qpj U
j=1

j=1 j=1
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n n n
= - W E ClljUj,...,E Cllj’Uj,...,E Qp U;

Jj=1 J=1 Jj=1

n n n
+o-w E 155, ..., E bjl}j,..., E QAnjU;
j=1 7=1 7j=1

=a - N((a11, ey @10y ey (A1 ooy Qi) ooy (s oy Q)

+ o - 7]((@11, ...,Clln), ey (bl, ...,bn), ceey (CLnl, ceey am)),

con esto, 1 es un n-tensor, ademas,

(@11, ooy @1 )y ey (AL ooy Q) s ooy (Qin s ooy Q) s ooy (A s ovy Q)
n n n n
=W E A15Vjy -.ny E ApiVjy ..., E ApmjUjy .-ey E Apnj U
J=1 J=1 Jj=1 J=1
n n n n
= —w E A15Vj, .-y E AmjUjy .ey E QrVj, ..., E ApnjU;
=1 =1 j=1 j=1

= = 0((@115 ooy Q1) 5 ooy (Ao ooy G )y ooy (@115 oey Q1 )y ooey (A1 ooy Q) )

luego, n € A"(R"), dado que dete A™(R™), podemos decir que n = det - A\, para

algin A € R, con esto, tomando a la base canénica {e, ..., e, } de R™, se sigue que,

A=1-)\
=det(e;) - A
=n(ey,...,en)

=w(v1+0-ve+--+0-v,,....0 01 +0-v9+ -+ 1vy,)

=w(vy, ..., Up).
De aqui,

W(wy,y ooy wp) = 0((A11, ooy A1)y oeey (Anty ooy Q)
= det(aij) - A

= det(a;;) - w(v, ..., vn).

Por lo tanto, se cumple que w(wy, ..., w,) = det(a;;) - w(vy, ..., vy). ]



58 CAPITULO 2. K-TENSORES

2.3. Orientacion

Las definiciones que se presentan a continuacién, son importantes para capitu-

los posteriores.

Definicién 2.7. Sean V' un espacio vectorial sobre R, y {vy,...,v,} una base del

mismo. A la n-ada (vy, ..., v,) se le llama base orientada de V.

Definicién 2.8. Sea V' un espacio vectorial sobre R. Dado un n-tensor w € A™(V)
diferente del n-tensor nulo O, se tienen dos grupos disjuntos de las bases orientadas
de V; uno se conforma de bases orientadas (v1, ..., v,) tales que w(vy, ...,v,) > 0,
y el segundo se conforma de bases (wq, ..., w,) tales que w(wy, ..., w,) < 0. Cada

uno de estos conjuntos es llamado orientacién de V.

Sean {vy,...,v,} v {w1,...,w,} dos bases de V' y la matriz A = (a;;), donde
n . . .,
w; = ijl a;;vj, luego, (v1, ..., v,) ¥ (w1, ..., w,) pertenecen a la misma orientacién
si y solo si det(A) > 0.
La orientacién a la cual una base orientada (v1, ..., v,) de V pertenece es denotada

como [vy, ..., v,], mientras que la segunda orientacién se denota como —[vy, ..., vy].
Definicién 2.9. En R” definimos a la orientacién usual como [ey, ..., €,].
En R™ se usa al tensor det para definir una orientaciéon en una base orientada.

Ejemplo 2.14. Sea {ej, €5} la base canénica de R?. Consideremos a las siguientes

bases orientadas 3 = (e1,e3) y 8’ = (€2, e1) de R?. Luego,

1 0 0 1
det(61762) - = 17 det(€2,€1) = = —17
01 1 0

con esto, f y [ pertenecen a diferentes orientaciones, las cuales se representan en

la Figura 2.1.

» »
‘ g ‘ "

(a) Orientacién de (b) Orientacién de S’



Capitulo 3
Formas diferenciales en R"

En este capitulo se presentan la definicion y las propiedades principales de las
formas diferenciales en R™, asi mismo, se daran algunas definiciones necesarias

para la demostracién del Teorema de Stokes.

3.1. Espacio tangente

Definicién 3.1. Sea p € R". El conjunto de todos los pares (p,v) con v € R", se

denota como R, y es llamado el espacio tangente de R" en p.

Un vector (p,v) € R} = {(p,v) : v € R"}, se puede interpretar geométrica-
mente como un vector que tiene la misma direccién y la misma longitud que v,
pero con punto inicial p, es decir, este vector va del punto p al punto p + v. Se

escribird a (p, v) como w,,.

ptwv

Figura 3.1: Espacio tangente de R? en p

Proposicion 3.1. El espacio tangente de R™ en p es un espacio vectorial sobre

R con las siguientes operaciones:

59
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(p,v) + (p,w) = (p,v + w),
a(p,v) = (p,aw).

para todo v,w € R" y a € R.
Demostracién: Sean (p,v), (p,w), (p,u) € R}, con v,w,u € R" y o, B € R,

1. Cerradura sobre la suma.

Tenemos que,
(P, v) + (p,w) = (p,v + w),
luego, dado que v +w € R™, se sigue que (p,v +w) € R}, con esto,

(p,v) + (p,w) € R}.

2. Conmutatividad de la suma.

(p,v) + (p,w) =(p, v + w)
=(p,w+v)
=(p,w) + (p,v).

3. Asociatividad de la suma.

(p,v) + ((p,w) + (p,u) =

4. Existencia de neutro aditivo.

Sea o, el vector nulo de R", luego, (p,0,) € R}. Asi,

(p,v) + (p,0n) = (p,v + 0n) = (p,0),

con esto, existe un elemento neutro aditivo en ]RZ.
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5. Existencia de inverso aditivo.

Dado v € R", se sigue que —v € R", y por ende (p, —v) € R}, debido a que,

(p7 U) + (p7 _U) = (p7U - ’U) = (p7 0n)7
se puede asegurar la existencia de un inverso aditivo en R7.

6. Cerradura sobre el producto por un escalar.

Tenemos que,

a(p,v) = (p, av).

Dado que @ € R y v € R" se sigue que awv € R", asi, (p,av) € R}, luego,
a(p,v) € R},

7. Asociatividad del producto de escalares.

af(p,v) = (p,afv)
= (p, a(Bv))

= a(p, fv)
(8(p,v))-

=

8. Distribucion de la suma escalar.

(a+ B)(p,v) =(p, (a + B)v)
=(p, av + Pv)
=(p, w) + (p, Bv)
=a(p,v) + B(p,v).

9. Distribucion de suma vectorial.

a((p;v) + (p,w)) =a((p,v + w))
=(p, a(v + w))
=(p, aw + aw)

(p, av) + (p, aw).
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10. Unitaridad.

Tenemos que 1 € R, luego,
L- (p,?)) = (pa L- U) = (p,U).

Con esto, se concluye que R} es un espacio vectorial sobre R. O

Sea p € R™. Dados n vectores de R", vy, ..., v,, se cumple la siguiente igualdad,

que es equivalente a

n n
( ) E aivi> = E ai(p7 U’i))
=1 i=1
para cualesquiera escalares a; € R. Asi, si consideramos al conjunto {ey,...,e,}
2N n 3 n
como la base canénica de R", se sigue que {(e1),...,(en),} s una base de R}
conocida como la base canénica de R7.
Muchas de las estructuras en R™ tienen andlogos en R}, en particular, el pro-
ducto interno usual <, >, para R} esté definido como < v, w, >=<wv,w >y la

orientacién usual para R} es [(e1)p, .-, (€n)y)-

3.2. Campos vectoriales

Definicién 3.2. Un campo vectorial en R" es una funcion F': R" — UgernRY
tal que F(p) € R} para todo p € R". Para cada p existen Fi(p),..., Fi.(p) € R

tales que:

F(p) = (p, (Fr(p), .-, Fu(p))) = Fi(p)(e1)p + - - - + Fu(p)(€n)p-

Esto define n funciones I, ..., F, : R" — R llamadas funciones componente
de F. Si para todo i € {1,...,n} las funciones F; son continuas o diferenciables,
entonces diremos que F' es un campo vectorial continuo o diferenciable, res-

pectivamente.

En los libros de matematicas, a los campos vectoriales se les define como una

funcién F : X C R" — R" que a cada punto x € X le asigna un vector F'(z) € R”
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y que se representan de la siguiente manera
F(z) = (Fi(x), ..., Fy(z)),

aun cuando ambas definiciones parecen muy distintas, en realidad representan lo
mismo, y es que la unica diferencia entre ambas definiciones es que la primera es

mas formal, ya que especifica el punto de anclaje del vector que se esta evaluando.

Ejemplo 3.1. Sean las funciones componente F; : R? — R, i € {1,2} definidas

como sigue,
Fi(xq,29) = 1 + 2g, Fo(21,22) = 21 - 2.

Con las funciones componente anteriores podemos definir un campo vectorial,

F:R— | JRZ

qgeR?

dado por, F(p) = Fi(p)(e1), + Fa(p)(e2),. A continuacién se encontrara a F(p),
para algunos p € R2.

1. Para p = (3,4),

F(3,4) = F1(3,4)(e1) 34y + F2(3,4)(€2) 3.)
= T(e1)@a) + 12(e2)3.4)-

2. Para p = (1,6),

F(l, 6) = Fl(]_, 6)(61)(176) —|— Fg(l, 6)(62)(1,6)
= T(e1),6) + 6(€2)(1,6)-

3. Para p = (5, —-2),

F(5,-2) = Fi(5, =2)(e1)(5,-2) + F2(5, =2)(e2)(5,-2)
= 3(e1)(5,-2) + —10(e2)(5,-2)-

Para una mejor presentacion visual, en la Figura 3.2 se muestran los vectores

normalizados asociados a este campo vectorial.
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e
i ~

Figura 3.2: Campo vectorial F'(p)

Definicién 3.3. Sea I’ un campo vectorial en R". Definimos la divergencia,

divF : R" — R, como Y | D;F;. Si introducimos el simbolismo formal,
V= ZDl € = (D17 PN Dn);
i=1

la podemos escribir de forma simbdlica, divF =< V, F >.

Definicién 3.4. Sea F un campo vectorial en R3. A partir de F', podemos definir
un nuevo campo vectorial V x F : R? — R, llamado rotacional de F, y denotado

como rotF, el cual estd dado de la siguiente manera,

(e)p (e2)p (e3)p
rotF =(Vx F)(p)=| Dy Dy Ds

B B
:(D2F3 — D3F2)(€1)p — (D1F3 — D3F1)<€2)p + (D1F2 — D2F1)<€3)p.

Ejemplo 3.2. Sea ' : R®* — R el campo vectorial dado por,

F(xb T, 1'3) = (1'1 +x9— 1'3)(61)(3;1’,;2’903) + (%)(eQ)(w1,x2,Is) + (Sen($3))(e3)(11,12,13)7

luego,

Fi(xq,x9,23) = 21 + 9 — T3,
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Fy(wy, w9, 73) = 32,

Fy(21, 12, x3) = sen(x3),
con esto, la divergencia de F’ es,

divF =< V,F >
= (D1, Da, D3) - (Fy, Fy, F3)
= D1Fi + DyF5 + D3 Fs
= Di(z1 + 73 — x3) + Do) + Ds(sen(z3))

1
=1+ 0 + cos(x3)
11

=10 + cos(z3),

y el rotacional de F' es,

rotF' =(v x F)(p)

(e1) (@1 nws)  (€2) (a1 00ws)  (€3)(w1,2205)
= D, D, D3
T+ Ty — T3 T cos(z3)
=(Ds(cos(zs)) — D3(3%))(€1)p + (D31 + 22 — x3) — Di(cos(zs)))(e2),
+ (D1(32) — D21 + 22 — 23))(e3),
=(0—0)(e1)p + (=1 = 0)(e2)p + (0 — 1)(e3),

:0(61)]0 — (62)]9 - (63>P'

Los campos vectoriales se ocupan en muchas aplicaciones fisicas, a continua-

cion, se presentara una definicién similar pero usando tensores alternantes.

3.3. K-formas

A partir de ahora, a menos que se especifique lo contrario, se considerara a R"”

con la métrica usual, es decir, con la métrica Euclidiana.

Definicién 3.5. Sea A C R" abierto. Una funcién w : A — UgepnA*(R?) con

w(p) € A¥(R?), es llamada k-forma o simplemente forma diferencial en R".
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Notemos que w(p) es un k-tensor alternante de R}, asi, por el Teorema 2.4

podemos ver a w(p) de la siguiente manera,

w(p) = Z Wiy, (p)¢i1 (p) ARRRRA ¢lk (p)v

11 <to<-<ip

donde {¢1(p), P2(p), ..., Pn(p)} es la base dual correspondiente a {(e1)p, ..., (€n)p}
Y Wiy R" — R, para todo ¢; € {1,...,n} y para todo | € {1, ..., k}.

Con base en la igualdad anterior podemos ver a la k-forma w como sigue,

W = Z wil,..,,ik¢i1 JAREEIAN ¢ik7

1 <dg<--<ig

w es llamada diferenciable, es decir que w es de orden C°°, o continua si las
funciones w;, ..

Asumiremos que las formas y los campos vectoriales son diferenciables, y dife-
renciable significara C'*°. Ademas, su dominio puede ser un subconjunto abierto de
R™, a partir de este punto, muchas de las definiciones que se daran a continuacion
también aplican a este caso. Una funcién f : R — R se considera una O-forma y
fw = f Aw. Con esto, si una 0-forma f es diferenciable, entonces f es de clase

C™ y por ende es continuamente diferenciable.
Proposicion 3.2. Sea f: R” — R. Si f es diferenciable, entonces,
Df(p) € A'(R").

Demostracion: Sea f : R” — R una funcién diferenciable, luego, por definicién
se tiene que D f(p) es un operador lineal, como ya se explic6 en el Ejemplo 2.3,
Df(p) esun 1-tensor, asi, Alt(Df(p)) = D f(p), por dltimo, aplicando el Teorema
2.2 1) se concluye que D f(p) € A}(R™). O

Por una pequena modificacién obtenemos una 1-forma df : R} — R, definida

por,

df (p)(vp) = Df(p)(v).

Definicién 3.6. Sea (xy,...,x,) € R". La funcién m; : R — R dada por
mi(T1, oy gy oy T,) = x;, para todo i € {1,...,n},

es llamada i-ésima funcién proyeccion.
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Es usual que se denote a la funcién w; por x;, con esto

dxi(p)(vp) = dmi(p)(vy).

Proposicién 3.3. Sean R}, con p € R" y {dz1(p), ...,dz,(p)} es la base dual de

{(61)177 ey (en>p}'

Demostracién: Sean i,j € {1,...,n}, notemos que 7; es una transformacién

lineal, asi, por Teorema 1.10 se tiene que Dm;(p) = m;, luego,

dxi(p)((e;)p) =dmi(p)((€;)p)
=Dmi(p)(e;)
=m;(€;)
1, sii=j,

0, otro caso.

Asi, {dz1(p), ..., dz,(p)} es la base dual de {(e1)p, ..., (€n)p}- O

De la proposiciéon anterior se sigue que toda k-forma puede ser escrita de la

siguiente manera,

W= Z Wiy igdxiy Ao Ndx, .

11 <ig<-<ip

Ejemplo 3.3. En R* las 3-formas se pueden escribir como,

2 3 4
w = Z Z Z wil,iQ,ideil A dmiz A dxis

i1=1142>11 i3>19
:C«Jl’g’gdl’l VAN dCL’Q VAN dl’g + W17274dl’1 VAN dIQ A dI4
+ w17374dm1 A d(L’g A dl‘4 + CUQ73,4dI'2 A diL’g A d[L‘4.

Ejemplo 3.4. En R? las 1-formas son de la siguiente manera,

2
W= E wi, dx;,

i1=1

=w1dx + wedxo,
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luego, sean p = (p1, p2) € R?, w; y wy dadas como sigue,

wi (21, 2) = BEE2 (w1, 22) = 1 cos(x2),

asi,

w(p) =wi(p)dr1(p) + wa(p)dra(p)
P11+t D2
10

dx1(p) 4 p1 cos(pa)dra(p).

Teorema 3.1. Sea f: R" — R. Si f es diferenciable, entonces
df =Dyf-dx1+ -+ D, f - dz,.
En notacién clésica,
df = L - dwy + -+ FL - duy,.

Demostracién: Sean f : R™ — R diferenciable y p € R", luego,

df (p)(vpy) =D f(p)(v)

Un

Por lo tanto, se da por demostrado el teorema. O

Recordemos que dada una funcién diferenciable f : R® — R™, es posible definir

una transformacién lineal D f(p) : R" — R™.

Definicién 3.7. Sea f : R" — R™ una funcién diferenciable. Luego, con una
modificacién a D f(p), podemos obtener una transformacién lineal f, : Ry — ]R’]}”(p)

definida por
felvy) = (Df(p)(v))f(p)'
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La transformacion lineal dada en la Definicion 3.7, nos permite definir una

segunda transformacion lineal, tal como se explica a continuacion.

Definicién 3.8. Sea f : R® — R™ una funcién diferenciable. La transformacién
lineal, f*: Ak(R}”(p)) — A*(R?), transforma una k-forma w en R™ en una k-forma
f*w en R™. Esta transformacién se define punto a punto de la siguiente manera:

n n 3
dados p € R" y vy, ..., vx € R}, se tiene que,

f*W(p)(Ul, S vk) = w(f(p»(f*(vl)’ X f*(Uk))’

donde f*w(p) es un k-tensor alternante de R? y w(f(p)) es un k-tensor alternante

de R?ﬂ(p) )

Ejemplo 3.5. En R las 1-formas se pueden escribir como,

1
w = g wi, dx;, = widx.

i1=1

Sean p € Ry wy(x) = sen(z), asi,

w(p) =w1(p)dz1(p)
=sen(p)dz:(p).

Sean f = z3: R®> — R la 3-ésima proyeccién y p’ = (p1, p2, p3) € R3.Notemos que

f es una funcién diferenciable. Tomando a vy = (v1, Vs, v3)y € R;’,,, se sigue que:

Debido a que no siempre es facil hallar f*w, nos apoyaremos del Teorema 3.2

para realizar los célculos de forma mas directa.
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Teorema 3.2. Sea f : R"™ — R™ una funciéon diferenciable.

1. Si z; es la i-ésima funcién proyeccién en R™, entonces,

" 0f;
aiL'j

FH(day) = ZD fi-da; =

d!lfj.

2. Si wy,wsy son dos k-formas de R™, entonces,

[rwr +w2) = f(wr) + f*(w2).

3. Si g es una O-forma, g : R™ — R, entonces,
f(g-w)=(gof) frw.
4. Si w es una k-forma y 7 es una [-forma, entonces,
[rwAn) = frwn foa.
5. Si g es una O-forma, g : R™ — RP, entonces,

g«o fu=(g0 f).
(gof) =fog

Demostracién: Sean p € R" y (v1)y, ..., (Vk)p, vp € R,

1. Sea x; la i-ésima funcién proyeccion, recordemos que dx; es una 1-forma,

fr((dxi)(p)) (vp) =di(f(p))(fi(vp))
=dz;(f(p))(Df(p )(U)) f(p)
=dz;(f(p))(D fi(p)(v), ... Dfi(p)(v), s D fu(p) (V) 1)

n n

~an( o) (X 05 D), X 0y D)

J=1 J=1
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n n

=Dz;(f(p)) (Z v Difi(p),- Y _ v - Difi(p)

j=1 7j=1

n n

=TT (Zvj -D;fi(p), -, ZUJ‘ -D;fi(p)

j=1 j=1

=(f"(wr) + [ (@) () ((01)ps -, (0k)p)-

3. Sean g una O-forma, g : R™ — R, y w una k-forma. Dado que ¢ y w tienen
el mismo dominio y ¢(g) es un escalar para todo ¢ € R™, se cumple lo
siguiente:

g-w:R™— U Ak(R’qﬂ),
geER™

es decir, g - w es una k-forma de R™, ademas,

(9-w)(q) = g(q) - w(q), para todo g € R™,
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11 <ig<--<ip

n= Z Mi1,e.e, jldle ARERRA dle

J1<ja<--<ji

Para poder demostrar este inciso, primero se demostrara para 1-formas y
posteriormente se demostrara de forma general.

Sean @1, ..., pr 1-formas de R" y vy, ..., v € R", luego, por la Proposiciéon
2.7:

i A Ap) () (V1) s s (V1) )
=(p1 A A o) (f(P)(fe((v1)p), oy fo((Ur)p)
=det(p:i(f(p))(f<((vj)p)))
=det(f*¢i((vj)p))
=(fTer A A froR) () ((V1)ps oy (VE)p)-

Con lo anterior demostrado, por 2) y 3), se tiene que,

= Y i 0 NI () A A (da),

11 <t <-<ip

analogamente,

f*<77): Z (njl ----- jzOf)f*(d‘rji)/\"'/\f*(dle)'

J1<ja2<--<ji
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Para poder encontrar a w/An, aplicaremos distintas propiedades del producto

cuna: A, vistas previamente,

wAnN
(X wnnnendn ) (5 o n-ndsy)
11 <o <ip J1<<Ji

= D> wiady A AN Ay dag, A Ada,

11 <<t J1<-<Jq

- Z (_]')kvowil,nwiknjlv--"jld‘ril ARERRA dx%k A dle ARERRA dle

1 <<y, 1< <y
- E : wi1,~~~7ik77j1,~~-,jldxi1 ARERRA dxlk N dle ARRRNA dle?
11 <<y, 1< <y
con esto, y de nueva cuenta aplicando 2) y 3) y lo previamente ya demos-

trado,

fflwAn) =f* < Z Wir,eoigMitsein iy A -+ o N day,

11 <t <--<i1,J1<J2<-<Ji

/\dl’jl AAd$]l>

= Z (wi1,---7ik77j1 ----- g1 © f)f*(dxu) AR f*(dxlk)

i <ig <+ <in,j1<ja < <ji
A fH(da) Ao A (day,)
= Z (@i, © F) - Mg, © 1) S (diy)
11 <dp<---<i1,j1<jo<-<Ji
A=A f(dxg) A fr(dag ) A - A (dey,)
= Z (=1)*%wiy.ip 0 £ (dai)) A+ A f*(dy,)
iy <ig <+ <in g1 <ja<-<ji
A Mgy ege © ) (dg ) A= A fF(day,)
:< > (Wi o D (dzi) Ao A f*(dﬂﬁz‘k)>

11 <ig<--<i1

/\< > (njl,...,jlOf)f*(d%‘l)A"'/\f*(d%))

J1<g2<<Ji

=f" (@) A ().

5. Sean g una 0O-forma, g : R™ — R y v, € R}, por definicién de f., tenemos
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que, fi(vy) = (Df(p)(v)) (), asi

(gx 0 f)(vp) =gx(fi(vp))
=3.((Df(P)(v)) sw))
=(Dg(f)(Df(P)(V))grw)
=((Dg(f(p)) o Df(P))(v)g(sm)):

por otro lado,

(g0 f)s(p)(vp) = (D(g o f)P)(V)) o)) = (Dg(f(p)) © Df(p)(v))g(sm)):

asi, (g« o fi) = (g o f)«. Resolvamos ahora la segunda igualdad.

(g o f)wp)(vr, ... vr) =w(

ooy Ji(UR))

Por lo tanto, se da por demostrado el teorema. O

Teorema 3.3. Si f: R"™ — R” es una funcién diferenciable y h : R™ — R es una

funcion, entonces:
ff(h-dxy N+ Ndxy,) = (ho f)(detf)dxy A - A dzx,.

Demostracion: Sea h : R® — R. Dado que dxqy A --- A dx, es una k-forma, por

Teorema 3.2, 3) se sigue que:
ff(h-dxy N+ - Ndxy) = (ho f)f(dey A+ Ndxy,). (3.1)
Por otro lado, sea p € R" y consideremos a la matriz f'(p) = (a;;). Luego:

fr(dey A Ndan(p))((€1)ps -, (€n)p)
=dry A Adza(f(p)(fe((€1)p), s fullen)p))
=dry A Nz (f(p)((Df(p)(€1)) spys - (Df (P)(€n)) ()



3.3. K-FORMAS 75

=doy A Ndaa(F(R)((f(p) - e)} p>7---a(f'(p)'€n>§f(p))
=dzy A ANz, (f(p)((

A1y +ees anl -,(anlu“wa’nn)f(]o))

=dr; N A dl"n < allel ey (Z ainei)f(p)>

i=1
=dxy N\ Ndz,(f <Zaﬂ Zam ei)s >
i=1

Por el Teorema 2.5, se tiene la siguiente igualdad:

dry A - ANdz,(f(p)) (Zail(ei>f(p)a S Z ain(ei)f(p))

=det(ay;) - dwy A N den(f(P))((€) ), o5 (€0) 5w))-

Asi,

frdey A Adan(p))((ex)ps --os (en)p)
=det(ay;) - dwy N N den(f(p))((€) sy, -5 (€0) 5w))-

Dado que el producto cuna solo evalia las entradas de los vectores y no sobre qué

puntos se encuentran trasladados, podemos asegurar lo siguiente:
fr(dzy A -+ Ndxy(p)) = det(ai;) - dey A -+ - A dxy(f(p))- (3.2)

De (3.2) y (3.3) se concluye que,
f*(h-dxy N+ ANdxy,) = (ho f)(detf)dzy A--- Adzy,.
Por lo tanto, queda demostrado el teorema. O

Ejemplo 3.6. Para este ejercicio obtendremos a f*(w) usando las propiedades
vistas en el Teorema 3.2, y posteriormente lo encontraremos directamente con
el Teorema 3.3.

Sean la 2-forma y la funcién f : R? — R? dadas como sigue

w =1 * Todr1 A dxs,

fz1,22) =(21 + x2, 1 — 2),
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luego, por 3) y 4) del Teorema 3.2, y tomando g(z1,x2) = 1 * x9, se tiene que:

fH(w) =f"(gdry A dzxs)
=(g o f)f"(dx1 A dxy)
=(71 + 22) (21 — 22) f*(d1) A f*(d2),

de aqui, por 1) del Teorema 3.2, se sigue que:

Ifr fr

f*<dl'1) :a—xldﬂﬁl + a—xle’g = dl’l + daﬁg,
0 0
f*(dl'g) :a—afidl’l + a—ﬁdl'g = dlEl — deQ,

) dﬂ?l + d.ﬁl]g) N (d131 — dﬂ?g)

( ) (1 — 22)(
=(z1 + 22) (1 — x2)(dxy A dxy — dxy A dxg + dxg A dxy — dag A dzs)
=(21 + 22) (71 — T2)(—dzy A dy + (—1)" 2y A das)
=(z1 + x2)(x1 — x2)(—dzy A dxg — dy A dg)
=(z1 + x2)(x1 — x2)(—2)dz1 A ds.

Por otro lado, aplicando directamente el Teorema 3.3 para encontrar a f*(w):

[ (w) =f*(gdz1 A dxs)
=(g o f)det(f")dxy N dzs
=(x1 + 22)(x1 — x2)det(f")dzy A dxs,

tenemos que,

luego, det(f") = —2, con esto, f*(w) = (x1 + x2) (21 — T2)(—2)dx1 A dxs.

3.4. Diferencial de una forma

Una construccion importante asociada con formas, es una generalizacion del

operador d, la cual se explica a continuacion.
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Definicién 3.9. Sea w una k-forma en R", dada como sigue,

W = E wi1,.4.,ikd1}i1 FANKIRIIVAN d(lfiw

1 <ig<--<ip

definimos la (k + 1)-forma dw, la diferencial de w por,

dw = Z dwi, 4, Ndxiy A Ndxg,

11 <12 <--<lj

n
= Z Z Dawil,...,ikdxa A dl’il A A d(L’zk

i1 <ig<--<ij, a=1
Ejemplo 3.7. Sea la O-forma dada como sigue:
f(x1, 29, 23, 24) = 11 + 2173 + oot

Luego,

df = ZD T+ 2173 + )daja

a=1
—Dl(xl + T123 +Z )dx1 + Dg(l‘l + 123 + £ )d

+ D3(x1 4+ z123 + £ )dxg + Dy(x1 + 21223 + & )daz
:<1 + $3)dl’1 + 0d$2 + (Il - E)dl’:g + gdl&l

Ejemplo 3.8. Continuando con el Ejemplo 3.3, tenemos que:

4 4

3
Z Z Z Daw¢1,¢2,i3dxa A dlCil A dl’h A dxig
2>11

2

i3>19 a=1
3 4

2

=2

Z Z Z Dawi17i27i3d$a VAN dl’z‘l VAN dl‘iz VAN CZIZ'3
4

=114i2>11 i3>1i9

Z awl,zgd.’l?a A d.’]l'l A dl’g A dﬂfg + Daw17274d:€a N dl’l N d.CCQ A\ d$4
=1
D aW1,3, 4dIa VAN dl’l A dl’g A dl’4 + DQWQ )3, 4d$a VAN d.TQ VAN dLU3 VAN dl’4]
4 4
Z aW1,2 3d$a VAN d.’l?l A\ dl’g VAN d.’ll'g + Z Dawl 2 4dl’a N dil?l A d$2 VAN de4
=1 a=1

Z Dawl 3 4d1’a N d[[‘l N d[Eg VAN dlL’4 + Z DQWQ 3, 4d£(]a VAN dl’g A dl‘g A d[L‘4

a=1 a=1
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:D4W1’273d$4 VAN dxl VAN deQ VAN dl’g + D3W172’4d$3 VAN dl’l VAN dl’g A dl’4
+ D2W17374d$2 VAN d[L’l VAN dZE3 A dl’4 + D1WQ7374d$1 VAN dl’Q A dl’g A de‘4,

debido a que dzx; A dx; = O, se tiene que solo un sumando de cada suma de la

segunda igualdad va a ser diferente de O.

Ejemplo 3.9. Sea la O-forma 6 : {(z1,22) € R* : 22 + 22 = 1y azy # 0} - R

definida como sigue,

x9 .
arctan(x—l), si xy, 9 > 0,
s : _

3, stxy = 0,29 > 0,

O(x1, 22) = arctan(2) +m, si xq < 0,22 # 0,

3T ) _
Sy sixy =0,22 <0,

arctan(2) +2m, si z; > 0,22 <0.

\

= Caso x; # 0, aunque existen tres partes de € donde z; # 0, solo habra una

sola df, debido a que

D (arctan($2)) =D (arctan(32) 4+ m) = Dl(arctan( %) + 2m),

$1
Ds(arctan($2)) =Dy(arctan(3?) + ) = DQ(arctan( ) + 27),
T
asi,
df =————d dxs.
P e B

= Caso r1 = 0, en esto si x5 > 0, al acercarnos a x; por la derecha debemos
considerar a la funcién arctan(‘”—Q) mientras, que si 3 < 0 se considera a la
funcién arctan({2) 4 2m, al acercarnos por la izquierda se debe tomar a la
funcién arctan (22 ) + 7 sin importar el valor de x,, por lo tanto, debemos
revisar los hmltes por la izquierda y por la derecha de esta funciones, para

esto, haremos uso de la regla de L’Hopital.

e 11,19 > 0.

lim O(z1 + h, x) — (0, z5) = lim arct&ﬂ(f) - %
h=ot h h—0t h
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— 2o
h%—i—x%

= lim
h—0+ 1

—x9

= lim
h—ot hitas
3

T2 2"
T+ 75

o 11 > 0,29 <O0.

0 h —0(0 arctan(%2) — 3¢
h/m (Il + ,.TQ) ( 71:2) _ h/m ( h ) 2
h—0+ h h—0+ h

h—0+ 1

_—T2
h% +.Z‘%

o 11 < 0,29 > 0.

lm O(z1 + h,z2) — 0(0, 22) _ Ym arctan(%?) + 7 — §
h—0- h h—0- h

arctan(%2) + 5

=1
hgél— h

=5 9>
23 + a3

cuando z9 < 0 la demostracion es andloga. Asi,

D.0(0 = —_
10(0, z2) 2?2 + 23

Notemos que debido a que x5 # 0 no existe problema alguno al acercarnos
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a To por la izquierda o por la derecha, asi,

13

DQQ(O,IQ) :DQ(O, )

2
=D5(0,3F)
=0
EE A
Con esto,
—x x
df = 2—22d931 + 2—12dl‘2
r]+ x5 xr] + 25

Para poder facilitar los calculos de las diferenciales sobre k-formas, nos ayu-

daremos del siguiente teorema.
Teorema 3.4.

1. Siw y p son dos k-formas, entonces,
d(w ~+ p) = dw + dp.
2. Si w es una k-forma y 7 es una [-forma, entonces,
dwAn) =dwAn+(=1)%w Adn.

3. Si w es una k-forma, entonces, d(dw) = d*(w) = O, donde O denota a la
(k 4+ 2)-forma nula.

4. Si w es una k-forma en R™ y f : R — R™ es diferenciable, entonces

fr(dw) = d(f*w).

Demostracién: Sean w y p dos k-formas y 7 una [-forma dadas de la siguiente

manera,

w = E Wiy, i dziy N ANdwy,

11 <t <--<ip

n= Z Wiy, indTiy A+ ANdx,,

11 <to<--<ig

= Z Nty AT N - N dy,.

J1<g2<<Ji
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1. Tenemos que,

11 <dg<--<ig
D Headg A A dfﬂik)
11 <t <---<ip
- < Z (wi1,~~~,ik + Mi1,~~~,ik> dx’il ARERNA dxzk)
1 <tg<-<ig

= D AW+ ) dTn A A da,

i1 <ig<--<ip

= Z Z Do (wiy oy + iy i) Ndxg Adxy, A -+ Ndzy,

11 <ig<-<ip a=1

= Z Z(Dawil,...,ik + Dalj’il,n-,ik) Ndxg Ndxi N--- Ndx;,

11 <ig<-<ip a=1

n
= Z Z Dawi17.._7ik N dlL‘a A d[L‘il VANEIERIVAN d[EZk

11 <ip<--<ip a=1
n
—+ Z Z Dalflil,...,ik A dIa A dxz-l A A d&?zk

11 <to<-<ip a=1

= Z dwil,---,ikdxil A A dl’zk

i1 <ig<--<ip

+ Z d,“h,...,ikdmil VANEIIVAN dl‘Zk

11 <t <-<if

=dw + dp.

2. Tenemos que,

wAn= Z wi1,~~~,ik77j17~~,jzdxi1 ARERNA d'rlk A d‘rjl

11 <t <+ <ig,J1<j2<--<Ji

AN /\, d$jl7
luego,

d(wAn) = > (Wi i M1 eit) N dTiy Ao+ A iy,

11 <t < <ig,J1 <J2<-<Ji

/\dle/\"'/\d'rjl
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= Z Z Da(wil ..... ikﬁjh---dl) A\ de‘a A d[Eil FANKIEIRIVAN dl’zk

11 <ia <<, 1 <ja<--<ji a=1

/\dl’jl/\"'/\d[EjZ

n

= Z Z(Da(wil,...,ik)nj1,...,jl +wil,.“,ikDa(njl,.“,jl>>

1 <dg <+ <, J1 <j2 < <j; a=1

Ndze Ndz N« Ndxg, Ndzg, A -+ Ndxy,

= Z Z Da(wil,---7ik)nj17---,jl A dIa A dl‘il VANRIEIVAN dl’lk

i1<ig < <ig,j1 <ja<-<jp a=1
/\dZEjl /\---/\dl‘jl
n
- Z ZwilvwikDa(Wm,...,jz) Ndxo Ndxry N ANdz;,
11 <t <+ <ig,J1<Je<--<j; a=1
Ndxj, A--- Adz,
- Z njlw--,jld(wh,...,ik) N dl‘il A A d.ﬁUZk
11 <dp <+ <, 1 <j2 <-+<Ji
/\dl’jl /\/\dZE]l
+ Z wilw-»ikd(njhn-,jl) A dwil VANEERIVAN dﬂ?lk
i1 <dp <o i, J1 <ja <<y
/\dle /\/\d.ﬁE]l
=dw A+ Z wil:--~vikd(nj17--~7jz) N dxy,
11 <t < <ig,J1 <J2<-<Ji

Ao Ndxg, Ndxg, N Ndag,.

Tenemos que d(n;,,.. ;) es una l-forma y dx;, A --- Adz;,, es una k-forma,

asi, por la Proposicion 2.5:

d(njl,m,jl) N dl’il VANEIIAN d.ﬁlﬁlk A dle VANEIIAN dl’jl
:(—1)1kd£€“ A\ dl'iQ VANEEIVAY di[)lk VAN d(’?jl,...,jl) N dle VANRIERIVA dl'jl
(_1>kdle A\ d.ﬁCiQ A A dxlk A d(”jlw“mjl) A d.le FANCIIIVAN d.ﬁL’jl,

con esto,

dlwAn) =dw An+ Z Wiyooin (=) Fdzi, Adxiy Ao A dg,

11 <t <-<ig,J1<j2<--<Ji

A d(nﬂ,,]l) A\ dle VANCIIRIVAN dﬂfﬂ
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=dw A n —+ (—1)k Z Wiy, ..., ikdxzj VANRIEIAN dl’zk

i1 <dp <o <, f1 <J2 <<
ANd(njy....50) N dxg, A= A da,
=dw A+ (—1)Fw A dn.

3. Primero se demostrara para k = 0, sea la O0-forma f : R™ — R, luego, por

Teorema 3.1, tenemos que: df = ZJ ) a dxj, asi,

n n 2
:ZZ aag dxe N dx;j
j=1 a=1 LaOT;
n rj—1 2 2
:Z{Z o7 dxe N\dxj + / dz; N\ dx;
=l 0,07 0%
d d
+ Z D, To N x]}
a=j+1
n [j-1 n
o0 f 0% f
= d d d dz;
' D0, To Ndz; + O + Z D2a07; To N dz;
7j=1 La=1 a=j+1
n [j—1
0% f 0?
= d d d dx;
x40 Ta /NG Z 0x,01; Ta xj]
ji=1 La= a=j+1
n j—1 a f n
-y T dxo A da; + Z > axaaxjda:a A da;.

j=1 a=1 =1 a=j+1

Ahora se trabajara con uno de los dos sumandos anteriores, para esto, no-
temos que cuando j = n, no existiran términos debido a que « sera igual a

n + 1, esto ocurrirda mas adelante cuando 7 = 1 y a tome el valor de 7 — 1

n Qf a2f
dxg Ndx; = dxy, Nd dxg N d
Z Z Gxaax] o T Z [&Ea@xl o $1+8$Q8$2 o 2
Jj=1 a=j+1 a=j+1
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02 f 9% f

T By o N W g, e N
:8522(({% dxo N\ dzy + 8:}?55@ dxs N\ dxq

+ 8:?42g$1dx4 ANdxy + -+ aggxld% A dxy

+ 65325@ dxs N\ dxy + 8225;2 dxy N\ dxgy

+ ag@f@ dxs Adxy + -+ -+ aa?,jgxz dxy, N dxy

4+ 4 %dwn ANdx,_1,

recordemos que dz, A dz; = (—1)"'dx; A dr, = —dx; A dx,, para a # j, y
o2f  _ 82f

ademas 0xa0x; — Orj0xa’

asi,

Jj=1 a=j+1

- 653332 dxy A dxg — 8228];3 dxy A\ dxs
- afjéfm dry ANdxy — - — 83?128];” dzy N dxy,
- 8:5228];3 ey A ds - 03?22(;;4 ez A
— 85226{555 dry Ndxs — - — 8225:1:” dxy A dz,
— = 8mf_21f§xn dx,_1 Ndx,

= _ 85?12ng dzy N dxe
— 8:?12(';7fx3 dzy A dxs — 822823 dxo N dxs
— afjéfm dzy A\ dxy — 22;;4 dxo N\ dxy
— 8:?:@];4 dxs N\ dxy
e 85128fxnd 1 ANdx, 8Z2gxndx2 A dx,,
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o*f 0*f
_ d da, — oo — 2 dy. | Adz,
0x30x, T3 1\ T 0%p_10T, Tn-1 /A GT
j—1
o*f 0*f
= - dx,, N dr; — dry, Nd
a:ll 02,011 Ta A\ 421 2,029 Ta 1\ 022
0*f o*f
— drgy Ndxs — - — dx,, N dz,
01,013 Ta 1\ AT 0x,0x, Ta 1\ 4T
n j—1 2
:—Zzaag dz N dz;,
j=1 a=1 LaOk;

luego,

do=" Y Y Dawi, iydre Adri A~ Adr,,

11 <ig<-<ip a=1

aplicando ahora la diferencial a dw,

ddw) =Y > d(Dowi,.i,)dxe Adry, A A dzg,

i1 <ia<-<ip a=1 j=1

= Z (i: Zn: %d% A d:zca) Ndxi, N~ Ndzg,
jUL

i1<’i2<"'<ik a=1 j:l

= Y OAdy, AN,
11 <t <--<ig

= 0.

4. Primero se demostrara para una O-forma. Sea g : R™ — R una funcién
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diferenciable que asocia a cada (yy, ..., ym) € R™ el valor g(y1, ..., Ym). Luego:

&
Il
—

I
[]=
Q
S|
—
*
,
S

o,
i—1 Y5 0

S
== dy; Ox; 7
" dg Of;

= jzl ZZI a?i 8xf] dx;

:i(@aﬁ ﬁﬁﬁ)d
= Oy Oz OYp, 0T /
L YO

:; (ngf)dxj

=d(g o f)

=d(f"g)

Sea ahora la k- forma,

asi,
d( *CL)) :d f* ( Z wil 77777 i dxil A--- A d.l?lk))
11 <t <---<lj

=d Z f*(wh ..... i dxil VANRIIVAN dx%))

11 <to<--<ip

11 <tg<---<ip
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- ( Z [ (wi,.., ik)'f*(d'ril/\"'/\dl‘ik>>

11 <t < <l
= Z d(f*(wiy,.in) N [ (dziy A+ ANdxy,))
11 <t <--<ig
= N (@ @) A S (day Ao Aday,)
i <ig<--<ip

- Z (f(d(wiy,. i) N fr(dzig Ao - ANday,)

tenemos que,
d(f*(dai, A+ Ndwg,)) = d(d(f*(zi,)) A= Ad(f(23,)) = O,
lo que implica lo siguiente,

d(frw)= Y fdwi,.i) Aday A Aday,)

11 <t <--<ip

:f*< Z d(wi,..., ik)/\dxil/\-~/\d:c7;k>

11 <t <---<ip
=f*(d(w)).
Por lo tanto, se da por demostrado el teorema. O
Definicién 3.10. Una k-forma w es llamada cerrada si dw = O.

Definicién 3.11. Una k-forma w es llamada exacta si w = dn, para alguna

(k — 1)-forma 7.
Proposicion 3.4. Toda forma exacta es cerrada.

Demostracién: Sea w una k-forma exacta, asi, existe alguna (k — 1)-forma 7 tal
que w = dn, luego, por el Teorema 3.4, 3) se tiene que dw = d(dn) = O, con

esto, w es una k-forma cerrada. O
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En la Proposicion 3.4, el dominio de w es cualquier conjunto abierto, ademas
el reciproco no siempre se cumple, a menos que el dominio satisfaga ciertas con-

diciones, tal como se demostrara mas adelante.

3.5. Conjunto estelar

Definicién 3.12. Sea A C R" un conjunto abierto. Si para todo x € A, el
segmento de linea que va de 0 a = queda contenida en A (ver Figura 3.3), entonces,

A es llamado conjunto estelar con respecto a 0.

[
|

Figura 3.3: Conjunto estelar

Lema 3.1. Sea f : R" — R. Si f es diferenciable y se cumple que f(0) = 0,

entonces, para cada i € {1,...,n}, existen g; : R" — R, tal que:
fl) =) migi(x).
i=1
Demostracién: Sea h,(t) = f(tz). Luego:

| Haterit =h 1) = huf0) = 1(0) = £(0) = f(a).

asi,
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[

- (z xipiﬂm)) "
“Sou [ Dt

— i z;g;(x),

donde ¢; = fol Dy(tz)dt. O

Supongamos que w = y . widz; y df =Y " D;f - dx; son 1-formas en R",
tales que w; = D; f, para todo i € {1,...,n}, donde f es una funcién diferenciable

y f(0) =0, asi, por el Lema 3.1, se tiene que:

f(z) :/o (Zl xiwi(tx)> dt.

Con esto, podemos definir una funcién I(w), que nos permite encontrar a f dado

una l-forma w, de la siguiente manera,

I(w(z)) = /0 (inwm)) dt.

Una generalizacion para toda [-forma estd dada en la siguiente definicién.

Definicién 3.13. Sea A un conjunto estelar y una [-forma,

w = Z Wiy,..., ildxh VANCEIVAN d,Iil.

11 <t2<--<17

La funcién I : A C R®™ — R se define como:

1
= Z Z(_l)a_l (/ tl_lwz‘l 77777 zl(tf')dt) J]wdl’il A A de‘ia A A de‘Z‘l,
0

11 <t <--<i a=1

el simbolo ™ sobre dx;, significa que este dltimo serd omitido. Si w = O, entonces,
I(w) = 0.
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Ejemplo 3.10. Sea la O-forma f(z1, z9, x3,24) = 21 + 125 + sen(xy), luego:

df :ledxl + Dgfdl’g + Dgfdxg + D4fdl’4
=(1 4 z3)dzy + 0dxe + z1dx3 4 Ccos(x4)dry,

notemos que df es una 1-forma y que f(0,0,0,0) = 0, asf,

I(df () = /0 (sz) f(ta:)) dt
_Za;i/ol D f (tx)dt

1 1 1
0 0 0

1
—i—m/ cos(txy)dt
0

2 | #2
=T <t + 51’3) .

1
sen(tx
+ r3—2 ( 4)
12 02 12 02

=T |:1 + — X3 — 0— —1’3} + T3 |:—371 — —$1‘|

+ x4

2 0 Ty

0

2 2 2 2
1- 0-
o [sen( z4)  sen( m)}
Ty Ty
1 sen(x
=1 (1 + %IS) + T3 <—I1) + x4 < ( 4)>
2 Ty
2
=1 + §x1x3 + sen(zy)
=11 + z123 + sen(xy)

=f ().

Ejemplo 3.11. En este ejemplo se calculardn d(I(w)) y I(dw). Sea la 3-forma de

R* siguiente,
w = (23 4+ z4)dxy A dxy A das + (29 - 24)dzy A dos A day,
luego, por lo visto en el Ejemplo 3.8, se tiene que:

dw =Dy(z] + 24)dzy A dxy A dag A das
+ DQ(IQ . I4)d272 A d(L’l N dl’g N d$4
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=1-dxy Ndxi A dre A dzs
+ z4dxo A dxy A dxs A dxy
=1- (=)' da; Adzy Adrs A day
+ (=DM aydry A dag A des A day
=(—1) - dxy; Ndxy A dxs N dxy
— x4dxy N dxg N\ dxs A dxy
=(—1 — x4)dxy Adzy A dxs A dzy.

Notemos que dw es una 4-forma. Aplicando la funcién I a dw, resulta lo siguiente,

:i(_l)al (/1 (=1 - t:c4)dt> T,

a=1 0

Cffi\a A d&?l AN dl‘Q VAN d$3 VAN dl‘4
1
:(—1)1_1 </ t4_1(—1 - t$4>dt> .Ildl’g A dl‘g VAN dl‘4
0
1
-+ (-1)2_1 (/ t4_1(—1 - tl’4>dt> .ngl’l N d$3 VAN d.T4
0
1
+ (—1>371 (/ t471(—1 - t$4>dt> .ngl’l N d$2 VAN d.T4
0

1
+ 1) (/ t4 1( 1-— tl’4>dt> .T4dl’1 N d$2 VAN dl‘3
0

1
(/ — t4£(34 dt> l‘ldl’g A d$3 VAN dl‘4
0
1
</ —t° -1 I4)dt) xgdxl VAN dafg A dx4
0
1
-+ </ -t — t4$4)dt> .173d$1 A dZL’Q A dl’4
0
1
</ —t° — t4x4)dt) xadxy N\ dzg N dag
0
o
= |:—Z — gl‘4:| [Eldl‘g N deg VAN d[E4

- —3;'4 xzd]}l A dxg A\ dx4

[
qER2)

Igdl’l A dl‘g N dIL‘4
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tto
- |:—— - —ZE4:| I4dl’1 VAN dl’g A dl‘g
5 0
1
(—1271 — —1‘1374) d$2 N dl’g VAN d$4

1 1
+ <4$2 + 5$2$4) d.ﬁlﬁl VAN d.ﬁlﬁg A d.’£4
1 1
+ | —=x3 — =x324 | dxy N dag A day
4 5
+ <

1 1
Zx4 + 51:4) dri A dxre A dzs.

Ahora se calculard d(I(w)). Tenemos que,
_ 2 _
Wiy g3 (T1, T2, T3, T4) = T + Ta Y Wiy ig iy (T1, T, T3, Tg) = To » Ty,

las demés funciones componente de w son iguales a la funcién nula. Asi,

3

1
I(w(z)) = Z(—l)o‘_l (/ 37 (2] + ta:4)dt) X, dxry N\ dxg A\ dxg A\ dx;,
0

a=1

3 1
+ Z<—1)a_1 (/0 t3_1(t2$2 . $4)dt> (L’iad.fl VAN dxg VAN de4 VAN dl’ia,

para encontrar el valor de I(w(z)) primero encontraremos el valor de la primera

sumatoria y posteriormente el valor de la segunda. Para la primera sumatoria

tenemos que, 11 = 1, 15 = 2 e 13 = 3, con esto,

1
2:(—1)0‘_1 (/ (1?22 + tm)dt) x;, dry A dzg A deg A dx;,
0
1
=(—1)*! (/ (t12? + t3x4)dt) x1dxoy N dxs
0
1
+ (=1)*! (/ (t*z? + t3x4)dt) Todxy N dxs
0
1
+ (=1)3! (/ (t*z7 + t3x4)dt) xadxry A dxy
0
£ ik
= [—x% + —m] r1dxoy A dzs
0

5 2+t4
— |=x —Z
1 4 4

1
ZL’Qd.Il VAN dxg
0




3.5. CONJUNTO ESTELAR 93

+ ﬁ$2—f-ﬁ!104
5710 4

1

.ng[)’}l VAN dZEQ
0

1 1
= (Exi’ + Zx1$4) dxo N dxs

1 1
— (gl‘%.fz + Z:@u) dxi N drs

1 1
+ (gl’%%g + 13731'4) dl’l A\ dl‘g.

Para la segunda sumatoria, tenemos que, ¢; = 1, 15 = 3 e 13 = 4, luego,
3

1
Z(—l)ail (/ t2<t2.§lf2 . I‘4)dt) xi&dxl VAN dxg A dZL’4 A dl’ia
0

a=1

1
:(—1)1’1 </ th. x2x4dt) x1dxs N\ dry
0
1
+ (—1)2’1 (/ . x2x4dt) x3dxy N dry
0
1
+ (—1)%1! (/ . x2x4dt) radxy N dxs
0

5 !
= [3I2$4:| J]ldl’3 VAN dCL’4

0

£ !

— [Emm] za3dxy A dzy
0
£ !

+ |:€JI2Z‘4:| $4d$1 VAN d$3
0

:gxlxgmdxg VAN d&?4
1
— 5$2£B3$4dl’1 N dl’4

1
+ gl‘gl’idl’l A d(L’g.

Con esto,

1 1 1 1
I(W(QT)) = (gl’? + 11‘1374) d$2 N dl’g — (gl’%l‘g + 11‘2274) d!L’l N dl’g

1 1 1
+ (333%273 + Z$3$4) d.il?l VAN d.ﬁlﬁg + (gl’1$2$4> d.’ﬂg VAN d$4
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1 1
— (5I2$3I4) dl’l VAN dl’4 + <51’2$i) dl‘l VAN d.Tg

1 1
= <5x%x3 + le?’m) dxy N dxo

1 1 1
+ <—EI’%ZE2 — Zx2x4 + 5{[‘2]7?1) dri A dzs

1
— (31‘22731'4) d$1 VAN dl’4

1 1
+ (gl’? + ZQZ’1$4) dl‘g N diEg

1
+ (5:51372:64) dxs A dxy.

Luego, la diferencial de I(w) es,

4
1 1
d(I(w)) = Z D, (gl‘%ﬂ?g + Zx3x4) dxy, N\ dxy N dxy

4
1 1 1
+ Z D, (_gx%l’z — 1552134 + 513213421) dry N\ dzry N dzxs

1
— Z D, (5332333934) dre Ndry N dxy

4
1 1
+ Z Da (gl’?{ + lex‘l) dxa VAN dl’g A d(L’g

1
+ Z D, (5.7711'233’4) dre N drs N\ dxy

1 1
— (Sx% + ZI‘4> drs N\ dxq N\ dxo

+ —1'3d1‘4 A d!L’l N dl’z
1, 1

1
+ Ty + —$i> dl’g A d!L‘l A d$3

1y 5

ot

2
——T9 + 55132334) d.’£4 AN diL‘l A dl’g

=~

+
il N N L
—_

- —ZL'3£C4dZL‘2 N del VAN dI4

— Ot

- —:c2:1:4d1:3 VAN d$1 VAN dl’4

(S8
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3 1
+ <5$% + z_lx4> dxy N dwy A dis

+ imldm A dxe N dxs
+ %xgmdxl ANdxs N\ dxy
+ %$1$4d$2 ANdxs N\ dxy
=(—1)? (%az% + %lm) dzy N dxo A dxs

1
+ (—1)1421.’133(1(131 A\ d.TQ AN d.Z'4

1 1 1

+ (—1)141 (—g.ﬁlﬁ% — 1—11'4 + gﬂi’i) d.’L’l VAN diL‘g A dl’g
1 2

+ (—1)1'2 (_1_1332 + 5372513'4) dl’l VAN dl‘g A diIZ’4

1
— (—1)1.151’31‘4dl’1 A dZL‘Q A dZE4

1
— (—1)1.15$2I4dI1 VAN dl’g VAN d(L’4

+

3 1
<5x% + Zm) dri A dzre N dzs

1
+ (—1)1'2151:’1611:2 Adxs A dxy
1
+ gngmdxl Adzs A dzy
1
+ 5x1x4dx2 ANdxs N\ dxy
1, 1
= gqjl =+ Z$4 dl’l A\ dl’g N d$3

1
+ ngdxl VAN deQ A\ dl'4

1 1 1
_ (_— 2 _ Z{E4 + g,fi) dxl N d$2 A d&?g

(S

1 2
+ <—Zx2 + g$2$4) dri Adrs A dry

1

+ g.ﬁlﬁgﬂ?z;d.fl A diUQ A dl’4
1

+ g$2$4dl’1 VAN d.f(]g A dl’4

3 1
+ (530% + Zw4> dxi A dxre N dzs

95
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1
+ Z_Lxld@ VAN dafg A dx4
1
+ 5(132[)34(11‘1 VAN d[Eg VAN dlL’4

1
+ g$1$4dﬂ?2 VAN dSCg A\ d$4
1

1 1 1 1 3 1
= (Sx% + Z:U4 + g:c% + —x4 — —xi + Sx% + Zm) dxi A dre N dzs

4 5

1 1
+ ( T3+ 5:1:3:U4> dxy Adxrg A dry

1 1 1
( Z_L 9+ $2$4 —+ 5ZL’2(L’4 + 5132.%4) d(L’l N dl‘g N dl‘4

1
+ (le + —x1x4> dxy A dxg A dxy

x xi) dxi A dze N dzs
1
4

+ T3 + —SE35E4> d:Bl AN diBQ N dZE4

1
+( 1 o + x2x4> dzy N\ dxs N\ dzy
i

1
le + —x1x4> dxg A drs A dxy.

Sumando I(d(w)) v d(I(w)) da como resultado,

I(d(w)) +d(I(w)) = (—ixl - %951%4) dxg A dxs A dxy

1 1
+ (Z[EQ + 51‘21}4) d[El VAN dl’3 A dl’4

1 1
1233 — 51‘3114) d!L‘l A d$2 N dl’4

1
T4+ 5.7:4) dri A dxre N dxs

4 5

1
T3 + 5$3$4> dl’l VAN d.TQ VAN d$4

1
+ <.7c§ + §x4 — —xi) dxy A dxs A dxs

1 4
ZL 2 -+ 5$2ZE4) dl‘l A\ dIg A de4
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1 1
+ (z_lxl + 5$1l‘4) dry N ds A dy

1 1 3 1
= <1x4 + 5xi + 22+ 1%~ 5302) dzy A dxo N dxs

1 1 1 1
-+ —Zl'g — 5I31'4 + Zl’g + gl‘3l‘4 dl’l A d(L’Q N dlL‘4

1 1 1 4
+ Z_le + gl‘2$4 — ZZBQ + 3I2$4 dfl?l A dl"g N d334

1 1 1 1
+ —Zl'l — 533133’4 + Z.Tl + g$1$4 diL‘Q AN dl’g A dl‘4

=(24 + 23)dxy A dwy A ds
4+ 0-dxy Adxg A dxy
+ zoxadxy N dxs A dxy
4+ 0-dxg Adxs A dxy

=W.

3.6. Lema de Poincaré

Para la siguiente demostracién se hara uso de la funciéon I dada en la Defini-

cién 3.13.

Teorema 3.5. (Lema de Poincaré) Si A C R™ es un conjunto estelar con respecto

a 0, entonces, toda forma cerrada en A es exacta.

Demostracién: Para esta demostracién se probard que d(I(w)) + I(dw) = w, y
con base a eso probaremos lo que se nos pide. Primero encontraremos a d(/(w)),

sea,

11 <ig<--<iy

una [-forma, luego,

l

Iwx) =Y > (-1~ ( /0 1#*1% ..... il(tw)dt) i,

11 <io<--<i; a=1

dag, A+ Ndag, A+ Adag,
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dIw) = > d(azl:l(—m—l ( /Oltl_lwil ,,,,, ik(tm)dt)xia)

11 <t <--<g
dag, A Ada, A+ Aday,

> zl:(_na—ld((/oltl—lwil ,,,,, ik(tm)dt)xia)

11 <ta<---<i; a=1

Qv Ao AT A A d

> i(—l)‘”{d( /Olt”wil ..... ik(tx)dt)xia

1 <ig<---<t; a=1

1
+ (/ tl_lwil .... ik (tl‘)dt) dl‘la:| dl’il FANKIRIRIVAN dl’ia FANKIRIRIVAN dIil
0

l

> Z(—l)“‘%l( /Oltl—lwh ..... ik(tas)dt>rcia

i1 <ip<--<i; a=1

dag, A Adag, A+ Aday,

+ Y i(—l)c“‘1 (/Oltl—lwil ,,,,, ik(tx)dt) dz;,

11 <ig<--<ip a=1

dag, A Ndag, A Aday,.

.....
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asi,

dIw) = > zl:(—w aszn:(/ t'Djwi, .. ik(tx)dt)

i1 <ig<--<ij a=1 j=1

+ > Xl:(—l)a1 (/Olt”wil ,,,,, ik(t:c)dt) da;.

1 <tg<---<t; a=1

dxil/\---Ad/x,-\/\---Ad:p,-l

= Y Z va( /0 1tlewil ,,,,, ik(tx)dt)

11 <io<--<i; a=1 j=1

dxj/\d:til/\---/\d/x_i\/\---/\dxil

+ > ZZ ( / 1#*1% ,,,,, Z-k(ta:)dt) Djx;,

11<i2<---<7; j=1 a=1

de/\dIil /\dl’l /\dIZl
n 1
- > et ([ o o)
11 <ta<---<i1; a=1 j=1 0

da; Adxg A+ Adzg, A Adag,

b ([ )

11 <t <---<1y
l
(Z(—l)aldfﬂia A dl’il VASRERIVAY dl’ia VANRERIVAY d{E”>
a=1

De lo anterior se tiene que,

!
> (=0 My, Aday, Ao ANdag A A da,

a=1
:(—1)1_1d.f13i1 N dl’iz VANRIERIVA d.ﬁlﬁil
—+ (—1)271611'1‘2 N d.fCil N dl’is VANRREIVAY d.ﬁCil

+ (—1)l71d$¢l VAN d&?il A dl’i2 VANRREIVAY d‘ril—l
:dxil VAN d$i2 VANRREIVAY dIil
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+ (—1)(—1>11dl’“ VAN dl’iQ VAN de’i3 VANRRIVAY dl’il
+ (—].)l_l(—]_)l'(l_l)dl’il VAN dZL’Z’2 VANRIERAN dl’il

+ dl’il VAN dJTiQ VANRERIAN dl’il

‘|‘d.’£i1 /\d.CEZQ VAN /\d.’EZ’l
=l 'dl’il /\dﬁi’i2 VAN /\dl’il,

luego,
I n |
@)= Y Sy, Y ( / (D (tx)dt)
i1 <ig<--<i; a=1 j=1 0
da; Adwg, A~ Adrg, A+ A day, (3.3)
1
+ Z (/ tl_lwil 77777 ik (tﬂ?)dt) l- deil N d{L‘Z‘Q VANRIERIVA dZEZ‘l.
i1<ig< iy W0

Ahora encontraremos a I(dw). Tenemos que,

dw = Z ZDjwh ,,,,, i - dry Ndxg N Ndwg,

11 <ig<--<ip j=1

luego, intercambiando al 1-tensor dz; con el [-tensor dx;, A- - - Adw;, en el producto

cuna resulta lo siguiente,

dw = Z Z(_l)lthjwil 77777 zkdle VANKIEIAN dl’il A dl’j

11 <ig<--<ip j=1

- Z Z(_l)lewil ..... indxs, N Ndag, N\ dxg,

11 <ta <<ty j=1
mas adelante se revertira lo anterior hecho, asi, aplicando I a dw,

TP Sl S STy (/ D, i) o,

11<ia<-<i; j=1 a=1

dag, A Ndag, A Adag Ade;
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n I+1

= > ZZ(—l)a*(—l)l(/oltlD (wi, .. )(tx)dt)

i1 <ia<-<iy j=1 a=1

dag, A+ Ndag, A+ Adag Adeg,

notemos que cuando a € {1,...,l} se tiene que i, € {iy,is,...,%}, asi, cuando
a =1+ 1, se cumple que i, = j, con esto, separando del resto al ultimo término

de la suma,

n l 1
CEEED YD 3 WV SV TN RN P
i1 <ig<--<i; j=1 a=1 0

+ ) Z D= )( /0 i, (Wi )(t:)s)dt) Tiy,,

11 <t <--<f j=1
—_—

d$i1/\"'/\dl’iHl/\"‘/\dl'il/\dl’j

D 3 D S e ([ #0s6i)

11 <tg<---<ij jil a=1

da; Adzy, A -+ Adzg, A Ad,
n 1
D DD D e ( [ it k><tx>dt) 2
11 <t2<--<1; j=1 0

=" > ii(—l)al </01tlD (Wiy,.... )(tx)dt)

i1 <ia<-<iy j=1 a=1

oY Z ( / Dj(wi.... ik)(tx)dt) iz, A - A da,

11 <tp<---<f j=1

NS ZZI: 1(/ 1D, (s )(tx)dt)

11 <ta <<t j=1 a=1

+ ) Z( / (Wi )(tx)dt) 2w A--- A da,.

11 <i2<--<qy j=1

(3.4)
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Sumando (3.4) y (3.5), obtenemos,

d(I(w)) + I(dw)

1
= Z (/ tl_lwil _____ i (tl)&')dt) l . dl‘il A dCL’Z‘Q FANKIRIRIVAN dl‘il
0

11 <t <--<1iy

+ Z Z (/ tlSL'] (wiy )(t:c)dt) dxy, A+ Ndxy,

11 <tg<--<i j=1

1
= Z (/ tl_lwil 77777 i (t.ﬁlf)dt) l- dil?il A dl‘iQ VANEIVAY dxil
0

11 <t <--<1y

i1 <12 <-4

= Z (/ tl_lwil ,,,,, i (ta:)dt) [-dxy, Ndzg, A--- Adxy,
0

11 <t <---<1%
b d
+ Z (/ tl£<wi1 ..... i (tl'))dt) dxh FANKIIIVAN dﬂ?il
11 <ta<---<1; 0
La
= Z (/ E[tlwil ..... ik (tx)]dt) . dx,;l A\ dxl-Q FANKIIRIVAN dflfil
11 <t <---<ij 0
= Z |:l%di1 77777 lk(]' : ZE) - Olwil ..... i (O . ZE):| dCL’il AN dZL’Z’2 VANRIERIVAN dl’il
i1 <ig<--<ij
= Z Wiy,..., zkdle A diL‘Z’Q A A dl’il
11 <ip < <14
=W.

Sea w una k-forma cerrada, asi, dw = O, luego, por la igualdad mostrada ante-

riormente,

w=d({w) + I(dw)
=d(I(w))+ 1(0)
=d(I(w)).

Con esto, w es una k-forma exacta. O



Capitulo 4

Integracion de formas sobre

cadenas

En este capitulo se presentan la definicion y las propiedades principales de los
m-cubos singulares y las m-cadenas en R™, con las cuales se podra demostrar el
Teorema de Stokes.

Para este capitulo, [0, 1]™ denotard el m-producto cartesiano de [0, 1] m veces.
Esto es: [0,1] x --- x [0, 1].

4.1. M-cubo singular

Definicién 4.1. Sean m,n € N, con m <ny A C R". Un m-cubo singular en

A es una funcién continua c : [0, 1]™ — A.

Ejemplo 4.1. La funcién ¢ : [0,1] — R definida como sigue,

es un l-cubo singular. Ademads, la imagen de ¢ es un punto en R.

Ejemplo 4.2. Sean 3, € R,con 5 # 0. La funcién ¢ : [0,1] — R definida como

sigue,
c(x) = Bz + a.
es un l-cubo singular. Ademads, la imagen de ¢ es un segmento de recta en R.

103



104 CAPITULO 4. INTEGRACION DE FORMAS SOBRE CADENAS
Ejemplo 4.3. Sean 3, € R. La funcién c: [0, 1]> — R3 definida como sigue,
C(ﬂfl, flfg) - (5 * T, 0 T, '/1“2)7

es un 2-cubo singular. Ademas, si f y « son iguales a 0, entonces la imagen de ¢
es un segmento de recta, mientras que si solo uno de los dos es igual a 0, entonces
la imagen de ¢ seria un plano.

Cuando 8 =4 y a = 2 se obtiene la superficie mostrada en la figura 4.1.

Figura 4.1: Superficie generada por ¢

Ejemplo 4.4. Sean 8 € R. La funcién ¢ : [0,1]*> — R? definido como:

C(mlax27:p3) == (Sen(fﬁl),B : I’Q,l‘g),

es un 3-cubo singular, ademas, si § es igual a 0, entonces la imagen de ¢ es un

plano. En caso contrario, la imagen de ¢ es un rectangulo.

Ejemplo 4.5. En R", para n < 2, las curvas ¢; : [0, 1] — R™ son 1-cubos singu-

lares y las superficies ¢y : [0,1]2 — R" son 2-cubos singulares.
Dos ejemplos simples, pero particulares de n-cubos singulares en R", son el

n-cubo estandar I" : [0,1]" — R™ y el n-cubo nulo o : [0, 1] — R" definidos

por

para cada z € [0, 1]", respectivamente.
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4.2. M-cadenas

Definicién 4.2. Denotemos por S,, al conjunto de todos los m-cubos singulares
en A C R™. Una m-cadena es una funcién f : S,, — Z, tal que f(c) = 0 para
todo ¢ € S, a excepcién de un conjunto finito {cy,...,¢;} C S, con I € N. Al

conjunto de m-cadenas en A C R" se denotard como C,,(A).

Sea f una m-cadena no nula, asi, existen m-cubos singulares ¢y, ..., ¢; tales que,
f(ci) = a; #0, para todo i € {1,...,1}, (4.1)

por otro lado, tomando ¢ € S,,, definimos a la funcién f. : S,, — Z de la siguiente
manera,
1, sid=c

0, sid #ec,

fe(d) =

con esto, se puede representar a f como sigue,

l
f = Z a/ifci'
=1

Proposicién 4.1. Sean f y g m-cadenas. Definiendo a f+¢g y alf, conl € Z,

de la siguiente manera,

(f +9)(c) = f(e) + 9(c),
Lf(e)=1-f(c),

se tiene que f + g y [f son m-cadenas.

Demostracion: Sean f y g m-cadenas.
Seace {c: (f+g)(c) # 0} ={c: f(c)+g(c) # 0}, luego, dado que f(c)+g(c) # 0,

se deduce que o bien f(c) # 0 o g(c) # 0, asi,
c€{c: fle)#0} oce{c:g(c) # 0},

con esto,

{c: (f+9)(c) # 0} He: fle) # 0} Ufe:g(e) # 0},
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debido a que {c: f(c) # 0} y {c¢ : g(c) # 0} son conjuntos finitos, se sigue que,
{c:(f+g)(c) # 0} es un conjunto finito, por ende, f + ¢ es una m-cadena.

Por otro lado, sea ¢ € {c¢: If(c) # 0} = {c: - f(c) # 0}, dado que [f(c) # 0, se
sigue que f(c) # 0, asi ¢ € {c: f(c) # 0} y por ende,

{e:1f(c) # 0} C{c: fle) # 0},

de aqui se sigue que {c: [f(c) # 0} es un conjunto finito, y por ende, [f es una

m-cadena. OJ

Ejemplo 4.6. Sean S,, el conjunto de los m-cubos singulares y ¢ € \S,,, arbitrario,
consideremos ahora a la funcion f,, es claro que el conjunto de m-cubos singulares
donde f. no se anula es {c}, cuya cardinalidad es 1, en otras palabras, es un
conjunto finito, asi, f. es una m-cadena. Diremos que f. es la funcién asociada

a C.

4.3. Frontera de una cadena

Para cada m-cadena f en A definiremos una (m — 1)-cadena en A llamada
la frontera de f y denotada como Jf, para dar la definicién de Jf se requiere

presentar algunos conceptos preliminares.
Definicién 4.3. Para todo m € N, definimos dos (m — 1)-cubos singulares

Iy, Iy 0, 1] — R,

para todo i € {1,2,...,m}, como se explica a continuacién. Dado x € [0, 1]™ 1,

I(TZO)(SE) = (.Z'l, ...,.fCi,l,O,.fCi, ...,l’mfl),

I{Zl)(x) = (‘Tla ey Li—1, 17xi7 ...,Im,1>.
Llamaremos a I}’ (z) la (i, 0)-cara de I y a Ij},)(z) la (i, 1)-cara de I"™.
Definicién 4.4. Definimos a la m — 1-cadena 0I™ : S,,_1 — 7Z como sigue:

OI™ (Iff o)) = (1),
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coni € {1,2,..,

n}y a € {0,1}, asi,

m

oI™ — Z Z(_1>i+af(i,a)>

1

i=1 a=0

donde f(; ) es la funcién asociada a I (o)

107

Ejemplo 4.7. Sea x € R. Las (i,0)-caras y las (i, 1)-caras de I?, con i € {1,2},

son,

luego,

2 1
ZZ D™ fi.a)

i=1 a=
2

Z(

=1

1) )

=(-1)' fao +(=1) +1f(1 y+ (= 1)? Jeo0 + (_1)2+1f(2,1)

—Jfao + fay + feo — fen-
]2
1 @1) 10\
I o) I
0 Iy 1

Figura 4.2: (i,0)-caras y (i, 1)-caras de I?, i € {1,2}
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Ejemplo 4.8. Sea x = (1,79) € R?%. Las (i,0)-caras y las (4, 1)-caras de I, con
i €{1,2,3}, son,

luego,

(=)' fao + (D) oy + (1) fe)
+ (=D)* fon) + (1) a0 + (1) fa
=—fao + fay + feo — fen — feo) + fa-
Definicién 4.5. Para un m-cubo singular arbitrario ¢ : [0, 1]™ — A, definimos la
(7, )-cara, como siguiente composicién,

m

Cli,a) = €C© (I(i,a))’

con o € {0, 1}, notemos que ¢(; ) : [0, 1™ — A, es decir, ¢(; o) es un (m—1)-cubo

singular, luego, la frontera de ¢ esta definida de la siguiente manera,

m 1
dc = Z Z(_l)i+afc<i’a)7

i=1 a=0

. !
con esto, podemos definir la frontera de una m-cadena f =>"._, a;f., como:

l
8f = Z az-@ci.
=1

Ejemplo 4.9. Consideremos al 3-cubo singular dado en el Ejemplo 4.4, para



4.3. FRONTERA DE UNA CADENA

poder encontrar a dc primero debemos encontrar a las (i, a)-caras de ¢, ¢

y a € {0,1}. Tenemos que,

() =( )
1(2,0)(1') =(21,0, 12),
]?2,0)(55) =(z1, 12, 0),
](31,1)($) =(1,z1,22),
](32,1)(1) =(1,1, 12),

() =( )

cao) (@) =(co I ) (@) = (sen(0), B - x1,22) = (0, 5 - 21, 22),
c0)(x) =(co Iq))(x) = (sen(x1), B - 0, 22) = (sen(z1), 0, 22),
c0)(z) =(co [?370))(x) = (sen(z1), 8 - 72,0),
cay(a) =(co If yy)(x) = (sen(1), B - z1, 22),
coy(x) =(co Iy))(x) = (sen(x1), B - 1,22) = (sen(z1), B, 22),
ey () =(co Ii))(x) = (sen(x1), B - @2, 1),
asi,
301
dc = > (1) fo,.,
i=1 a=0
3
S (Vs + 0 )
i=1

=(=1) e + (=D e
+ (1) fope + (1) e
(=1 fepg + (=D fe
=— Jewoy T Jewny T Jewoy = Jewny = Jegoy T Jeny-

Teorema 4.1. Si ¢ es una m-cadena en A, entonces d(dc) = 0.

Demostracién: Sean ¢ un m-cubo singular y 4,j € {1,...,m}. Sin p

generalidad supongamos que ¢ < j. Sea x € [0,1]™72, luego, la (j, 3)-cara de I

109

€ {1,2,3}

érdida de

1,000
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con «, 5 € {0,1}, es,

(IZZQ))o,ﬁ)(I) =1 )(—7(75)1( z))
:I(Tza)(l’l,...,Ij_hﬂ,xj,...,l’m_g)

:(Z)’Jl, ey i1, Q0 T4, ...,[Ej_l,ﬁ,[)’}j, ...,J]m_g),

analogamente, la (i, )-cara de I3} es,

UG1,8) o) (@) =I5 (L7 0y (2))
:[&?76)(1151, ey Li1,0, T4, ..ny LEm_2>

:(1'1, ey i1, 00, T4, ...,l’j,ﬁ,l’j.,_l, ...,ZL‘m_Q),

la ultima igualdad se debe a que la j+ 1 entrada de (z1, ..., 1, @, i, .., Tpy_2) €8

xj, con esto, podemos decir que (I ,)) (.5 = ({{}11,5))(i.0), ademds,

(.00 G8) =Cli.00 (L7 3))
=(c(IGa)) U5 5)
=c(I (I(35)))

((Ga)Gm)

((1 ]—i—lﬂ) o))

=c({{}11,5I(5))

:<C<I(j+1,ﬂ)))([(i,a)l)

=c(+1,6)([}o))

C

=C

=(c(+1.8)) (i.0)»

con esto,



4.3. FRONTERA DE UNA CADENA 111

-1

3

hNgE Eﬁllﬂs Efllﬂs

@
Il
-

<
Il

1
H-Oc—i—j-i-ﬂ
Z Setan) s

M-
™

a=0 j=1 =0
m—1 1 1
_{yitatits
(=1) few.im
7j=1 a=0 =0
m—1

1+0+740 i+0+7+1
[(_1) o f(c(i,O))(j,O) + (_1) o f(c(i,O))ull)
=1

14§40 1441
(=1t f(cu,n)(j,o) + (=) f(c(i,l))@,l)}

+

3

o

i+q ) 1
{(_1) +]f(fiu,o))(j,o) +(-1) o fc(z 0)G.1)
1

+ (_1)i+j+1f(c(i,1))(j,0) + (= 1)Z+j+2f% 1)y, 1)]

1

(2

<.
Il

m m—1 m m—1
z+]+1
Z f(% 0o T Z Z [ feao)in
=1 ]:1 i=1 j=1
m m—1
_1\i+Hi+1 o l+]+2
+( 1) f(6(¢,1))(j,o)} + E : 2 : fc(z DG
=1 j=1

De la igualdad anterior resultaron tres sumandos, primero se trabajara con el
primer sumando, el cual al tener una forma similar al tercer sumando nos ayudara

a demostrarlo y por ultimo se trabajara con el segundo sumando. Tenemos que,

m m—1 m

i+ i+1 i+2
Z Z(_l) ﬂf(ﬂ(i,m)(j,m - Z [(_1) ' feaoman T (=1) ! fewo)eo
i=1 j=1 i=1

o (D) e 10>]
- [<_1)1+1f(0<1,0>)(1,0> + (= )1+2f(<;(1 0)(z0)
+ -+ <_1)1+m_1f(0(1,0>)(m10)}
" {(_1)2+1f(0<270))<1,0> +(-1 )2+2f(0(2 0)(2.0)

24+m—1
+"'+< 1)+ fc(20)(m10):|
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+ [(—1)3+1f(c<3,0))<1,o> + (= )3+2f0<3 )20
T (_1)2+m_1f(0(2’0))(m1,0):| 4ot
i {( )m+1f(0(m 0o T (—1)m+2f(0<m70))(270>

— [f(c(lo) Yo ~ feaoeo T fewneo
+ -+ (_1)mf(c(1,0))(m—1,0)1
+ [—f(c(z,o))u,o) + f(c<2,o>)<z,o> o f(0<2,o>)<3,0>
b D
+ [f(C(s,o))u,o) - f(c<3,0))(2,0> + f(c(3,0>)(3»0>
+ o4 (= )m+2f(0(2o> ) (m— 10)} T
+ {(_1)m+1f(0(m70))(1,0> + (_1)m+2f(c<m,0))(270)

- {f(cu,m)(l,m ~ Jean)nn T eamen T leaoman
o (D fewo)morg T (D™ (%’0))“’“)]
" |:f(c(2v0))(2,0) — fewnlen ~ fewn)sn T feuneo
4t (— )m+1f(c(2 0)im_10) T (—1)m+2f(0<m,0))(2,0)}
et {(_1)2’”—1]‘“(6(%0))”1_1’0) + (—1)2m‘2f<0(m_1,0>)<m_1,0>]

- [f(%m)(lp) ~ feamao ~ feamen T feaneo

et (_1)mf(c(1,0))(m—1,0) - (_1)mf(0(1,0))(m—170)}



4.3. FRONTERA DE UNA CADENA 113

+ {f(c(zo))(z,o) - f(¢(2,0))(2,0) - f(C(z,o))(S,o) + f(c(2,0))(3,0)
m—+1 1
+ooet (_1) - f(c(2,0))(m71,0) - (_1>m+ f(C(Q,O))(ml,O):|

2m—2 2m—2
+ot {_(_1) f(c(m,()))(mfl,o) + (_1) f(c(mLo))(ml,O)}

=0.

La demostracién de que,

m—1

i+j+2
Z (=1) a f(c(i,l))(j,l) =0,

i=1 j=1

es analoga a la demostracién realizada anteriormente. Ahora solo resta trabajar
con el segundo sumando, para esto, recordemos que (C(a))8) = (C(G+1,8))6.a);

solo cuando i < j, asi,

m m—1

i+j+1 ) 1
Z |:(_1) A f(c(i,o))(j,l) + ( 1) SEA fc(z 1) (5,0)
=1

i=1 j

3

i+141 i+141
= Z |:(_]‘) A f(c(i,o))(l,l) + (_]‘) A f(C(i,l))(l,O)

i=1

2+1 2+1
1)Z+ * fC@O) (2 1) _I—( 1)Z+ * fC(z 1) (2,0)

(-
i+3+1 i+3+1
( 1)++fc(10) (31)+( 1)++fc(zl) (30)

iy <_1)i+m71+1f(c(i,0))(m—1,1) + <_1)i+m1+1f(0(i,1))(m—1,0)]

+ o+

1+2 142
( ) - f(c(l 0))(1,1) + (_1) " f(C(l,l))(l,o)

( 1)1+3f (c(1,0))(2,1) +( 1)1+3f ))(2,0)
1+4 1+4
(_1) - f(6(1,0))(3,1) + (_1> " f(c(l,l))<370)

m+1 m
iy ( ) * fc(l 0))(m—1,1) + (_1) +lf(C(1,1))(m—1,0):|

1

+ o+

" |:<_1)2+2f(c(2,0))(1,1) + (_1)2+2f(6(2,1>)<1,0>

2+3 243

+ (_1> - f(C(z,o))(z,U + (_1) i f(c(2,1))<2,0)
2+4 244

+ (_1) - f(¢(2,0))(3,1) + (_1) * f(¢(2,1))(3,0)
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m—+2 m—+2
+eeet <_1) - f(C(2,o))(m71,1) + (_1> * f(c(2,1))(m1,0):|

3+2 342
+ [(_1) * f(C(g,o))(1,1) +( ) * f(C(B 1))(1,0)

343 3+3

+ (_1) - f(C(a,o))(2,1) +( 1) * fc(31 ))(2,0)
3+4 3+4

+ (_1) - f(C(g,o))(:a,n +( 1) " fc(d 1))(3,0)

+ -+ ( )m+3f (¢(3,0)) (m—1,1) + (_1>m+3f(0(3,1))(m—1,0):|

m m+2
S [(_1) +2f(0(m70))(1»1) + (=1)™* f(C(n,1))(1,o)

m+3 m+3

+ (_1) * f(c(i,()))(Q,l) + ( ) " fc(m 1))(2,0)
m+4 m+4

+ (_1) - f(c(m,o))<3,1) + (_1) - f(C(m,l))(s,o)

+eee <_1)m+mf(c(m,0))(m—1,1) + <_1)m+mf(c(m,1))(m—1,0):|

= [_f(cu,o))(l,l) - f(C(1,1))<1,o) + f(C(l,o))(2,1) + f(6<1,1))(2,o)
m+1
- f(C(Lo))(g,l) - f(0(1,1))(3,0) +ot (_1) f(c(l,()))(mfl,l)

1
+ (_1)m+ f(C(1,1))(m1,0):|

+ |:f(0<2,0))(1,1) + f(C(2,1))(1,0) - f(¢(2,0))(2,1) - f(0(2,1))(2,0)
m+2
+ f(C(Q,O))(ii,l) _l_ f(C(271))(3,0) + e + (_1) * f(c(2,0))(m—1,1)

+ ( )m+2f C(2 1) (m—1 0):|

+ |: f(c(a 0) (1,1) f(c(s 1) (1,0) + f c(3 0) (2,1) + f C(3 1))(2 0)
— 4 e ()
(0(3,0))(3,1) (0(3,1))(3,0) (0(3,0))(m71,1)

m-+3
) <]

m-+2
+ .+ {(—1) + f(C(m,o))(1,1)+

(_1)m+2f(6(m,1))(1,0) + ( )m+3f (¢(m,0))(2,1)
m m—+4
+ <_1) Jr?"]C(C(m,l))(z,o) + (_ ) " f(c(m’0>)(3,1)
+ (_1)m+4f(c(m,1))<3,0) +-o (_1)2mf(c(m,0))(m71,1)

2m—1
+ (_1) f(c(m,l))(ml,o):|
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=~ feaman T feenan ~ feaman T fewonan
tfeamen ~ Tesnan T feamen = fesoan
+oot (_1)m+1f(0(1,0>)<m—1,1) + (_1)m+2f(c<m,1))(1,0>
+ (- )me (ctn)m-r0) T (_1)m+2f(c(m,0))(1,1)
~ feamen T fewmen ~ feen)eo T fesmen
+ o+ (D™ fepoiman T (D™ fewm)oo
+ (_1)m+2f(c(2,1))(m71,0) + (-1 )m+3f(0<m,o>)(2,l>
+o A (D" e T D femo i
+ (_1)2m_1f(0<m71,0))<m71,1) + (_]‘)me(c(m,l))(m*l,o)
~ feenan T feeman = feemany T fewnan
+ fewman = feanan T feenan = fesmany
+oee ( )me (e(m,1)),00 ( )meC(m 1))(1,0)
+ (= )me (C(m,0))(1,1) (— )me (e(m,0))(1,1)
~ Jeemeo T fesnen ~ fesn)en T fesoen
+ot (_1)m+2f(0(m,1>)<2,0) - (_1)m+2f(0(m,1>)(2,0>
+ (_1)m+2f(0(m,0))<2,1> - (_1)m+2f(0<m,o>)<2,1>
+-e-t (—1)2m_1f(c(m,0))(m71,1) - (_]‘)2m_1f(c(m,0))(mfl,1)

2m— 2m—
+ (_1) lf(C(m,1))(m—1,0) - (_1) 1f(C(m,1))(m—1,0)
=0.

De aqui se concluye que 0(0c) = 0. Sea una m-cadena f = 22:1 a; f.,, luego,

o(0f) =0 (i aiacZ)

i=1

l
= Z ala(acl)
i=1
l
= Z a; - 0
=1

=0.

Por lo tanto, queda demostrado el teorema. O
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4.4. Integracion sobre cubos singulares

A partir de aqui solo se trabajard con k-cubos singulares diferenciables. Sea w

una k-forma en [0, 1]%, con k € N, luego,

1
- Z Z Z Wiy jia,..., dle AN dl’zk

i1=1142>11 T >t —1

kdxl VANRRIIVAY dSCk,

.....

para fines practicos denotaremos a w2 ; como g.

-----

Definicién 4.6. Definimos la integral de una k-forma w sobre [0, 1]* como sigue,

/ w —/ gdxy A\ -+ Ndxy
[0,1]F [0,1]F

—/[ ]kg(asl,..., x)dry - - - dry.
0,1

Ejemplo 4.10. Sea la 3-forma definida como sigue
w = (2x1 + sen(xy) + €")dxy A dag A das,

luego,

Jos®

/ 21:1 + sen(xq) + €%)dxy A dxy A das
11 J[0,1]

1 1
/ / 2xq + sen(xq) + €72)dx drodrs
o Jo

1 oply9,2
/ Z 1 1 sen (zy)x) + €” x1>
0 2

1 1
/ (1 + sen(zy) + € 3)d:c2d:c3
0

1
(wg — cos(w2) + e%ay) |} das

1

S~

1

dSCQdLUg
0

1
(1 — cos(1) + cos(0) + €™®)dzxs

I
S— — — S— —

1
(2 —cos(1) + e")dxs

[(2 — cos(1))as + e



4.4. INTEGRACION SOBRE CUBOS SINGULARES 117

=2 —cos(1) +e' —€°
=1 —cos(1) +e.

Definicién 4.7. Si w es una k-forma sobre A C R* y ¢ es un k-cubo singular

sobre A, definimos la integral de w sobre ¢ como sigue,

/w = / cfw.
c [0,1]F

En particular, cuando w es una 0—forma y ¢ : {0} — A es un 0-cubo singular

la integral de w sobre ¢ se define de la siguiente manera,

JEEECO)

Otro caso particular ocurre cuando consideramos la integral de una k-forma w de

R* sobre el k-cubo estdndar I* : [0, 1]* — R¥, cuyo resultado es el siguiente,

/ w:/ gd:cl/\"'/\dxk:/ (I")*(gdzy A - -+ A dxy), (4.2)
Ik Ik [0,1]%

por Teorema 3.3, tenemos la siguiente igualdad:

/[Ol]k(lk)*(gdxl A Ndg) = / (g0 Idet((I*))day A -+ Adzy.  (4.3)

[0,1]

Primero demostraremos que g o I¥ = g y posteriormente encontraremos el valor
de det((I*)").
Sea (z1, ..., 1) € [0,1]%, luego,

(go ]k)(xl, ey TE) = g(]k(atl, o Tr)) = g(x1, oy T8), (4.4)

con esto, go I* = g. Por otro lado, recordemos que I*(xy, ..., 1) = (x4, ..., 1), por
ende, I¥ = x;, para todo i € {1, ..., k}, asi,
DyIF DoIF .. DyI* 10 - 0
D.I¥ DIt ... DIk o1 --- 0
ay =170 7" e

DiIF DoIF - DIk 00 - 1
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Es facil ver que det((I*)") = 1, de (4.2), (4.3) y (4.4) se concluye que
/ ([k)*<gdx1/\"'/\d$k) :/ gdxy A - Ndxy
[0,1]% [0,1]%

:/ kg(:vl,...,xk)dxl---d$k.
[0,1]

Ejemplo 4.11. Tomemos a la 3-forma dada en el Ejemplo 4.10, y al 3-cubo

singular dado en el Ejemplo 4.4, luego, aplicando Teorema 3.3

/w :/ c*w
c [0,1]3
:/ ¢ <gda:1 A dxy N\ dxg,)
(0,13

:/ (g o c)det(c)dxy N dwy A das
[0,1]3

—/ / / (2sen(z1) + sen(aws) + ™) det(c')dz dzodrs,
[0,1] J[0,1] /[0,1]

tenemos que,

cos(z1) 0 O
Cl - 0 a 0 9
0 0 1

asi, det(c’) = acos(xy), con esto,

/ / / (2sen(zy) + sen(aws) + €™ )det(c")dx drodrs
0.1] /(0,1 J[0,1]

:/ / / (2sen(xy) 4 sen(aws) + €2)a cos(x)drdradrs
0,1] J[0,1] J{0,1]

a/ / / (2sen (1) cos(xy) + sen(awy) cos(xy) + €2 cos(x1))drydradrs
0,1 J[0,1]

a/ / / sen(2x1) + sen(awxs) cos(xy) + € cos(xq))dr dradrs
[0,1] J[0,1]

1
d$2d$3
0

a/ / ( cos(l) | 1 —|— sen(axsg)sen(1l) + e“sen(l)) dxadxs
[0,1] J10,1]

—a / 1}(( cos( )xg—cos(ozxg)sen(l)—i—exgsen(l)xQ) 1

=

a/ cos(a:l + sen(axg)sen(zq) + e“sen(xl))
RIRARY 2

dxg
0

O
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= /[071] (_0082(1) + % — cos(a)sen(1) + sen(1) + exSSen(1)> drs
)

_ a((—coz(l + = — cos(a)sen(1) + sen(l))xg + e%enu))

1

0

—a (_COS(D + L cos(a)sen(1) + sen(1) + e'sen(1) — sen(l))

—a (—COZ(” + % — cos(a)sen(1) + esen(l)).

4.5. Integracion sobre cadenas

Definiciéon 4.8. Sea f = Zizl a; f., una k-cadena. La integral de una k-forma w

l
Je=Ya[w
f i=1 Cq

Ejemplo 4.12. Sean la 2-cadena f y la 2-forma w en [0, 1]? dadas como sigue,

sobre f se define por,

w =(z1 — x9)dxy A dzs,

f :5fC1 + fCQ - 9f637
donde, g(z1,29) =21 — 22y

Cl($1,$2) :(561 + 9, To — 551),
Co(x1, T2) =(2122, T2 — 2),

03(1317$2) :@2,%1)‘

Asi

/w:5/w+/w—9/w
f c1 c2 c3
:5/ c*{w+/ c§w—9/ Caw
[0,1)2 [0,1)2 [0,1]

:5/ (g 0 cr)det(c))dzy A dy + / (g o co)det(cy)dxy N dxs
[0,1)2

[0,1]2

— 9/ (g o c3)det(cy)dxy A dia,
[0,1]2
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tenemos que,

, 1 1 , To T
det(cy) = =2, det(cy) = -
-1 1 0 1 10

luego,
/w :10/ (gocy)dry Ndxs + / (g 0 co)zadry N dxs
f [0,1]2 [0,1]2
+9/ (g oc3)dzy A dzy
[0,1]2
:10/ QZCldIldl'Q + / (ZL’l.IQ — To + 2)I2d$1dl’2
[0,1]2

[0,1]?

+ 9/ (I’Q - .CCl)dl'ldﬂl’Q
[0,1]?

:20/ / r1dridry +/ / (2123 — 23 4 225)dw1dTy
[0,1] J0,1] [0,1] J[0,1]
+ 9/ / (IQ — ZL’l)dLUId.IQ
(0,11 J[0,1]
227 x?
:20/ {—1} dxo —|—/ (m%—l — (a:% + ng)ml)
o1 L2 1o 0.1] 2
1
-+ 9/ (.Tgl'l — ﬂ) dl’g
0.1] 2 /1o
1 2
:20/ —dxo —|—/ (ﬂ — x% + 2x2> dzs
0.1] 2 o)\ 2
1
+ 9/ (372 - —) dl’g
0.1] 2
1 2
5 1
(=22 _Z
(5 )

3 2
= 102y + (—ﬁ + Qﬁ>

1

dIL‘Q
0

6 2 .
:10—1+1+9(1—1)
6 2 2
65
==

Definicién 4.9. La integral de una 1-forma en R? sobre un 1-cubo singular en

R? de es llamada integral de linea.

Sean ¢ : [0,1] — R? un 1-cubo singular dado como sigue, c(t) = (c1(t), (1)),
para todo t € [0,1], y Pdr; + Qdzs una 1-forma de R?, donde P,Q : R?* — R,
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entonces, por 2) y 3) del Teorema 3.2,

/[Pdl’l + le’z] = /1 C*[Pdl‘l + le’g]
:/0 [¢*(Pdzy) + ¢*(Qdxs)]
- / (P oc)e*(dn) + (Q o o) (),

notemos que ¢ solo depende de la variable ¢, asi, por Teorema 3.2, 1) se cumple

la siguiente igualdad,

andlogamente,
¢*(das) = %dt,
con esto,
/C (Pday + Qds] /0 1 :(p o c)%dt Qo c)%dt}
:/01 :(Poc)%—i— (ro)%]dt
= [ e + oty 40
- [ et aetn - (150,40

considerando al campo vectorial F' = (P, @), se sigue que:

[ pteon. e (D Yar— [ retn) - G

Con esto,

dc

/C[del + Qdzsy] = /01 F(c(t)) - Edt‘

Anélogamente a la Definicién 4.9, podemos dar la relacion entre la integral de
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superficie e integrales sobre formas.

Definicién 4.10. A la integral de una 2-forma sobre un 2-cubo en R? singular es

llamada integral de superficies.

Sean la 2-forma w = Pdz; A dwy + Qdxy A dxs + Rdxs A dws de R? y el 2-cubo

singular ¢ : [0, 1] — R? dado como sigue,
C(u7 U) - (Cl (U’7 U)7 CQ(U, U)7 C3 (U, U))u

luego,

[

/|:PdZL‘1 VAN diEQ + QdIl VAN dZEg + RdZEQ A dx3:|

/ c* |:Pd.1'1 A dl’Q + Qd.Tl N deg + Rdl‘Q AN dl‘g}
[0,1]2

o

[
/[01]2 (P o C)C*<d$1) A c*(dl’g) + (Q o C)C*(dl’l) A C*(dxg)

c*(Pdxy A dxg) + ¢ (Qdxy A dxs) + ¢*(Rdxa A dl’g):|

(Poc)c*(dry Adxg) + (Q o c)c*(dxy Adxz) + (Roc¢)c*(dey A d$3):|

(=]

71]2

+

Roc)c*(dxs) A C*(dl’g):|

= o {(P oc) (%du + %dv) A (%du + %dv)

+(Qoc) (%%du + %dv) A (%du + %%dv)
+mo@@%m+%m)A@%m+%wﬂ

= /{071]2 {(P oc) (%%du A du + %%du A dv + %%dv A du
+ %%dv A dv>

+(Qoc) (%%L;du A du+ Z3 %8 duy A do + G298 do A du+ G2 %3 dv A dv>

+mwm%%MAm+%%MAm+%%MAM+%%MAMH
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_/ (Poc)| %L%2du A dv— %292 du A dv
[0,1]

+ (QOC) (301 503du/\d,u 861 803du/\dv>

+ (Roc) (%%du/\dv — %%du/\ dv)]

= [l oo - )anar @oo (8% - 54 Jane
+<Roc)(%%—%%)du/\dv}

R e |

— — .| Oc2dcs _ Ocp Jez Deq Oez _ ex Deg
—/[01}2(ROC’ Qoc,Poc) <au v Bv Ou’ Ov Bu  Bu Ov’

Oc1 dca _ Oc1 Dey
ou Ov ov 6u>du A dv

:/[OHQ(R(C(U,U)%—Q(C(u,v)),P(c(u,v))). (%% e 0 0e 0o

ey ey _ Ocy Ocp
ou Ov ov 6u)dUdv’

sea el campo vectorial F' = (R, —Q, P), luego,

F(e(u,v)) = (R(e(u, v)), =Q(c(u, v)), P(c(u, v))),

por otro lado, dado que la imagen de ¢ es una superficie, podemos encontrar al

vector normal de dicha superficie como sigue,

dc o 4. dcy %) % <aC1 dcy aﬁ)

. a.. uw’ Odu’ Ou v’ Jv’ Ov
90" Do =(5=, 32, v v O
1 J k
—|8c1  Odcy  Ocz
ou ou ou
91 dcp  Ocs

ov v v

dca Oca e Ocs O Oc
=1 ou ou | ] ou ou + k ou ou

dca Oca Oc1 Ocg der ey

ov ov ov ov v ov
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_;(dcadcs _ dep ez _ (dc1 deg _ dcy Deg [.(9c1 dca _ D1 Dez
_l( Ou Ov ov Bu) j(au ov ov Bu)+k(au ov ov 8u>
Oco Oc,

5 O 3 602 863 acl 803 acl 663 acl 662 661 662)

:(%W ov Ou’ Ov Ou ou Ov’ Ou v ov Ou /)’

asi,

/Cw _ /W Fle(u,v)) - 7,

lo cual coincide con la Definicién 1.22.

4.6. Teorema de Stokes

Teorema 4.2. (Teorema de Stokes) Si w es una (k — 1)-forma en un conjunto

abierto A C R* y f es una k-cadena en A, entonces:

/dw:/w
f of

Demostracién: Sean ¢ = I* y w una (k—1)-forma en R*, podemos ver a w como

sigue,

W = E wi17_”7¢k71d$i1 VANEIIAN dl'ik71
11 <t2<-<lp_1
k—(k—1-1) k—(k—1-2)

S JHD SIS DRSS

i1=1 19>11 lp—1>0k—2
= E g E Wiy g ATy N Ndzy,
i1=1142>1 Ig—1>igp_2

apoyandonos del Ejemplo 3.3, podemos decir que w es el resultado de sumar

(k — 1)-formas del siguiente tipo:
Wi, pordzy A Adag A A da,

recordemos que el simbolo ~ sobre dx; significa que este tltimo serd omitido, para
todoi € {1,...,k—1}, asi, es suficiente demostrar el Teorema para cada uno de los
elementos de la suma. Primero encontraremos la integral de un sumando arbitrario

sobre I@’a), conje{l,...k—1}y a€{0,1}, para fines practicos denotaremos a
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Wiy ...ix_, COMO g, con esto,

/ gdxl/\---/\cfzfi/\---/\dxkz/ (IE o) (gdy A+ Aday A -+ Ady),
Ik [0,1]%—1
(J,2)

luego, por 3) del Teorema 3.2, se cumple que,

/[]k (I(]a)) (gdxy A -- /\J@/\---Admk)
0,1]k—1

:/ (g0 1% ) (I ) (dzy A+ Ady A Aday),
[0 1]k—1
por tltimo, aplicando 4) del Teorema 3.2, se tiene la siguiente igualdad:

/[Ol]k (g0 I ) Ih) (do A A dag A A day)

—

— /[()1]k—1(g ) I(kj’a))(]&a))*(dxl) A-ee A U(kj,a))*(d%) A A (I(kj,a))*(da?k),

para poder trabajar con la integral anterior, encontraremos una igualdad para

k
G
I(j o) estd definida de la siguiente manera, dado (21, ..., 211) € [0, 1]*7L,

)*(dz,,), donde m € {1,...,k}\{i}, para esto recordaremos que la funcién

(16 ) (@11 s Bhmt) = (1, e T, 0, Ty o W),

= Si j # i, tenemos que,

k—1
(I(]a dl‘] ZDZ I(]a d!L‘l ZDl d(L‘l ZOCZ!L‘Z =0
l=1

recordemos que O denota a la forma diferencial nula, con la igualdad anterior

se sigue que,

/[0 1}k1(,aolé“j,a))(1&’3-,&))*(darl) Neee NG ) (dg) Ao A (IE ) (day)
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/[0,1]k1(g 0 LGa)

0,1]5-1

=0.

» Sii=j, entonces para todo m € {1,...,k — 1}\{i}:

(](Ja) (dzm) ZDl (o) Jmdt

=dz,,.
Asi:
/w—l(g © i) (I (d) A A (I ) () A= A (I )" ()
:/ <gOI a))d$1/\~'-/\@/\.../\dxk
[0,1]+-1 U,

(go I(kj,a))(l"la ey T )dxy - - d/g?z coday,

I
8\
:':. -

x>
L

:/ ]k: 1<g<](kj7a)(x17"'7Ik—1)dm1"-dxi...dxk
0,1]F—

:/ g(a:l,...,a,...,xk,l)dxl'--cj\xi~-dxk.
[0 1]k 1

Por lo tanto,

/ gdxl/\.../\gx\i/\.../\dxk
oIk

(—1)j+a gdl’l/\”'/\(jﬂ?i/\‘“/\dxk

M-
M-

\

=~
ﬂ‘
Q

=

(J a)

=l

(—1)7+e (](kj’a))*(gdxl /\"'/\Ciﬂb\’i/\"'/\d:(:k)

1}k—1

I
Eond
- 1M~
I
Q
i
o
S

(—1)i+a/ g(xl,...,a,...,xk_l)dxl...jl\wi...dxk
[0,1]k—1

a=0
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:(—1)”1/ g(xl,...,l,...,xk_l)dxl---c?:(?i---dxk
[0,1]F—1
(4.5)
+(—1)i/ G(@1, 0, ooy )y - - - Ay - - - diz.
[0,1]F~1

Debido a que g(z1,...,1,...,2x-1) ¥ g(1,...,0,...,2,_1) son funciones constantes
respecto a la variable z; se cumple lo siguiente:
! 1
/ g(z1, .., 1, wp)dy; = gz, ., 1w ) (20) ]
0

=g(x1, .., 1, o, xp—1)[1 = 0]

=g(x1, .., 1, ., 1),

1
/ g(x1, ., 0,y g )dr; =g(xq, .., 0, ooy 1 ).
0

(4.6)

Este razonamiento se usard de nuevo més adelante. Sustituyendo (4.6) en (4.5) y

aplicando el Teorema 1.16,
/ gdxl/\-u/\jg?i/\.../\dxk
oIk
1
:(_1)1+1/ ) / 9(3717-"717"'7xk71)d$id-1'1"'dxi"-dxk
[0,1]%=1 Jo
1
+(_1)Z/ . / 9(3317""07""xk—l>dmidﬂ31"'dﬂfi"'dl‘k
[0,1)k=1 Jo
(0,1]

—i—(—l)i/ g(x1,...,0, .., xp_1)dzy - - - dy,.
[0,1]%

Por otro lado,

/ dgdzy A -+ Ndag A+ Aday, = (I*Vd(gday A -+ ANda; A A day)
Ik

1]k

dgday A - Adz A+ A doy
1]
k—1
Zngd:(:j/\dxl/\~~~/\dxi/\~~~/\da:k
j=1

Il

1]k
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= Digda; Aday A - Adzy A -+ A day

[0,1]%
=(—1)"" ) Dig(z1, ..., xx)dxy - - - dy.
[0,1]

Por el Teorema 1.16 se cumple que,

0,1]*
:(—1)1_1/ (/ ng(Il,,{Bk)dl},)fL‘ldl‘ZdiCk,
0 0
(4.9)

luego, por el Teorema 1.17 se tiene la siguiente igualdad,

1 1
(_1)i1/ (/ Dig(:cl,...,xk)d:ci>3;1...dxl....dxk
0 0
—(—1)"~ 1/ / (1, .00y 1y oy )
acl,..., s

(4.10)

Notemos que (—1)1 = (=1)", asi, por (4.7), (4.8), (4.9) y (4.10) se tiene que:

/ gdxl/\---/\dxk:/dgdxl/\---/\dxk,
oIk I*
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luego, considerando a la (k — 1)-forma dada al inicio de la demostracién, se tiene

que:

/ w _/ Wiy, ..., ik71dl‘i1 AREE
oIk ork

i1 <12< <ip_1

- E : / Wiy,..., dx%l
oIk

11 <tg<-<tp_1

— Z /1 ) dwi, .. i, dzi N

11 <t <-<lp_1

/ Z dw;, ... _dxi, N

Z1 <12< <Zk 1

:/ dw.
Ik

A dl‘ik71

AN dl’ik71

AN dl’ik_l

AN dl’ik71

(4.11)

La igualdad anterior se cumple cuando tomamos ¢ = I*, consideramos a ¢ como

un k-cubo singular arbitrario.

/dw—/ *(dw)
0,1

- /[ L)

:/I;C*(dw).

Por otro lado, usando Teorema 3.2, 5)

/a,;u—zz

Tenemos que:

i=1 a=0 C(i,)

_ H—a

- i,a
i=1 a—O [0,1)+~1
k 1
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i=1 a=0 (i,c) (4.12)

luego, por Teorema 3.4, 4), (4.11) y (4.12) se cumple lo siguiente,

[ @)= [ daew)
_ /6 L
ye

Por tltimo, si tomamos una k-cadena arbitraria f = 3°'_ a,f., y una (k—1)-forma

1
/dw :Zai/ dw
f i=1 Cq
1
= Z a; w
i=1

dc;
- / o.
af

Por lo tanto, se da por demostrado el teorema. O]

w, se concluye que,



Capitulo 5

Variedades en R"

En este capitulo se introducira el concepto de variedades. La importancia de
este concepto, junto con sus relacionados, radica en las aplicaciones que se mos-

traran en el ultimo capitulo de esta tesis.

5.1. Variedades

Definicién 5.1. Sean U,V conjuntos abiertos de R" y h : U — V. Diremos que h

es un difeomorfismo si es diferenciable y tiene inversa diferenciable A=t : V — U.

Definicién 5.2. Sean n,k € Ny M C R". El subconjunto M es llamado varie-
dad de dimensién k si para cada punto x € M se cumple que:
(M) Existen un conjunto abierto U que contiene a x, un conjunto abierto V' C R"

y un difeomorfismo h : U — V tal que

h(UNM) =V (R x {0},_1)
={yeV iy ==y, =0}

donde {0},,_ denota al conjunto cuyo tnico elemento es el vector nulo de R"*. Si

k = n, se denotard a R" x {0} como R™. Cuando n = 0, se tendrd que R® = {0},.

Ejemplo 5.1. M = {zo} C R" es una variedad de dimensién 0 de R™.
Debido a que xy € R", existe algin abierto U tal quex € U C R". Sea h : U — R"

dada como sigue,
h(z) =z — xo.

131



132 CAPITULO 5. VARIEDADES EN R"

Primero se demostrara que h es continuamente diferenciable en xy y posterior-
mente se demostrara que es un difeomorfismo.
Tenemos que,

1, sii=y,

Djhi(z) =
0, si otro caso,

luego, D;h;(x) existe para toda x € U, ademds, dado que D,h;(x) es constante,
para todo i,7 € {1,...,n}, se sigue que es continua en xy, por Teorema 1.11,

podemos asegurar que h es continuamente diferenciable en xq. Por otro lado,

h(x) =2 —xo = (21 — (T0)1, - Tn — (T0)n),

luego,
10 0
o1 - 0
h,(SBO) = )
0 0 1

lo que implica que det(h'(xg)) = 1 # 0. Con lo anterior visto y por Teorema 1.12,
existen conjuntos abiertos V, W C R™ tales que g € V, h(zg) e Wy h: V — W
tiene inversa continua y diferenciable h=' : W — V, en otras palabras, h es un

difeomorfismo, asi,

(VO M) =h(V N{xe})
=h({zo})

={h(zo)}
:{O}n cw,

adicionalmente, {0},, = {0}ox {0}, = R x {0}, asi, ,(VNM) C WN(R®x {0},).
Sea z € W N (R x {0},), luego, h™'(z) € V, debido a que h es sobreyectiva y
z =0, se concluye que h™1(2) = g, con esto, h™'(2) € VN M, lo que implica que
z € h(VNM), asi, WN(R®x {0},) C h(VNM). Con esto,

h(VAM)=Wn(R"x{0},).
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Con lo cual, M es una variedad de dimensién 0 en R"™.

Ejemplo 5.2. Todo conjunto abierto de R™ es una variedad de dimensién n en
R".
Sean un conjunto abierto A C R" y zy € A, luego, existe algiin r > 0 tal que
B(zg,r) C A. Definamos a h : B(zg,r) — B(0,1) dada por,

r — X9

h(z) = :

r

Se demostrara que h es invertible y que es un difeomorfismo. Sean y, z € B(zg, 1),

supongamos que h(z) = h(y), es decir,

Z—Xo Yy — o

bl

r r

lo que implica que z — xyg = y — g, y por ende, z = y, con esto, h es inyectiva.

Sea ahora z € B(0,1), esto implica que ||z| < 1, asi,

|z = (rz + mo)[| =||z0 — rz — zo||
=|| —rz]
=r|z||
<r-1

:’)"’

con esto, 7z + x¢ € B(xg,r), por consiguiente,

con esto se concluye que h es sobreyectiva. Asi, h es biyectiva, por lo tanto, h es

<x1—§x0)1’ . $n—r(r$0)n)

invertible. Tenemos que, h(z) = , luego

1 P .
= sit=
T” )

0, si otro caso,

luego, Djh;(x) existe para toda x € B(zg,r), ademds, dado que D,h;(z) es
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constante, para todo i,7 € {1,...,n}, se sigue que es continua en z’, para to-
do ' € B(xg,r), por Teorema 1.11, podemos asegurar que h es continuamente
diferenciable, andlogamente, h™*(y) = ry + zo = (ry1 + (2o)1, -, TYn + (To)n),
luego,

r, sii=7,

D;(h™Y)ily) = _
0, si otro caso,

asi, existe D;(h™);(y), para todo y € B(0,1), ademés, dado que para todo
i,j € {1,...,n} se tiene que D;(h™!);(x) es constante, se sigue que es continua
en y/, para todo y' € B(0,1), por Teorema 1.11, podemos asegurar que h~' es
continuamente diferenciable, y por ende, h y h~! son diferenciables y por ende h

es un difeomorfismo, ademas,

h(B(xqg,r) N A) =h(B(xg,7))

Se concluye que A es una variedad de dimensién n de R™.

Ejemplo 5.3. M = {(x,7) : * € R} es una variedad de dimensién 1 de R2.
Sea (z,r) € M, luego, existe algin abierto U tal que (x,z) € U C R2 Sea
h : U — R? dada como sigue,

h(a:,y) = ('T7y - 'T)

Primero se demostrara que h es continuamente diferenciable en (x, z) y posterior-
mente se demostrara que es un difeomorfismo.

Tenemos que,

1, sit=j,
Djhi(z,y) =< —1, sii=2yj=1,
0, si otro caso,

luego, D;h;(z) existe para toda z € U, ademas, dado que D;h; es constante, para
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todo 4, j € {1,2}, se sigue que es continua en (z',y'), para todo (2',y') € U, por
Teorema 1.11, podemos asegurar que h es continuamente diferenciable en (z, x).

Por otro lado,

asi, det(h'(xz,x)) = 1 # 0. Con lo anterior y por Teorema 1.12, existen conjuntos
abiertos V, W C R? tales que (z,z) € V, h(z,z) = (2,00 e W yh:V - W
tiene inversa continua y diferenciable h=' : W — V, en otras palabras, h es un

difeomorfismo, asi,

h(VNOM)=h({(z,2) : z€ RA(2,2) € V})
={h(z,2): 2z € RA(2,2) e V}
={(2,0) : (2,0) e W Az € R}
CW N (R x {0}1).

Sea (z,0) € W N (R x {0};), luego, h™*(2,0) € V, debido a que h es sobreyectiva
y 2z —z = 0, se concluye que h™(z,0) = (2, z), con esto, h~1(z,0) € VN M, luego,
(2,0) € (VN M), asi,

WN(Rx{0};) Ch(VnM).
Con esto,
R(VOM)=WnN(R x{0}).

Con lo cual, M es una variedad de dimensién 1 en R2.

Teorema 5.1. Sea A C R"” un conjunto abierto y sea g : A — RP una funcién
diferenciable tal que ¢’(z) tiene rango p siempre que g(z) = (0, ...,0), con n,p € N

y p < n, entonces, g1 (0) es una variedad de dimensién (n — p) en R™.

Demostracién: Sean A C R™ un conjunto abiertoy g : A — RP una funcién
diferenciable. Sea x € g~*(0), por hipétesis se cumple que ¢'(x) tiene rango p, asi,
por el Teorema 1.13, existen conjuntos abiertos U, W C R" que contiene a z y

una funcién diferenciable h : W — U con inversa f diferenciable (es decir, f es
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un difeomorfismo) tal que

(goh)(y) =(goh)(yi, -, Yn)

:(yn—p+1> ey Un),

para todo y € W. Sea z € U N g~1(0), luego, g(z) =0y f(z) € W, asi,
0=yg(2) = g(h(f(2))) = (g0 h)(f(2)) =(f(2)n—ps1, - [(2)n),
por ende, f(z); =0, para todoi € {n —p+1,...,n}. Con esto,
f(z) e WN (R x {0},),
lo cual implica la siguiente contencién,
FUNg™(0)) C W N (R™ x {0},).

Sea ahora z € W N (R"P x {0},), luego,

por otro lado,

9(f71(2)) = g(h(2)) = (g 0 W) (2) =(2n—ps1, -, 20) =0,

ast, f71(z) € g71(0), con esto, f~1(z) € UN g '(0) lo que significa que z es un
elemento de f(U N g~1(0)), asi, W N (R** x {0},) C f(UNg*0)), con lo que
implica la siguiente igualdad: f(U Ng~(0)) = W N (R"? x {0},). Con esto, se

concluye que g~'(0) es una variedad de dimensién n — p en R™. O

5.2. Sistema coordenado

Teorema 5.2. Sean n,k € N, con £ < n. Un subconjunto M de R" es una
variedad de dimension k si y solo si para cada x € M las siguientes condiciones
coordenadas se cumplen:

(C) Existe un conjunto abierto U que contiene a z, un conjunto abierto W C R,

y una funcién inyectiva y diferenciable f : W — R" tales que,
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1) fW)=MnU.
2) f'(y) tiene rango k para cada y € W,
3) f71: f(W) — W es continua.
f es llamada sistema coordenado alrededor de z.

Demostracion:
Supongamos que M C R" es una variedad de dimension k, luego, para cada z € M
existen un conjunto abierto U que contiene a x, un conjunto abierto V" C R™ y un

difeomorfismo h : U — V tal que

MUNM) =V N (R* x {0},-1)
={y eV igp ==y =0}
Sea W = {a € R* : (a,0) € h(M)}, notemos que 0 denota al vector nulo de
R"* vy definamos f : W — R" como sigue, f(a) = h™*(a,0). En este caso 0
denota al vector nulo de R"~*. Notemos que f~!' = h, dado que h es una funcién

diferenciable, entonces es continua y por lo tanto, también f~! lo es, con esto, se

cumple 3). Por otro lado,

fOV) ={f(a) : a € R* A (a,0) € h(M)}
={h*(a,0) : (a,0) € (M) C V}
=MnNnU.

Se cumple 1). Sea H : U — R* definida como sigue,
H(2) = (h1(2), ..., hi(2)),

dado y € W se cumple que

H(f(y)) =(ha(f(@));-s he(f(y)))
=(hi(h™'(y,0)), ., hi (71 (y,0))
=(Y1, - Yk)
=Y,

con esto, (H(f(y)))" = (y)', luego, H'(f(y)) - f'(y) = I, dado que f'(y) es una
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matriz invertible, por Teorema 1.5, se concluye que tiene rango k, con esto se
cumple 2) y por ende se cumple (C).

Reciprocamente, supongamos que para todo © € M C R™ se cumple (C). Sea
xr € M, asi, existe un conjunto abierto U que contiene a x, un conjunto abierto

W C R*, y una funcién inyectiva y diferenciable f : W — R" tales que,
1) fW)=MnU.
2) f'(y) tiene rango k, para cada y € W.
3) f71: f(W) — W es continua.

debido a que x € U y x € M, se cumple que x € M NU = f(W) por 1) de las
hipétesis, asi, existe algin y € W tal que = = f(y). Supongamos que la matriz
(D;fi(y)), con i,j5 € {1,...,k} tiene determinante diferente de cero y definamos
a la funcién g : W x R"* — R" como sigue, g(a,b) = f(a) + T(b), donde
T(b) = (0,b), a continuacién se demostrara que 7" es diferenciable, tenemos que
para cada(a’,b') € W x R* ¥,

1, sii=jyij>k
DjT;'(a/, b/) ==
0, otro caso,
luego, D;T;(x) existe para toda (a/,t/) € W x R"* ademds, dado que D,T;
es constante, para todo i,j € {1,...,n}, se sigue que es continua en (a’,b’), por
Teorema 1.11, podemos asegurar que f es continuamente diferenciable y por

ende es diferenciable, luego, g también es diferenciable, ademsds,
g (a,b) = (D;fi(a)) + (0,...,0,b1, ... b)),
luego,

det(g'(a,b)) =det(D; f;(a)) + det(0, ..., 0, b1, ..., by—x)’
=det(D; fi(a)) + 0
=det(D; fi(a))
#0,

por Teorema 1.12; existe un conjunto abierto V/ € R™ que contiene a (y,0) y
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un conjunto abierto V, € R™ que contiene a

9(y,0) =f(y) + (0,0) = f(y) = =,

tal que g : V/ — V; tiene inversa diferenciable g=! : V, — V/, con lo cual podemos

1'son difeomorfismos.

decir que g y g~
Sea a’ € {a: (a,0) € V{} C R¥, luego (¢/,0) € V/ dado que V/ es abierto existe
un rectangulo abierto R tal que ' € R C V/, notemos que a R lo podemos
ver como el producto cartesiano de un rectdngulo R; C R* con un rectdngulo
Ry C R™*_ luego, por Teorema 1.6, R, es abierto, ademas, a’ € R, por otro
lado, dado r € Ry se sigue que (r,0) € V{, asi, r € {a : (a,0) € V/} y por ende
Ry C {a: (a,0) € V}, es decir, {a: (a,0) € V/} es un conjunto abierto, con esto,
y debido a que f~!: f(W) — W C R* es continua, por Teorema 1.7, se cumple

que:

(f ) ({a:(a,0) € V{}) ={f(a) : (a,0) € W]}

VA ). (5.1)

para algin conjunto abierto V' C R".

Como (y,0) € V{ se sigue que x = f(y) € {f(a) : (a,0) € V{} y por ende xz € V.
Sean Vo, = VJNVNU y V; = g~ 1(V4), debido a que V3, V' y U son conjuntos abiertos
que ademads contienen a x, V5 es un conjunto abierto que contiene a x. Ademas,
dado que V2 =V, NV NU, se sigue que Vo C V4, con esto, g *(Va) C g~ (VJ), en
otras palabras, V; C V/, con esto, y aplicando (5.1) y 1) se tiene que:

VonM=V,nVnNnUnM
=V,nvnunvnunM
=(VoanvVnUu)nvVn({UnM)
=(VoanvVnu)nvn f(W)
=(V; NV NU)N{f(a): (a,0) € V}}
=(VanVNnU)N{g(a,0):(a,0) € Vi}
={9(a,0) e VNV NU : (a,0) € V]}
={9(a,0) : (a,0) e V/ Ng~ (i, NV NU)}
={9(a,0) : (a,0) € V/ N g~ (Va)}
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(a,0): (a,0) € V/ NV}
(a,0) : (a,0) € V1}
=9({(a,0) € V1}).

a,

De donde, g7} (Vo N M) = {(a,0) € Vi} = V4 N (R¥F x {0},_%). Debido a que V;
y V5 son conjuntos abiertos y ¢! es un difeomorfismo, se concluye que M es una

variedad de dimensién k de R™. O]

5.3. Variedades con frontera

Definicién 5.3. El semiespacio H* C R*, con k € N, se define como
{z € R¥ .z, > 0}.

Definicién 5.4. Sean n,k € N con k£ < n. Un subconjunto M de R™ es una
variedad con frontera de dimension k si para todo z € M se cumple la
condicién (M) o si se cumple la siguiente condicidn:

(M') Existe un conjunto abierto U que contiene a x, un subconjunto abierto V/

de R"™, y un difeomorfismo h : U — V tal que

hUNM) =V (H* x {0},)
=y eV iy >0AYpy1 = =y, =0},

y la k-ésima componente de h(z) es igual a 0.

Ejemplo 5.4. M = H"* x {0},,_j es una variedad con frontera de dimensién k en
R™.
Seaz € M, luego, existe algin conjunto abierto U que contiene a x, y consideremos

al:U — U como la funcién identidad, claramente I es un difeomorfismo, luego,

IUNM)=UnNnM
z{yGU:ykZO/\ka:---:yn:()},
si I(z)r = x> 0, entonces se cumple la condicién (M) para x, en caso contrario

se estarfa cumpliendo la condicién (M'), asi, M es una variedad con frontera de

dimension k en R™.
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Ejemplo 5.5. Sean a,b € Rcon 0 <a <b. M = {(z,y) : z € [a,b] y y € R} es
una variedad con frontera de dimensién 2 en R2.

Sea (xg,70) € R? y f: R? — R? dada por f(z,y) = (y,a(x — 3)), con a, 3 € R,
a # 0. Dado que (z9, o) € R?, existe algin abierto U C R? tal que (z9,y) € U,
a continuacion se demostrara que f es un difeomorfismo.

Tenemos que,

0, sii=j,
Difi(x) =% a, sii=2,j=1,

1, otro caso,

luego, D;fi(x) existe para toda (z,y) € U, ademas, dado que D, fi(x) es cons-
tante, para todo i, € {1,2}, se sigue que es continua en (xg, o), por Teorema
1.11, podemos asegurar que f es continuamente diferenciable en (zg, o), asi, f
es diferenciable. Sean (w1, 1), (z2,y2) € R? tales que f(z1,y1) = f(x2,y2), luego,
(y1, a1 — B)) = (y2, a(z2 — B)), lo que implica que y1 = y» y 71 = w2, es decir,
f es una funcién inyectiva. Por otro lado, tomando (z3,y3) € R?, se sigue que
% 4 3 e Ry porende (£ + §,23) € R? con esto, f(£ + 3, x3) = (x3,y3), lo que
implica que f es sobreyectiva y ademds es invertible. Tenemos que f~!: R? — R?

estd dada como sigue,
- )
i) = (L4 s

Dado (zg,yo) € R?, se tiene que existe algin abierto U C R? tal que (zg,%0) € U,
a continuacién se demostrara que f~1 es diferenciable.

Tenemos que,

0, sii=j,
Di(fi(x)=q 21 sii=1,j=2,

1, otro caso,

luego, D;(f~1)i(x) existe para toda (z,y) € U, ademds, dado que D;(f);(x)
es constante, para todo 7,7 € {1,2}, se sigue que es continua en (xg,yp), por
Teorema 1.11, podemos asegurar que f~! es continuamente diferenciable en

(w0, %0), asf, f~! es diferenciable. Debido a que tanto f como f~! son diferenciables
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se tiene que f es un difeomorfismo. Sea (2, y’) € M.

» Caso 1. 2’ € (a,b). Tomemos a = 1y B = 0, luego, f(x,y) = (y,x). Sea

R = (I/;a, b+T"“"') X (v — 1,y + 1), notemos que (z',y') € R C M, ademaés,

+a b+
2 72

f(R)= (/' =1,y +1) x( ),

notemos que f(R) es un rectdngulo abierto, aunado a lo anterior, se tiene

que
f(ROM) = f(R) = f(R)NR* = f(R) N (R x {0}).
Se cumple la condicién M para (2',y").

» Caso 2. 2/ = a. Tomemos o = 1y 5 = a, luego, f(z,y) = (y,x — a). Sea

R = (%7 bg"”') X (v — 1,y + 1), notemos que (z',y’) € R C M, ademaés,

/ b /
FR) =y =1y + 1) x (5 —a,

—a),

notemos que f(R) es un rectdngulo abierto. Sea (xg,yo) € RN M, luego,
f(zo,y0) € f(R), ademds, como zy > a, se sigue que xg — a > 0, asi,

f(zo,y0) = (Yo, w0 — a) € H?, con esto,
f(ROM) Cf(R)NH”.

Sea ahora (zg,vy0) € f(R) N H?, luego, f~'(x9,70) € R, aunado a esto,
0<yo<b—a,asi,a<yy+a<b, con esto, f(xg,y0) = (yo+a,zg) € M,
ast, f~(xo,90) € RN M, y por ende, (zg,y0) € f(RN M), con lo cual se
concluye que f(R)NH? C f(RN M).

Asi, f(RNM) = f(R)NH?* = f(R) N (H?* x {0}0).

Por otro lado, f(z',vy') = (¢/,2' —a) = (v/,a — a) = (¥/,0), se cumple la

condicién M’ para (z',y').

» Caso 3. 2/ = b. Este caso es anélogo al caso 2, solo basta tomar « = —1 y

g =0b.

Por lo tanto, se concluye que M es una variedad con frontera de dimension 2 de
R2.



5.3. VARIEDADES CON FRONTERA 143

Proposicion 5.1. Sean A C R™ y una funcién f : A — R™. Si A es abiertoy f es
continuamente diferenciable, inyectiva y cumple que f’'(z) # 0, para todo = € A,
entonces, f(A) es un conjunto abierto y que f~! : f(A) — A es diferenciable.

Ademas, si B C A es abierto, entonces f(B) también es abierto.

Demostraciéon: Notemos que se cumplen todas la hipdtesis del Teorema 1.12.
Sea y € f(A), asi, existe algin x € A tal que f(x) = y, luego, por el Teorema
1.12 y debido a que el dominio de f es A, existen abiertos V., W tales que:

yeW C f(A)yx eV CA,

ademds, f tiene inversa (f~!)|y : W — V que es continua y diferenciable. Por

otro lado, dado que f es inyectiva, f~!: f(A) — A existe, y por ende
12 = (f Hlw(z), para todo z € W,

en especial cuando z = y se sigue que f~! es continua y diferencia en y, y debido
a que y es arbitrario, se concluye que f~! es diferenciable en f(A). Ademds, ya
que W es abierto, existe algiin rectangulo abierto R tal que y € R C W C f(A),
y como y es un elemento arbitrario se concluye que f(A) es un conjunto abierto.

La demostraciéon de que f(B) es abierto es anéloga. O

Proposicién 5.2. Sea M C R™ una variedad. Dado x € M, las condiciones (M)

y (M’) no se pueden cumplir a la vez para x.

Demostracién: Supongamos que (M) y (M') se cumplen a la vez para x. Luego,
existen Uy, Uy, Vi, Vo C R™ abiertos y difeomorfismos hy : Uy — Vi, hy : Uy — Vy

tales que

hi(Uin M) =ViN (R x {0},_1),
ho(Uy N M) =Vo N (H* x {0}, ).

Dado que hy y hy son difeomorfismo, se sigue que hy' existe y también es un
difeomorfismo, con esto, hg o hfl : V1 — V, existe y también es un difeomorfismo.

Por otro lado, notemos que hy(z) € Vi, luego,

(ha o hit(hi(x))); =ha(z); = 0,
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para todo i € {k,...,n}, ademds, debido a que U; y Uy son conjuntos abiertos,
entonces Uy NU; también es abierto, asi, como x € U;NUs, existe algin rectangulo
abierto R tal que x € R C U; N Us.

A continuacién se demostrard que h(RN M) = h(R) N (R* x {0},,_1).

Sea z € RN M C U; N M, esto implica que hy(z) € Vi N (RF x {0}), asf,

hi(z); =0, para todo l € {k+1,...,n},

ademds, hi(z) € hy(R), asi, hi(z) € hi(R) N (R* x {0},_%),lo que significa que
hi(RNM) € hi(R) N (R* x {0},_x).

Sea ahora y € hi(R) N (R* x {0},_4), luego, y € Vi N (R* x {0},,_x), con esto,
hi'(y) € Uy N M, aunado a lo anterior, debido a que y € hi(R) se sigue que
hi'(y) € R, con lo cual, hi'(y) € RNU,NM = RN M, asi y € h(RN M), de

aqui se concluye que,
hi(R) N (R* x {0},,_1) € hi (RN M).

Con lo cual se concluye que hy(RN M) = hi(R) N (R x {0}, ).
Definamos ahora al conjunto V' como sigue, V' = {v € R* : (v,0) € hy(R)}, en
este caso 0 denota al vector nulo de R"™* debido a que h;(R) es abierto, podemos

afirmar por la demostracion del Teorema 5.2, que V' también es abierto. Notemos
que hi(x) € hi(R) N (R x {0},,_1), luego,

' = (hi(x)1, ..., b (x)) € V',
ademds, dado (v,0) € R* x {0},,_, se sigue que,
hi'(v,0) CRNM CcU NU,NM CUyN M,
lo que implica que:
hy o hi'(v,0) = ha(h{(v,0)) €hgy(Us N M) = Vo (H* X {0}np).

Sea f : V' — R¥ definida por f(v) = ¢/, donde hy(h;'(v,0)) = (v',0), dado que
(v',0) € H*x{0},,_, se sigue que v' € H*, en otras palabras, f(V') C H*. Debido

a que hy o hi' es un difeomorfismo se cumple lo siguiente,

1) hoohy! es diferenciable y por ende es continuamente diferenciable.
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2) (hy o hy)™! existe y es diferenciable en hy o hy*(z), para todo z € V4.

Tomando 1) se sigue que las funciones D;(hy o hy''); existen y son continuas en
z, para todo z € Vi, para todo j,i € {1,...,n}, asi, como D;f; = D;(ha o hi');,
para todo j,i € {1,...,k}, se tiene que f es continuamente diferenciable. Por 2)
tenemos que hy o h' es inyectiva, luego, cada funcién (hy o hy'); también es
inyectiva para todo i € {1,...,n}, de aqui se sigue que f es inyectiva. Con esto se
tiene que también es invertible. Por tltimo, como (hy o hi')~! es diferenciable, es
continuamente diferenciable y por ende f~! también lo es, asi, f ! es diferenciable.
Dado que f cumple las hipdtesis del Corolario 1.2, se sigue que det(f'(a)) # 0,
para todo a € V', con esto, f cumple las hipdtesis de la Proposicién 5.1, asi,
como V' es abierto, se concluye que f(V’) es abierto.

Recordemos que 2’ € V', luego,

f(@') =((hz 0 hy ' (ha())1, -wos (ha © by (R (2))i)
=(ha(x)1, ..., ha(x)g)
:(hQ(I)l, SN hg(l‘)k_l, 0),

ademds, como f(z') € f(V') y este tltimo es un conjunto abierto, existe algin
rectangulo abierto R’ tal que f(2') € R C f(V'), donde a R’ lo podemos ver de

la siguiente manera,
R = (al,bl) X X (ak,bk),

luego, debido a que ho(z)r = 0, se sigue que a; < 0, asi, sea y € R’ tal que
yr = % <0, con esto, y ¢ H* pero, y € f(V') C H*, 1o cual es una contradiccién.
Por lo tanto, las condiciones M y M’ no se pueden cumplir a la vez para un mismo
x. ]

5.4. Frontera de una variedad

Definicién 5.5. Sea M una variedad. El conjunto de todos los puntos z € M

para los cuales se cumple la condicién (M’) se llama frontera de M y se denota

como OM.

Proposiciéon 5.3. Si M es una variedad de dimension k con frontera, entonces

OM es una variedad de dimension k& — 1.






Capitulo 6

Formas diferenciales sobre

variedades

En este capitulo se retomaran definiciones presentadas anteriormente, ahora
reformuladas en el contexto de las variedades. Asimismo, se presentarda también

una version del Teorema de Stokes en este contexto.

6.1. Espacio tangente de una variedad

Definicién 6.1. Sean V', W espacios vectoriales sobre un campo Fy T : V — W
una transformacion lineal. Si T' es sobreyectiva e inyectiva, diremos que T es un

isomorfismo (Hoffman & Kunze, 1971).

Sean M una variedad de dimensién k en R*, x € My f: W C R¥ — R" un
sistema coordenado alrededor de z = f(a), con a € W. Dado que f'(a) tiene rango
k, la transformacién lineal f, : R¥ — R” es inyectiva, con esto, f; ! : f.(RF) — R
existe y es inyectiva, cabe recalcar que f! no es la inversa de f., ademds, f.(RF)
es un subespacio de dimensién k de R?. Sea g : V' — R" otro sistema coordenado
con = g(b), luego, frtog. : R¥ — R* es una transformacién lineal inyectiva, en

otras palabras, f_! o g, es un isomorfismo, asi,

9 (RY) =f.(f (9:(R)))
=1.((f7" 0 g)(R}))
:f* (R§>

147
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Con esto, el subespacio f.(R¥) no depende del sistema coordenado f, ademas,

tiene dimensién k.

Definicién 6.2. Sean M una variedad de dimension k, x € M y f el sistema coor-
denado alrededor de z. El subespacio f.(R¥) es denotado como M, y es llamado

espacio tangente de M en z.

Ejemplo 6.1. Consideremos a la variedad M de dimensién 1 y al difeomorfis-
mo h dados en el Ejemplo 5.3. Luego, dado (z,z) € M y basdndonos por la
demostracién del Teorema 5.2, sabemos que f : W C R — R? dada por

f(2) =h7'(2,0) = (2,2),

es un sistema coordenado alrededor de (z,x), donde W = {z € R : (2,0) € h(M)}.

Notemos que f es una transformacién lineal, con esto, Df(z) = f. Ademas,
h(z,z) = (z,2 —x) = (z,0) € h(M),

es decir, x € W. Consideremos ahora al espacio tangente R en x y a v, € R,

luego,

fo(va) =(Df(2)(v)) 5y
=f(V) (@)

=(V, V) (2,2)-

Ejemplo 6.2. Consideremos a la circunferencia S = {(xy,23) : 22 + 22 = 1}.
Primero demostraremos que S es una variedad de dimension 1 y posteriormente
encontraremos al espacio tangente de S dado algin z. Sean =z € S\{(1,0)} y
f:(0,27) — R? definida como f(t) = (cos(t), sen(t)), asi, existe algin ¢ € (0, 27)
tal que f(t) = x, para poder demostrar que S es una variedad se demostrara que

f es un sistema coordenado alrededor de .

» Inyectividad y diferenciabilidad de f.
Supongamos que existen a,b € (0, 27) tales que f(a) = f(b), asi,

cos(a) = cos(b) y sen(a) = sen(b),



6.1. ESPACIO TANGENTE DE UNA VARIEDAD 149
luego,

cos(a — b) =cos(a) cos(b) + sen(a) sen(b)
= cos®(a) + sen?(a)

=1,

con lo cual se tiene que a — b = arccos(1) = 2kw, donde k € Z, dado que
0 < a,b< 2w, se sigue que —27 < —a < 0, asi, =27 < b — a < 27, lo que
implica que el inico valor posible para k es 0 y por ende a —b = 0, de donde
se concluye que a = b.

Asi, f es una funcién inyectiva en el intervalo (0, 27) y por ende en cualquier

subintervalo. Por otro lado, sea ¢ € (0,27), con esto,
D fi(c) = —sen(c), D;fa(c) = cos(c),

con lo cual, las derivadas parciales de f existen en (0,27) y son continuas

en ¢, asi, f es continuamente diferenciable y por ende es diferenciable.

» Sea (z1,79) € S\{(1,0)} = f(0,27), luego, existe algin t € (0,27) tal
que x = f(t), tomemos a d = min{t, 27 — t}, con esto, podemos definir al
conjunto abierto U = (t — g,t + g) C R que contiene a t pero no a 0 o
271, Sean ahora (2},75) = f(t+ %) y d = /(z1 — 2})? + (22 — x5)?, con
esto, B((z1,72),d’) es un conjunto abierto en R? que contiene a x, ademas,
f(U)=SnB(z,d).

= Tenemos que,

f/(y) _ (sen(y))’

cos(y)

debido a que no existe y € R tal que cos(y) = sen(y) = 0, se concluye que

f'(y) tiene rango 1.

» Sea (z1,72) € S\(1,0). Luego, existe t € (0,27) tal que cos(t) = x; y
sen(t) = xo. Para poder encontrar el valor exacto de t podemos apoyarnos

de la funcién arctan tal como se explica a continuacion,

xe  sen(t)
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lo que implica que

T2
t = arctan (—) .
I

—x9
—x1

Debido a que arctan($2) = arctan(=}2), arctan(—2) = arctan(=2), se to-

mara el valor de ¢ de acuerdo al cuadrante al que pertenezcan x; y xs.

1. x1,29 > 0, en este caso, arctan(i—j) € (0, %), luego, como necesitamos

que cos(t),sen(t) > 0, basta tomar ¢ = arctan(2).

2. 11 < 0,29 > 0, en este caso, arctan(;—f) € (—35,0), luego, como necesi-

tamos que cos(t) < 0,sen(?) > 0, basta tomar ¢ = arctan(32) + 7.

3. 11,19 < 0, en este caso, arctan(i—f) € (0, %), luego, como necesitamos

que cos(t),sen(t) < 0, basta tomar ¢ = arctan(?) + .

_r
PR

tamos que cos(t) > 0,sen(?) < 0, basta tomar ¢ = arctan(3?) + 27.

4. 1 > 0,29 <0, en este caso, arctan(;2) € ( 0), luego, como necesi-

En el caso 21 = 0 tenemos que cos(t) = 0, esto implica que t = Fot= 37”,
Z) = 1y sen(¥) = —1. Otro caso particular es cuando

x9 = 0, en este caso se cumple que sen(t) = 0, debido a que ¢ € (0, 27), se

con lo cual sen(

tiene que t = 7. Con esto, sea h : S\{(1,0)} — (0, 27), definida como sigue,

4

arctan (z—l) , si xy, 9 > 0,

%, si x1:0,x2:1,

arctan (%) +m, stz <0,29 >0,
h(zy,29) = 7, siz; = —1,29 =0,

arctan <z—1> +m,  sixg,ae <0,

3 .

R siz; =0,29 = —1,

arctan <§—1> + 21, sixz; > 0,29 <O0.

\

A continuacién se comprobard que h = f~!. Primero se demostrard que
foh =1i. Sea (z1,72) € S\{(1,0)}, recordemos que \/x3 + 2? = 1. Para
este proposito, se hard uso de las distintas propiedades trigonométricas que

se muestran en la Seccion 1.9.
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e Caso x1, 19 > 0.

f(h(w1,2)) =f(arctan(32))

=(cos(arctan(72)), sen(arctan($2)))

_( |21 |71 |29 )
\Vadtaf ey/ad +ad
(A=)

3+ 22 w25+ 3

=(z1, 23).

e Casox; =0,20 = 1.

f(h(x1, 72)) :f(%)
(cos(5),sen(%))
(0,1)
(

T, T3).

—_

e Caso 1 < 0,29 > 0.

f(h(xy, x3)) = f (arctan($2) 4 7)
=(cos(arctan(?) + ), sen(arctan($2) + 7))

2))

g SR

=(— cos(arctan(2)), — sen(arctan(

:<_ |71] — 1] >

\/x§+aﬁ7x1\/$§+aﬁ
< 19 )
\/x2+a:1 RVA

:(.%'1, ZL'Q).

e Casor1 = —1,29 = 0.

f(h(z1,29)) =f ()
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e Caso x1, 19 < 0. Es analogo al caso x1 < 0,x9 > 0.

e Casor1 =0,29 = —1.

e Caso x1 > 0,29 < 0.

f(h(x1,79)) = f(arctan(52) + 27)
=(cos(arctan(32) + 27), sen(arctan($2) + 27))

=(cos(arctan(72)), sen(arctan($2)))

:( B BN )
Va3 + ol m/ad + a3

( 15 T1T2 )
- 2 2’ 2 2
\/x2 + 27 :1:1\/:702 + 1

=(x1, X2).
Ahora se demostrard que ho f =i. Sea t € (0,27).

e Casot € (0,75). Notemos que cos(t),sen(t) > 0, asf,

h(f(t)) =h(cos(t), sen(t))

= arctan(ggsgg)

= arctan(tan(t))
=t.

e Caso t = 7. Notemos que cos(t) = 0,sen(t) = 1, asi,
h(f(t)) = h(cos(t),sen(t)) = h(0,1) = t.

e Caso t € (3,m). Notemos que cos(t) < 0,sen(t) > 0, ademads, existe

t' € (—5,0) tal que t = t' + 7, asi, tan(t) = tan(t' + 7) = tan(t'), con
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esto,
h(f(#)) =h(cos(t), sen(t))
cos(t
= arctan(senét;) + 7
=arctan(tan(t)) + 7
=arctan(tan(t')) + 7
=t' + 7
=t.

e Loscasost = 37” y t = m son analogos al caso ¢ = 7, de igual manera, los

casos cuando t € (7,2) y t € (3, 27) son analogos al caso t € (Z,m).

Asi, h = f~1. Por 1ltimo, se comprobard que h es una funcién continua, para
esto, se comprobara que h es continua en aquellos puntos donde ocurren

saltos.
e z=(0,1).

=T

lim arclan(—Q) = Cuando T1, Lo > 0
z 929 1,42 )
(xlny) )(071) !

lim arctan(2) +7) = —Z + 7 =%, cuando z; < 0,29 > 0,
(x17$2)*)(0,1)( (xl) ) 2 2 1 2

dado que h(0,1) = 7 se sigue que h es continua en x.
e z=(—1,0).
lim  (arctan(®2) + 1) =0+ 7 =7, cuando x; < 0,29 > 0,
(z1,22)—(—1,0) x1

Iim  (arctan(®2) 4+ ) = 0 + 7 =m, cuando x1,xs <0,
(z1,@2)—(—1,0) “

dado que h(—1,0) = 7 se sigue que h es continua en x.

e v =(0,1).
1i tan (L2 _ _3r d “0
(ml,le)rg(m)(arc an(?) +7) =5 +m =7, cuando 71,75 <0,
lim (arCtan(%) +27) = -2 4+ 27 =2 cuando x; > 0,25 < 0,

— 5
(@1,22)—(0,1) 2 2

dado que h(0,—1) = 37” se sigue que h es continua en x, con cual se
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1

tiene que h = f~' es continua en S\{(1,0)}, mds ain, es continua en

f(U), donde U ya se habia definido previamente, y por ende se concluye

que f es un sistema coordenado.

En el caso x = (1,0), podemos considerar a g : (0,27) — R? dada como

9(t) = (=cos(t), —sen(t)),

cuya demostracién de que es un sistema coordenado para todo x € S\{(—1,0)}
es andloga a la demostracion de f.
Por otro lado, sea = € S\{(1,0)}, asi, existe t € (0,27) tal que z = f(t) y

consideremos al espacio tangente R en ¢t y a v; € Ry, luego,

felvr) =(DF()(©)) )
=(Dfi(t)(v), Df2(t) (V)
(—sen(t) - v,cos(t) - v),

=v(—sen(t), cos(t)).

Si z = (1,0), entonces, g.(v;) = v(— cos(t), —sen(t)),.

Ejemplo 6.3. Consideremos ahora a la esfera S2.
Sean z € S*\{(z1,0,23) :2?+ 22 =1y 2 >0} =52y f:(0,2m) x (0,7) — R3

definida como
f(u,v) = (cos(u) sen(v), sen(u) sen(v), cos(v)),

asi, existe algun (u, v) € (0,27) x (0, 7) tal que f(u,v) = x, para poder demostrar
que S es una variedad se demostrara que f es un sistema coordenado alrededor

de .

» Inyectividad y diferenciabilidad de f.
Supongamos que existen a = (u1,v1),b = (ug,v2) € (0,27) x (0, 7) tales que,
fla) = f(b), asf,
1) cos(uq)sen(vy) = cos(uz) sen(vsy).
2) sen(uy),sen(vy) = sen(usy) sen(vy).

3) cos(vy) = cos(vs).
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De 3) se sigue que v; = vy + 2k, para algin k € Z. Dado que vy, vy € (0,7)
se sigue que k = 0, de aqui, se sigue que v; = vy, luego, sen(vy) = sen(vy),
con lo cual podemos ver a 1) y 2) como sigue,

1) cos(uy) = cos(us).

2) sen(uy) = sen(usg).
Por lo visto en el Ejemplo 6.2, podemos asegurar que u; = ug. Asi, f es

inyectiva en (0,27) x (0, 7). Por otro lado, sea (¢,d) € (0,27) x (0,7), con

esto, las derivadas parciales de f;(u,v) = cos(u)sen(v) son:
Dy f1(c) = —sen(c) sen(d), Dafi(c) = cos(c) cos(d),
las derivadas parciales de fo(u,v) = sen(u) sen(v) son:
D fo(c) =cos(c)sen(d), Dsfa(c) = sen(c) cos(d),
y las derivadas parciales de f3(u,v) = cos(v) son:

D1 f3(c) =0, Dafs(c) = — cos(d),

con lo cual, las derivadas parciales de f existen en (0,27) x (0,7) y son
continuas en (¢, d), asi, f es continuamente diferenciable y por ende es dife-

renciable.

» Sea x € S7 tal que 1,9, 23 > 0, asi, existen algunos ug, vy € (0, 7) tales

que x = f(up,vo), sean dy = min{ug, § —uo} y do = min{vy,, 5 —vo}, luego,
da
2
R, con esto, W = I x J es un conjunto abierto que contiene a x, definamos

los conjuntos I = (ug — %, ug+ %) y J = (vg — 2, vy + 2) son abiertos en
ahora el siguiente conjunto
U = {(pcos(u) sen(v), psen(u) sen(v), pcos(v)) :u € I,v € J, p > 0}.

Tenemos que

f(z) =(cos(ug) sen(vy), sen(ug) sen(vy), cos(vy))

=(1 - cos(ug) sen(vg), 1 - sen(ug) sen(wvy), 1 - cos(vy)),
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notemos que p = 1 > 0, asimismo, por la construccién de I y de J, se sigue
que uyg € I y de vy € J, con esto, f(x) € U, lo que induce a la siguiente

igualdad:
fOV) = S\ {(21,0,23) : 23 + 25 =1y 2, > 0}NU.

Si se toma a x en cualquier otro cuadrante de R? se sigue un proceso analogo

para encontrar a los abiertos U y W, si 3 = 0 se puede tomar a J = (7, %’T),
por otro lado, si 71 = 0, se puede tomar a I = (%, %’r) cuando 29 > 0y
I= (%”, %’r) en caso contrario, por ultimo, si x5 = 0 se toma [ = (?jf, %’r)
Tenemos que,
—sen(y)sen(z) cos(y)cos(z)
f'(y,2) = | cos(y)sen(z) sen(y)cos(z) | ,
0 — cos(z)
supongamos que existe k € R\{0} tal que
—sen(y) sen(z) - k = cos(y) sen(z),
cos(y) cos(z) - k = sen(y) cos(z),
luego,
—sen(y) - k = cos(y),
cos(y) - k = sen(y),
con lo cual se tiene que —sen(y) - k- k = sen(y), asi, k? = —1, lo cual es una

contradiccién, asi, las filas 1y 2 de f’(y, z) son linealmente independientes,

asi, f'(y, z) tiene rango 2.

Sea (x1, 9, 13) € S5. Luego, existe (u,v) € (0,27) x (0,7) tal que,
(21,9, x3) = (cos(u) sen(v), sen(u) sen(v), cos(v)),
de aqui, se tiene que v = arc cos(z3). Sea

h: S\{(x1,0,23) : 22 + 22 =1y z; > 0} — (0,27) x (0, 7),
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definida como sigue,

( (arctan (i—f) ,arc cos(xg)) , si xy,x9 >0,
(7—2r, arc cos(xg)) , sixy =0,29 >0,
(arctan <§—f> + 7, arc Cos(:cg)) ,  six; <0,29 >0,
h(z1, 22, 73) = ¢ (7, arccos(z3)), sizy < 0,29 =0,
(arctan < ) + 7, arc cos(xg)) sixy, e <0,

(%,arccos T3 ) siz; = 0,20 <0,

(arctan < ) + 2w, arc cos(x3)> sixg > 0,20 <O0.

A continuacién se comprobara que h = f~!. Primero se demostrara que foh = i.

Sea (z1,To,x3) € S2.

s Caso x1, 29 > 0.

f(h(x1, 22, 23)) =f(arctan(2), arc cos(x3))
=(cos(arctan({2)) sen(arc cos(z3)),

sen(arctan(32)) sen(arc cos(x3)), cos(arc cos(z3)))

X1 T1|T2
(o ml T w7
2 2 3 2 2 3
\ Ty + x T4/ T5 + o7
X1 T1T2
_ /2 2 2 2
\/ Ty + 21 T14/ 25 + 7

:('/L‘h T2, I?))'

s Caso r1 = 0,29 > 0.

Jf(h(x1, 22, 73)) =f(5,arccos(zs))
=(cos(%) sen(arc cos(w3)), sen(F ) sen(arc cos(xs)),

cos(arc cos(x3)))

= <() -sen(arccos(zs)), 1-1/1 — 3, I3>
:<O,\/x§ —l—x%,xg)
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()

:(0, |$2|,903)

:(xla T, I3)‘

» Caso z1 < 0,29 > 0.

f(h(z1, 2, 23)) =f(arctan($2) + , arc cos(x3))
=(cos(arctan($2) + ) sen(arc cos(x3)),
sen(arctan(;2) + ) sen(arc cos(z3)), cos(arc cos(3)))
=(— cos(arctan(2)) sen(arc cos(xs)),

— sen(arctan(f2)) sen(arc cos(z;3)), cos(arc cos(z3)))

( ’5’31| /1 |~’61\$2 /1—332 xg)
3
v$2+931 \/x2+$1
T1X2
= —\/332-1-:6, \/1:2—1-3:2,1:3)
<\/:p§+x§ R TRV e G

:(x17 T, .’173).

s Caso r1 < 0,29 = 0.

f(h(x1, a9, 23)) =f(m, arc cos(zs))
=(cos(m) sen(arc cos(zs)), sen(arctan()) sen(arc cos(zs)),
cos(arc cos(z3)))

=(—sen(arc cos(z3)), 0 - sen(arc cos(x3)), x3)

:<—\/1 — I’%,O,$3)
:<_ \/ ZE% + (L’%, O,ZE3)
:<_ \/ ZL’%, Oa Ig)

:(—|l’1|, Oa 1'3)

:(.171, T, 1'3).

= Caso x1, 79 < 0. Es andlogo al caso ;1 < 0, x5 > 0.
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s Caso x1 =0,29 < 0.

J(h(zy, 9, 23)) =f (3, arc cos(z3))

3 ) 3T

=(cos(%) sen(arc cos(r3)), sen (") sen(arc cos(zs)),

cos(arc cos(x3)))

_ (o -sen(arc cos(zs)), —1 - /1 - a2, x3>
e
(0

:(07 —|ZE2|, :L‘3)
(

== $17x27x3)'

s Caso 1 > 0,29 < 0.

f(h(21, 22, 23)) =f(arctan(3?) + 27, arc cos(x3))

=(cos(arctan(22) + 27) sen(arc cos(z3)),

E%E%

1

sen(arctan(22) + 27) sen(arc cos(x3)), cos(arc cos(z3)))

8%2

1

=(cos(arctan(%2)) sen(arc cos(z3)),

Hli%
Ay

sen(arctan(

3‘3'8
= o

)) sen(arc cos(z3)), cos(arc cos(x3)))
_< |71 1— |$1|372 2. )
=\ 75—V ———==1\/1 ;T3
i+ ad RVA R ’
_ 1 [02 4 g2 T2 [o2 o2 )
= —=\/ 123 5+ 21,
< z3 + a3 RV A ’

Ahora se demostrara que ho f =i. Sea (u,v) € (0,27) x (0, 7).

e Caso u € (0,%). Notemos que cos(u),sen(u) > 0, asi,

h(f(u,v)) =h(cos(u)sen(v),sen(u)sen(v), cos(v))

cos(u) sen(v)
(

=(arctan( en(ug en(0) )
)

), arc cos(cos(v)))

(arctan(cos Z) ),v)
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=(arctan(tan(u)),v)

=(u,v).

e Caso u = 3. Notemos que cos(u) = 0,sen(u) = 1 > 0, asf,

h(f(u,v)) =h(cos(u) sen(v), sen(u) sen(v), cos(v))
h(0, sen(u) sen(v), cos(v))

(5, arc Cos( )
(u,

v)-

e Caso u € (5, m). Notemos que cos(u) < 0,sen(u) > 0, ademds, existe
u' € (—5,0) tal que u = v’ + 7, asi, tan(u) = tan(u’' + m) = tan(v’),

con esto,

h(f(u,v)) =h(cos(u)sen(v),sen(u) sen(v), cos(v))

sen
en 1)

arctan

cos(u
S

engu; ) + m, arc cos(cos(v)))
(u)

u

)

(Senars
arctan( S;Sl(u) )+ 7, v)
arctan(tan(u)) + m,v)

(

(

(

( (
=(arctan(tan(u)) + 7, v)

(u

(

e Los casos u = 37” y u = m son andlogos al caso u = 7, de igual
manera, los casos cuando u € (, —) yu € (%”,27?) son analogos al

caso u € (5, ).

Asi, h = f~!'. La demostracién de que h es una funcién continua en el
conjunto S*\{(z1,0,x3) : x3+25 = 1 y 21 > 0} es andloga a la demostracién
hecha en el Ejemplo 6.2, esto debido a que h solo presenta saltos respecto
a las variables x; y x5 en los mismos valores que la funciéon h definida
en el ejemplo ya mencionado. Con esto se concluye que f es un sistema

coordenado.

Cuando = € {(x1, 79, 73) : 23+ 22 =1 y z; < 0}, podemos considerar a la funcién
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g:(0,27) x (0,7) — R? dada como sigue,

g(u,v) = (—cos(u) sen(v), — sen(u) sen(v), cos(v)),
debido a que (0,0, 1), (0,0, —1) no pertenecen a los conjuntos

S2\{(x1707x3> : ZE% +x§ =1 y T Z 0}7
32\{($1,0,l’3) : l’% +$§ =1 y T S 0}7

debemos considerar a una tercera funcién j : (—m,7) x (0, 7) — R? definida como

sigue,
J(u,v) = (cos(u) sen(v), cos(v), sen(u) sen(v)),

las demostraciones de que las funciones ¢ y j son sistemas coordenados son analo-
gas a la demostracion de f.
Por otro lado, sea z € S*\{(z1,0,23) : 2? + 22 = 1y z; > 0}, asi, existen

u € (0,27) y v € (0,7) tales que x = f(u,v), y consideremos al espacio tangente

2
(u,v

R? en (u,v) y a W) € R ) luego,

Ji(wewy) =(Df (u, 0)(w)) s
:(Dfl(u7 U)(w>7 DfQ(uv U)(w)v Df3(u7 U)(U)))x,

tenemos que,

D fi(u, v)(w) =(—sen(u) sen(v), cos(w) cos(v)) |

= — sen(u) sen(v)w; + cos(w) cos(v)w,
D fo(ut,v) (1) =(cos(u) sen(v), sen(u) cos(v)) Zj

— cos(u) sen(v)w; + sen(u) cos(v)ws,
D fy(u,v)(w) =(0, —sen(v)) [

Wa

= — sen(v)ws,
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asi,

fi(Wup)) =(—sen(u) sen(v)w; + cos(u) cos(v)ws,

cos(u) sen(v)w; + sen(u) cos(v)ws, — sen(v)ws),,
Si z € {(x1,22,73) : 22 + 22 =1y z; > 0}, entonces,

G (Weuwy) =(sen(u) sen(v)w; — cos(u) cos(v)ws,

— cos(u) sen(v)w; — sen(u) cos(v)wsy, — sen(v)ws),,
en el caso de que x = (0,0,1) o x = (0,0, —1), se sigue que,

Je(Wuwy) =(—sen(u) sen(v)w; + cos(u) cos(v)ws,

— sen(v)wy, cos(u) sen(v)w; + sen(u) cos(v)ws),.

6.2. Campos vectoriales sobre variedades

Definicién 6.3. Sea M una variedad. Un campo vectorial en M es una funcién
F:M— | M,
zeM

tal que F(z) € M,, para todo € M. Para cada z existen Fi(x),..., F,(z) € R

tales que:
F(z) = (2, (Fi(2), ..., Fu(2))) = Fi(z)(e1)e + - 4 Fu(z)(en)a-

Esto define n funciones Fi, ..., F,, : R” — R llamadas funciones componente de
F.

Ejemplo 6.4. Continuemos con el espacio tangente M, ;) dado en el Ejemplo
6.1. Sean las funciones componente F; : M — R, para todo i € {1,2} definidas

como sigue,
Fl(fEl, .1'2) = Fg(l’l,fﬂg) = + Xo.

Con las funciones componente anteriores podemos definir un campo vectorial,

F:M— | M.y,

(z,2)eM
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dado por,
F(z,z) = Fi(z,2)(€e1) @2 + F2(x,7)(2) (,0)-
A continuacién se encontrard a F'(x,x), para algunos (z,z) € M.
1. Para (x,z) = (3,3),

F(3,3) = F1(3,3)(e1)33) + F2(3,3)(€2) 3.3)
= 6(e1)(3,3) + 6(e2)33)-

2. Para (z,z) = (1,1),

F(1,1) = Fy(1,1)(en) ) + Fa(1, 1) (e2) )
=2(e1) 1) + 2(e2)1,1)-

En general, basta que F; = F; para que F' sea un campo vectorial.

6.3. P-formas sobre variedades

Definicién 6.4. Sea M una variedad de dimensiéon k. Diremos que una funcién
w: M — U,epAP(M,) con w(z) € AP(M,), es una p-forma o simplemente forma

diferencial en R”.

Una p-forma en M puede ser escrita como
W = E Wiy,..., ip'd.ﬁﬂil/\"'/\dl'ip.
11 <t <--<ip

En esta definicién, las funciones wy, . ;, estdn definidas sobre M.

.....

Teorema 6.1. Existe una unica (p+ 1)-forma dw en M tal que para cada sistema

coordenado f: W — R” tenemos
fHdw) = d(f*w).

Ejemplo 6.5. Sean la variedad M C R? y el difeomorfismo f : R? — R? dados

en el Ejemplo 5.5, apoyandonos de la demostracién del Teorema 5.2, sabemos
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que
h('Il?zQ) = f_l(xlylé) = (% + 671:1)7

con a, f € R\{0}, es un sistema coordenado. Definamos ahora a la 1-forma dife-

rencial w = g(x1, x9)dx; = x1dxq, luego, por Teorema 3.3:

h*(w) = h*(z1dzy) = (% + ﬂ) det(h")dz1,

donde,

—_
S RIx

asi, det(h') = —+
h(w) = ( + ﬁ) dxy,

dado que £+ f es una funcion definida en un conjunto abierto, es posible encontrar

a d(h*(w)),
d(h*(w)) :d(— (% + ﬁ) id:cl)

2 X ﬂ
z : 2

=1
1

- (Odl'l A dlL‘l + —2dl'2 A d[L‘l)
«

1
- — —le’g A d(L’l
«

1
:—2dl'1 N dl’g,
«

definamos ahora a la 2-forma dw = —édaf;l A dxs, luego,
* ]' * *
h*(dw) =—h (d:vl) A h*(dxs)
o

B 8fl dfs
o _( = ax] ) <Z O d%)

j=1
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—_— é(del + éd@) A\ (1da:1 + 0dac2)

= — lldlﬁg VAN dl’l

(o6

=— %dl‘g A dzq
_ 1
—a—dﬂfl N d.l?g

—d(h*(w)).

6.4. Orientaciones de una variedad

Definicién 6.5. Una orientacién de una variedad M de dimension k, es una
funcién p que a cada elemento x de M le asigna una orientacién del espacio

tangente M., esta funcién estd dada de la siguiente manera,

[L({E) = [(Ul)ﬂm D) (Uk)x]y

donde ((v1)g, ..., (Ug)z) €s una base orientada arbitraria de M,. A p(z) lo denota-

remos como Uy

Definicién 6.6. Sean M una variedad de dimension k, x € M y p una orientacién
de M. A la funcién p la llamaremos consistente si para todo sistema coordenado
f: W — R" alrededor de y a,b € W la relacion

[f*((el)a)> ) f*((@ﬂ)aﬂ = Hf(a)

se cumple si y solo si

[f2((e1)s), -y Ful(er)o)] = p15)-

Definicién 6.7. Sean M una variedad, x € M, p una orientacion consistente de

My f: W — R" un sistema coordenado alrededor de x. Si se cumple que

[fe((en)a)s s fellen)a)] = tip(a);

para todo a € W y por consiguiente para todo elemento de W, entonces se dice

que f preserva la orientacién.

Proposicion 6.1. Sean M una variedad de dimension k, x € M y f y g dos
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orientaciones preservadoras alrededor de z. Si se cumple que x = f(a) = g(b), con
x € M, entonces, det((g~' o f)'(a)) > 0.

Demostracion: Tenemos que,

[fe((er)a), - fuller)a)] = pisia) = i, [96((€1)8), - gu((€r)0)] = pg(e) = pha

a6, [£2((€1)a)s - £o((€6)a)] = [90((€1)5)s - 80 (e4)s)], sabemos que {(ex)ar - (ex)a}
v {(€1)p, .-, (ex)p} son bases de RF y R¥ respectivamente, luego, dado que f. y g.
son transformaciones inyectivas, se sigue que tanto { f.((e1)a), ..., fx((€x)a)} como
{g+((e1)p), ---, g«((€r)p)} son bases de M,, asi, por la Definicién 2.8, la matriz
A = (¢;;), donde:

fe((€i)a) = Zcijg*((ej)b), para todo i € {1, ..., k},

tiene determinante positivo. Por otro lado, recordemos que f.(R¥) = g.(R¥) = M,,

1

luego, como g, es un isomorfismo, es posible aplicar g, a los vectores f.((€;)a),

para todo i € {1, ..., k}, con lo cual:

{97 (f((ex)a)), - g2 (feller)a))} = {(g7" 0 £)u(((ex)a)), - (97" 0 )e(((er)a)) }

es una base de RF. Aunado a esto:
g (1A = (3 cuoel(en))
j=i

B Zgil(cmg*((eﬁb))

= cig: (9:((e)))

j=t
n

= ciilesh,
Jj=t

para todo i € {1,...,k}. Notemos que A también es la matriz de cambio de base
entre {(e1)s)s s (€x))} ¥ 95 (e((€1)a)s s 02 (fu((ex)a))}, lo cual implica que:

[(ex)s), s (ex)p)] = g (ful(en)a))s - 02 (fil(ew)a)]-
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Por otro lado, para todo i € {1, ..., k}, se cumplen las siguientes igualdades:

" o (6.1)

lo que implica que (D(g ' o f)(a)(e;))y = (Z;L:l cijej) , dado que ambos vectores

b
son igual al estar trasladados en b, entonces D(g~! o f)(a)(e;) = >

j=i Cij€;. Por

Teorema 1.10, se sigue que:

(D(g~" o fila)(ei), .., D(g™" o flu(a)(es))
(g7 o fila) - (€)', ey (97" 0 fila) - (e5)")
(Di(g~" o fi(a), ... Di(g™" o fi(a)) (6.2)

= Z Di(g~" o f);(a)e;,

D(g™" o f)(a)(e:)

de (6.1) y (6.2) resulta que ¢;; = D;(g' o f);(a). Asi, A= (¢! o f)(a), con lo
cual, se concluye que det((g~' o f)(a)) > 0. O

Definicién 6.8. Una variedad M de dimension k cuyas orientaciones p, pueden
ser escogidas consistentemente es llamada orientable y una eleccion particular
de p, es llamada orientacién p de M. Una variedad junto a una orientacion pu

es llamada una variedad orientada.

Si M es una variedad de dimensiéon k con frontera y x € dM, entonces por
Proposicién 5.3, se sigue que (OM), es un subespacio de dimensién (k — 1) del
espacio vectorial M, de dimensién k. Luego, el complemento ortogonal de (OM),
tiene dimensién 1, es decir, (OM)7 es una recta, y dado que toda recta tiene dos
direcciones se puede asegurar que existen exactamente dos vectores unitarios en
M, que son perpendiculares a (0M),, cada vector unitario corresponde a cada las

direcciones ya mencionadas.
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Definicién 6.9. Sea f : W — R" un sistema coordenado con W C H*, donde
H* es el semiespacio explicado en la Definicién 5.3, y f(0) = z. Uno de los dos
vectores unitarios mencionados anteriormente es f.(vg) € M,, para algin vy cuya
k-ésima entrada es negativa. Este vector unitario es llamado vector unitario

normal exterior y denotado por n(z).

Proposicién 6.2. Sea p, una orientacion de una variedad con frontera M de
dimensién k. Dado x € OM podemos escoger a una base {vy,...,v5_1} de (OM),

tal que

n(x),v1, ., V1] = e,
si se cumple que

n(z), Wy, ..y Wi_1] = o,

donde {wy,...,wi_1} es otra base de (OM),, entonces, tanto [vy,...,v5_1] como
[wy, ..., wg_1] son la misma orientacién para (OM),. Esta orientacién es denotada

como (Op),.

Demostracién: Sea x € OM y {vy,...,vp_1},{w1, ..., wx_1} dos bases de (OM),,
dado que n(x) es un vector normal a (OM),, se sigue que es ortogonal a ambas
bases ya mencionadas, asi, {n(z),vy,...,vx_1} v {n(z),ws, ..., wr_1} son bases de

M., supongamos que,
n(x), vy, .o, V1] = pz = [n(x), w1, ..., wx_1],

asi, debido a que n(z) = 1-n(z) y a que vy, ..., Vp_1, W1, ..., Wx_1 son elementos
de (OM), y por ende no pueden ser escritos como combinacién lineal de n(x), se

sigue que la matriz de cambio entre ambas bases de M, es,

1 0 0 e 0
A 0 a11 ai2 T A1(k—1) ’
0 ag-11 am-12 - Qr-1)E-1)

sea ahora la matriz A" = (a;;), asi, det(A) = 1 - det(A’) = det(A’), luego, dado

que A tiene determinante positivo, se sigue que A’ también tiene determinante
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positivo, ademds, como A’ es la matriz de cambio de las bases de (OM), dadas
previamente, se concluye que [vy, ..., vx_1] ¥ [w1, ..., wi_1] son la misma orientacién

para (OM),. O

Proposicién 6.3. Las orientaciones (Ju),, para todo x € 9M son consistentes
en OM.

Con esto, dada M una variedad, si M es orientable, entonces dM también

es orientable, y una orientaciéon p para M determina una orientacién 0(u), para

oM.
Definicién 6.10. (Ou), es llamada la orientacién inducida.

Proposicién 6.4. Consideremos a la variedad M = H* con la orientacién usual,
la orientacién inducida en OH* = R¥! = {z € H* : 2, = 0} es (—1)* veces la

orientacion usual.

Si M es una variedad de dimension n — 1 es posible definir un vector unitario
normal exterior sin la necesidad de que M sea la frontera de una variedad de

dimension n.

Definicién 6.11. Sean M una variedad de dimensién n—1, x € M y una orienta-
cion pu,. Si [vg, ..., Up_1] = pg, entonces, escogemos a un vector unitario n(x) € R?
que sea perpendicular a M, tal que [n(z),vq,...,v,_1] es la orientacién usual de
R?. A n(z) se le llama vector unitario normal exterior a M. Esta definicién

es valida incluso si M no es la frontera de alguna variedad de dimensién n.

Definicién 6.12. Sean p,n € N, con p < n y M C R"™ una variedad. Un p-cubo

singular sobre la variedad M es una funcién continua c : [0, 1]? — M.

Si w es una p-forma en una variedad M con frontera de dimensién k y ¢ es un

p-cubo singular en M, entonces:

/w = / cfw.
c [0,1]P

Cuando tomamos a un k-cubo singular ¢ sobre una variedad M con frontera de
dimensién k, existen un conjunto abierto W que contiene a [0,1]F y un sistema
coordenado f : W — R™ tal que c(x) = f(z), para todo x € [0, 1]*.

Definicién 6.13. Sea M una variedad con frontera de dimensién k y un k-cubo

c sobre M. Si M es orientada, entonces ¢ preserva la orientacién si f lo hace.
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Teorema 6.2. Sean cy, ¢y : [0,1]¥ — M dos k-cubos singulares y M una variedad
orientada de dimension k. Si ¢; y ¢y preservan la orientaciéon en M y w es una
k-forma en M tal que w = 0 fuera de ¢;([0, 1]¥) N ¢2([0, 1]*), entonces:

/w:/w.
c1 [

Sea w una k-forma en una variedad orientada M de dimension k, si existe un
k-cubo singular ¢ que preserva la orientacién tal que w = 0 fuera de ¢([0, 1]%) se

define a la integral de w sobre M como:

fon [

Por Teorema 6.2, es facil ver que la integral de w sobre M no depende de c¢. Por
otro lado, dada una k-forma en una variedad M, se sigue que existe una cubierta
abierta @ de M tal que para cada U € O existe un k-cubo singular ¢ que preserva
la orientacién, tal que U € ¢([0,1]%). Sea ® la particién de la unidad para M

subordinada a la cubierta O, asi, la integral de w sobre M se define como:
/ w = Z / - w.
M bew I M

Todas las definiciones pueden ser dadas para una variedad M de dimensiéon k que
posea frontera y una orientacién p,. Sean OM la frontera de M, du su orientacién
inducida y ¢ un k-cubo singular que preserva la orientacién en M tal que c o)
yace sobre M y es la tnica cara que tiene puntos interiores en dM. Recordemos
que c(;,0) preserva la orientacion si k es par, pero no si k es impar, luego, si w es

una (k — 1)-forma en M tal que w = 0 fuera de ¢([0, 1]*), tenemos

/ W= (—1)F / w.
C(k:,O) 8M

Por otro lado, ¢,y aparece con coeficiente (—1)* en Oe, as,

Lo
Oc (71)’“6(;6,0)
~ (1) / "
C(k.0)
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- (-1)%/8Mw
/aMw.

(6.3)

6.5. Teorema de Stokes

Teorema 6.3. (Teorema de Stokes) Sea M una variedad orientada con frontera

de dimensién k. Si M es compacta y w es una (k — 1)-forma en M, entonces:

/dw:/ w.
M oM

Demostracion: Sean M una variedad orientada con frontera de dimensién k y
w una (k — 1)-forma en M. Supongamos que existe un k-cubo ¢ que preserva la
orientacién en M\OM, tal que w = 0 fuera de ¢([0, 1]*), por continuidad de w, se

cumple que w es 0 en Jde. Por la definicién de dw, (4.11) y (4.12) tenemos que

/dw —/ c*(dw)
c [0,1]%

- /[ e w)

Luego,

/dw:/dw:/wzo,
M c Jc

ya que w es 0 en dc, por otro lado, faMw = 0 ya que c¢ esta contenida en M\OM
y por ende w = 0 en M. Supongamos ahora que existe un k-cubo singular ¢ que

preserva la orientacién tal que c ) es la tinica cara de ¢ que permanece en M y
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w = 0 fuera ¢([0, 1]¥), entonces, por (6.3) se sigue que

/dw:/dw:/w.
M c dc

Si consideramos ahora el caso general, existe una cubierta abierta @ de M y una
particién de la unidad ® para M subordinada a O tal que para cada ¢ € ® la
forma ¢-w pertenece a alguno de los dos tipos de formas considerados previamente,

tenemos que,
0=d(1) = d(z cb) = _d(9),
ped PeD
lo que implica que:
O:(E:ﬂ@)Aw:§]ﬂ@Aw)
ped PED

Dado que M es compacto, la suma es finita, asi,

0 / 0
M

- [ Yo ne)

M ycq

-3 | (@A),

ped

con esto, y aplicando Teorema 3.4, 2) se tiene que,

/de:Z/M¢~dw

ped
=0+ ¢ - dw
),
= (d(g) Nw) + ¢ dw
Sz,
=> [ () Aw+ ¢ - dw)
pcd /M

:Z/M(d(gb) Aw+ (=1) A dw)

ped
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=¢@/Md<¢w>
:%/MW"")

Con lo cual, se da por demostrado el teorema. O






Capitulo 7

Aplicaciones de las formas

diferenciales

Teorema 7.1. Sean R € R+ y n € N. Dada la funcién cg, : [0, 1] — R*\{(0,0)}

definida como sigue,
crn(t) = (Rcos(2mnt), Rsen(2mnt)),

con R >0y n &N, se cumple la siguiente igualdad,

/ df = 27n,
CR

,n

donde df es la 1-forma encontrada en el Ejemplo 3.9, ademds, f.,  # Oc para
cualquier 2-cadena en R?\{(0,0)}.

Demostracion: Aplicando la definicién de integral sobre cubos singulares y el

Teorema 3.2, 2) y 3), se sigue que:

—XT2 T
d9:/ ———dr; + ——dx
/CR,n CR,n<x%+a:§ P a? 4 a3 2)
—XT9 T
= Chn|l 5——=dr) + ——dx
/m i <x%+:c% P a4 a3 2)

_ —Rsen(2mnt) .
N /[071] ((R cos(2mnt))? + (Rsen(2mnt))? Crn(dry)

R cos(2mnt) .
(Rcos(2mnt))? + (Rsen(2mnt))? CR’”(dx2)>

175
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/ —Rsen(2mnt) )
= [0,1] R2(COS2(27Tnt)+Sen2(27rnt))cR,n T

R cos(2mnt) < (diy)
R2(0052 2mnt) + Sen2(27mt))cR’" 2
— sen( 27mt cos(2mnt)

[ (i eiaten) + <)

—/ +(—sen(2mnt)cy, (dwy) + cos(2mnt )y, (dxs)),
[0,1]
por otro lado, por Teorema 3.2, 1) tenemos que:

Crn(dr) = — R2mn sen(27nt)dt,
Crn(dra) =R27mn cos(2mnt)dt,

asi,
/[ | +(—sen(2mnt)cy , (day) 4 cos(2mnt)cy, , (das))
0,1
= /[0 , +(—sen(2mnt)(—R2mn sen(2mnt)dt) + cos(2mnt) R2mwn cos(2mnt )dt)
= /[0 , %27m(sen2(27rnt) + cos?(2mnt))dt

:27Tn/ 1dt
[0,1]

=2mnt|}
=2mn(1 - 0)

=2mn.

Supongamos ahora que existe alguna 2-cadena c tal que f., = Jc, asi, por el

Teorema 4.2 se tiene que:

/ d@:/ d@:/d(d@):/ozo.
fCR,n dc c c

Por otro lado,

/ db = / df = 2mn,
f CR,n

°R,n
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asi, 2mn = 0, lo cual es una contradiccién, y por ende no existe alguna 2-cadena
c tal que f.,, = Oc. O

Teorema 7.2. (Independencia de parametrizaciéon) Sea ¢ un k-cubo singular
de R* y p : [0,1]* — [0,1]% una funcién inyectiva tal que p([0,1]*) = [0,1]* y
det(p'(x)) > 0, para todo x € [0, 1]*. Si w es una k-forma de R*, entonces:

/w:/ w.
c cop

Demostracién: Sean ¢ un k-cubo singular y w una k-forma en RF, luego, se

cumple la siguiente igualdad w = w; L COMO

..........

f, luego, por Teorema 3.3,
c*(w) = (f oc)det(c)dxy A -+ A day,

tomemos a g = (f oc)det(c), asi, ¢*(w) = gdxy A- - - Adzxy, por otro lado, notemos
que (cop) :[0,1]* — [0,1]%, ademéds, denotemos a la frontera de [0,1]* como
0[0,1]%, asi, [0, 1]* = (0,1)* U 9]0, 1]*, con esto y aplicando el Teorema 3.2, 5) y

el Teorema 3.3, se obtiene lo siguiente:

/ w :/ (cop)w
cop [0,1]F
= / p(cw)
[0,1]%

:/ p*(gdxy A -+ A dxy)

[0,1]

:/ (gop)det(p')dxy A -+ Ndxy
[0,1]*

:/ (g o p)det(p)dxy A -+ N dxy
(0,1)FUB[0,1]*

:/ k(g op)det(p)dxy A -+ A dxy + / (gop))det(p')dxy A --- A day,
(0,1)

8[0,1]%

debido a que se cumplen todas las hipdtesis del Teorema 1.14, la primera integral

de la suma cumple la siguiente igualdad:

/( )k(g op)det(p)dxy A -+ A dxy :/ gdxy A - -+ A day,
0,1

p((0,1)")
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respecto a la segunda integral de la suma, recordemos que 9[0, 1]* tiene medida
cero, y por Teorema 1.19 esta integral es igual a cero. Por otro lado, por Teo-
rema 1.18 se tiene que p(9[0, 1]¥) tiene medida cero. Luego, por Teorema 1.19,

se sigue que:

/ gdxy A--- Ndxy, =0,
p(0[0,1]%)

con esto,

gdxy A--- Ndxp +0

S

/ gdxi A --- Ndxy =
p((0,1)F)

p((0,1))

gdxy N - - N\dxy

o

p((0,1)*)

/ gdxy A - Ndxy
p(a[o,l]k)

gdxi A --- Ndxy

_|_

I
S

p((0,1)%)up(9[0,1]%)

I
o

gdzy N - -+ A dxg
p((0,1)kU0[0,1]%)

gdxy A -+ Ndzy

I
T

p([O,l]k)

I
S

gdxy N\ --- N dxy,
k

[0,1]

con lo cual se concluye que

/ w:/ gda:l/\~~~/\d1:k:/w.
cop [0,1]F c

Por lo tanto, se da por demostrado el teorema. O

Teorema 7.3. Si ¢ es un 1-cubo singular en R?\{(0,0)} con ¢(0) = ¢(1), entonces

existe un tnico n tal que f, — f,,, = 0c?, para alguna 2-cadena ¢* de R*\{(0,0)}.

Demostracion: Supongamos ahora que existen n, m € N para los cuales se cum-

plen las siguientes igualdades,

fc - fcl,n 286%7
Je— f61,m 28037
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donde ¢} y ¢3 son 2-cadenas de R*\{(0,0)}. Sea ahora f = fz — f.2, luego,

:fc - chm - fc + fclyn
:chn - chma

luego, aplicando el Teorema 4.2, se tiene que:

/ d@:/d@:/d(d@):/ozo.
fcl,nifclﬂn 8f f f

Por otro lado,

/ df = df — do
fe fern

l,n_fcl,m fcl,m
=2mn — 2m™m

=27(n —m).

Asi, 27r(n—m) = 0, lo que implica que n = m y por ende se concluye que el entero

que cumple la igualdad es tnico. O]

Para el siguiente teorema, veremos a C de la siguiente manera,
C={(a,b) : a,b € R},
con las operaciones:

(a,b) + (¢,d) =(a +¢,b+d),
(a,b) - (c,d) =(ac — bd, ad + be).

Teorema 7.4. Sean ay, ..., a, € Cy definamos a la funcién g : C — C dada como:
g(z) = 2"+ a1 2" P+ + a.

Definamos ahora al 1-cubo singular cg, : [0,1] = C\{0+0i} como cr, = gocry,

con R > 0y al 2-cubo singular ¢ como ¢(s,t) =t - crn(s) + (1 — t)cry(s).

a) Se cumple que dc = fe,  — fep,., ademas, c([0,1] x [0,1]) € C\{0+ 04} si R

es muy grande.
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b) Todo polinomio 2™ + a;2" ! + -+ + a,, con a; € C para todo i € {1, ...,n},

tiene una raiz en C.
Demostracion:

a) Tenemos que,

c@0)(s,t) =(co [(22,0))<57t> = c(5,0) = cry(s),
cen(s,t) =(coI1)(s,t) = c(s,1) = crauls),
cao(s,t) =(co 1(2170))(5, t)
=c(0,1)
=tcpn(0) + (1 —t)cry(0)
=t(Rcos(2mn - 0), Rsen(27n - 0)) 4+ (1 — t)g(cr1(0))
=t(R,0) + (1 — t)g(Rcos(27 - 0), Rsen(2 - 0))
=t(R,0) + (1 —t)g(R,0),
can(s,t) =(coIf1))(s,t)
=c(1,t)
=tcpn(l) + (1 — t)cr,y(1)
=t(Rcos(2mn - 1), Rsen(2mn - 1)) + (1 — t)g(cr1(1))
=t(R,0) + (1 —t)g(Rcos(2m - 1), Rsen(27 - 1))
t(R,0)+ (1 —1t)g(R,0),

notemos que c¢(;,0) = ¢(1,1), asi,

2 1

dc = Z Z(_1>i+a-fci,a

i=1 a=0
== fewoy T fean T fewn) = e
== Jewoy T fewoy T feny = Temm
:fCR,g - fCR,n'

Por otro lado, tenemos que

g(z) ="+ a2+ - +a,
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ademds, si z = Rcos(27ms) + Rsen(2ms)i, entonces:

2" =(Rcos(2ms) + Rsen(2ms)i)"
=(Rcos(2ms), Rsen(2ms))"

=R"(cos(2mns),sen(2mns)),
para todo n € N, asi,

g(z) =g(Rcos(2ms), Rsen(2ms))
R(cos(27s), sen(2ms))

=R"(cos(2mns),sen(2mns)) (1 +

Tt R"(cos(2mns), sen(27m5)))
:g(CRJ(S))'

Luego, si R es muy grande, se sigue que
g(cr1(s)) ~ R"(cos(2mns),sen(2mns)) = R" epa(s),
supongamos ahora que existe ¢y € [0, 1] tal que
c(s,t0) ~ tocrn(s) + (1 —to) R" tera(s) = (0,0),
en otras palabras,
((to + (1 — to) R™ 1) cos(2mns), (to + (1 — to) R" 1) sen(27ns)) = (0,0),

dado que no existe valor para s tal que cos(27ns) y sen(27ns) sean iguales

a 0, se sigue que to + (1 — to)R"! = 0, con lo cual, R"! = lft()o, dado que
to € [0, 1], se sigue que R"~! es negativo, lo cual es una contradiccién, y por

ende se concluye que (0,0) ¢ ¢([0,1] x [0, 1]).

Supongamos que g no tiene raices en C. De a) del teorema 7.4, tenemos
que fep, = 0c+ fen.,, asi, apoydndonos del Ejemplo 3.9, de la Teorema

7.1 y del Teorema 4.2 se tiene que,

/ do :/ df
fe 80+fcR7n

R,g
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:/ d9+/ do

oc fCR,n

:/mm+/ do
c CR

\n

—/O+%n =

=0+ 2mn

=2mn.

Por otro lado, sea el 2-cubo singular ¢ de R? dado como sigue,
d(s,t) =cip ¢(s) = g(tR cos(2ms), tRsen(27s)).
Luego, apoyandonos de teorema 7.4, a), se sigue que,

Cl(l,O) (87 t) :CI<07 t)

=9(tR,0),
ciy(s,t) =¢(1,1)

=9(tR,0),
Cla0)(5, 1) =C(5,0)

=9(0,0)

=g(Rcos(27s), Rsen(2ms))

=cr,s(8),

notemos que a,, # 0 + 0 ya que g no tiene raices, y debido a que a, es un

/

. ’ ’ / _ ,
valor fijo, C(2,0) €8 UNA 2-cadena constante, ademaés, Cl10) = C1,1)> 31,

2,0

I =— fu

(1,0

:_fc’

(1,0)

:fcl(2,0) - fCR,g7

+fc’

(1,1

+fc’

(1,0)

>+fc’ _fc’

(2,0) (2,1)

+fC, _fCRyg

(2,0)
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asi, y guidndonos por lo visto en (7.1)

/ df = do
c for

(2,0 l2,0)

= / do
8C/+fCR,g

= / do + / db
oc’ fCR,g

=2,

pero, por otro lado, se tiene que,

T
df = d d
/cz / ( "t T ””)

(2,0) (2 0)

—Qp 2 an.1
= — " det(d )dr, + —=——det(a’ )dzx
/[0,1}2 <a%,1 + 03,2 (an)d, a%,l ‘1“@%,2 (an)
:/ (0dz1 + 0dzs)
[0,1]2

=0,

que el resultado anterior sea igual a cero, se debe a que al ser c’(2 0) = an constante
se sigue que det(al,) = 0, y por ende se llega a una contradiccién, ya que 27 # 0,

con lo cual se concluye que g tiene alguna raiz en C. O]

Teorema 7.5. Sean R C R3 tal que R =T x [0,b], con T C R? y v : R® — R?

una solucién de la ecuacion parabdlica:
0?u N Ou _ Ou
ox2 oy Ot
Si se cumple que u = 0 en 7' x {0} y en (9T x [0,b], entonces u = 0 en todo R
(Flandres, 1989).
Demostracion: Consideremos a la ecuacién parabdlica siguiente,

0*u n 0*u _ Ou
0x?  Or3  Ows’

y supongamos que u es una solucion de la ecuacion previa, la cual es valida en

una regién en R? que contiene a los conjuntos R y OR. Supongamos que existe



184  CAPITULO 7. APLICACIONES DE LAS FORMAS DIFERENCIALES
3-cubo singular ¢ : [0, 1]> — R? tal que ¢([0,1]*) = R. Sea la 2-forma siguiente,

B = 2uDyudzs A drs — 2uDsudz; A drs — u*dxy A dis,
luego,

dfB =d(2uD udzy A dxs — 2uDoudzy A drs — u’dxy A day)
=d(2uD udwy A dvs) — d(2uDoudry A drs) — d(u?dxy A day)
=(2D1uDiu 4 2uD1(Dyu))dxy A dxs A dxs
— (2DouDyu + 2uDo(Dou))dxs A dzy A dxs
— 2uDsudrs A\ dry A dzs

2 2

81'1 ax%

2 2
— (=Dt (2 (aa?u) + 2u§7u) dxy N\ dze A dxs
2 2

— (—1)1'22u§7ud:c1 A dxy N dxs
3

2 9 2 2
:(2(%) +2u8u+2<8u) +2u%—2u%)d1’1/\dw2/\dm3
1

Ox? Oy 3 Oxs
ou 8u ou ou

=2 ﬁ + 2 Ou dl‘lAdl‘QAd"Eg,
0xy 81’2

con esto, y aplicando el Teorema 4.2, se tiene que:

’ ou\>
/‘90 /< (afﬂl) (6552) )d$1/\d$2/\da:3
du ou \?
‘/(2<37) ”(a—@) )dxld:czd:cs.

Debido a que a R lo podemos ver como el producto cartesiano de conjunto 1" de

(7.2)

R? con [0, b], existen ¢y, ¢, c3 : R — R3 cubos singulares tales que,

Cl([()? 1]3) :<8T> X {07 b]7
1]°) =T x {b},
%) =T x {0},
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ana 30 = fC1 + fCQ - f037 luego,

/80 r= /fcl+fc2fC3 ’
N
=[]

B /(a:r)x[o,b] o /Tx{o} - T'x{b} 7

dado que u es igual a 0 en 7' x {0} y en (OT") x [0,b] se sigue que,

/ ﬁ:/ =0,
(OT) %[0, Tx{0}

por otro lado,
/ 8= [2uDyudzy A drs — 2uDyudry A dos — u*dry A da,]
Tx{b} Tx{b}

:/ 2uDjudxy A drs — / 2uDsudxy N drs — / u?dry A day
Tx{b} Tx{b} Tx{b}

://QUDludxgdxg—//2uD2udx1d:c3—/ u?dridrs
TJb T Jb Tx{b}

=— / u?dx,drs,
Tx{b}

las primeras dos integrales desaparecen debido a que la integral respecto a la
variable x3 es sobre un punto, de aqui, y retomando a la igualdad dada en (7.2),

se tiene que,

9 ou\’ ou\’
- u*dxidre = 2l — ) +2| — dxidxodrs,
T {b} c Oy O

visto de otra forma,

9 ou \” ou\”
U dl‘ldl'Q‘i‘ 2 — + 2 — dl’ld.??gdl’g = O,
Tx{b} c 0z, 09

notemos que las integrales son con funciones positivas, luego, u*> = 0 en T x {b}

y du — 9 — (en R, debido a que las derivadas de u respecto a las variables z;
Ox1 Oxo )
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y x9 son iguales a 0 se tiene que u es una funcion que depende exclusivamente de
la variable x3, asi, podemos decir que u(xy, xs,z3) = v(r3), para alguna funcién v

que dependa solo de x3.
Aunado a lo anterior, también tenemos que u = 0 en T x {b}, asi, v(b) = 0, por

otro lado, dado que u es una solucion a la ecuacién de calor, se cumple que,

dv_ou
d{lfg _81'3
O F
- or? 03
—0+0
:07

con lo cual v es una funcién contante en R, asi, como v(b) = 0, luego v(t) = 0,

para todo t € [0,b], con lo cual se concluye que u = 0 en R.



Conclusiones

Originalmente, este trabajo de tesis iba dirigido a estudiantes de Matematicas
Aplicadas, no obstante, durante la redaccion de los ultimos capitulos se decidié por
ampliar este enfoque, y actualmente, alumnos de Fisica Aplicada también pueden
hacer uso de este trabajo. Aunque otro de los objetivos de redactar este escrito era
el que los lectores no tuvieran gran dificultad para entender y utilizar conceptos,
teoremas o proposiciones referentes a las formas diferenciales, es necesario que
estos lectores posean conocimientos en distintas areas de las matematicas, siendo
las més importantes: Célculo Diferencial e Integral en Varias Variables y Algebra
lineal.

Por otro parte, la mayoria de las demostraciones aqui presentadas ya existian en
libros, aunque no eran mostradas por completo, por lo que una de las aportaciones
de esta tesis es justamente dar explicaciones detalladas de dichas demostraciones.
Algunos de los teoremas cuyas demostraciones han sido explicadas minuciosamen-
te son: Lema de Poincaré, Teorema de Stokes (tanto la versién para variedades
como la versién para cadenas singulares), etc. Asimismo, todas las explicaciones
de los ejemplos mostrados son completamente de mi autoria.

De igual manera, yo realicé la mayoria de las explicaciones y comentarios sobre
las principales definiciones como: tensores, orientacién, formas diferenciales, cubos
singulares, variedades, entre otros.

Si bien las aplicaciones de las formas diferenciales son muchas tanto en el area de
las matematicas como en el area de la fisica, no fue posible agregar mas de las
aqui mostradas debido a limitaciones de tiempo, a que muchas de ellas ya fueron
descritas en otros trabajos de tesis y a que este escrito ya es muy extenso, sin
embargo, algunas ramas donde podemos aplicar a las formas diferenciales son:
Electromagnetismo (Ecuaciones de Maxwell), Anélisis Complejo, Algebra lineal,

Geometria diferencial, entre otras.
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