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Chulada¡.

I
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3.6. Lema de Poincaré . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

III
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Introducción

Actualmente, no existen muchos trabajos referentes a las formas diferenciales

y mucho menos en español, aunado a lo anterior, los libros y tesis que abordan

este tema no lo hacen de manera completa o de fácil comprensión para el lector,

es por ello que para este trabajo de tesis se decidió por abordar a las formas dife-

renciales, desde su definición hasta sus aplicaciones, de una forma que clara para

el lector, para lograr este objetivo, las demostraciones de teoremas y explicaciones

de ejercicios serán lo más detalladamente posible, asimismo, habrá comentarios

en distintas partes de este escrito que ayudarán a comprender mejor el cómo se

desenvuelve este trabajo.

Este trabajo está conformado de siete caṕıtulos, en el primero de ellos se abor-

darán distintas definiciones, ejemplos y teoremas que se usarán en los caṕıtulos

restantes. Posteriormente, en el segundo caṕıtulo, se presentará la noción de k-

tensor, lo que permite definir y estudiar a las k-formas y sus propiedades en el

tercer caṕıtulo. El cuarto caṕıtulo introducirá un nuevo concepto: m-cubos sin-

gulares, el cual nos será útil para poder integrar k-formas. En el quinto caṕıtulo

se abordarán las variedades en Rn, sus tipos, ejemplos y teoremas, esto, con el fin

de que varios de los conceptos mostrados previamente puedan ser generalizados

al contexto de variedades en el caṕıtulo seis. Por último, el caṕıtulo siete está

enfocado a mostrar algunas aplicaciones de las formas diferenciales.

Todas las definiciones, teoremas, proposiciones y corolarios aqúı presentados y que

no cuentan con una cita, fueron adquiridos del libro Calculus on manifolds de

Michael Spivak (Spivak, 1995).

1





Caṕıtulo 1

Preliminares

Con el fin de comprender las diferentes definiciones, teoremas, ejemplos y apli-

caciones presentados en esta tesis, es necesario presentar conceptos previos de

diferentes áreas de las matemáticas, tales como álgebra lineal, teoŕıa de la me-

dida, trigonometŕıa, y las más relevantes, Cálculo diferencial e integral en varias

variables.

1.1. Espacio dual

Definición 1.1. Sea V un espacio vectorial de dimensión finita sobre un campo

F. El espacio dual de V denotado por V ∗ o V ′ se define como el conjunto de todas

las transformaciones lineales V → F, con operaciones lineales definidas punto a

punto:

(ϕ+ ψ)(x) := ϕ(x) + ψ(x),

(λϕ)(x) := λϕ(x).

A los elementos de V se les llama funcionales lineales (Maximenko, 2020c).

Definición 1.2. Sean n ∈ N, V un espacio vectorial sobre F y A = {a1, ..., an}
una base de V . Para todo i ∈ {1, ..., n}, denotemos por χi al funcional cuyo valor

en un vector v ∈ V es igual a la i-ésima coordenada del vector de coordenadas de

v respecto a la base A.

En otras palabras, si v =
∑n

j=1 λjaj, entonces,

χi(v) = λi.

3
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Teorema 1.1. (Teorema de la base dual). Sean n ∈ N, V un espacio vectorial

sobre F y A = {a1, ..., an} una base de V , entonces, existe una base {χ1, ..., χn}
del espacio V ∗ tal que:

Se tiene la siguiente relación entre los vectores ai y los funcionales χi :

χi(aj) =

 1, si i = j,

0, otro caso,

para cada i, j ∈ {1, ..., n}.

Todo funcional ϕ ∈ V ∗ se escribe como una combinación lineal de los fun-

cionales χ1, ..., χn de la siguiente manera:

ϕ =
n∑

i=1

ϕ(ai)χi,

donde ϕ(ai) ∈ F, para todo i ∈ {1, ..., n}.

La base {χ1, ..., χn} del espacio V ∗ definida en Teorema 1.1 es llamada la

base dual a la base A (Maximenko, 2020a).

Ejemplo 1.1. Sean n ∈ N y V = Rn y B = {e1, e2, ..., en} la base canónica de

Rn y el conjunto de funcionales lineales B∗ = {e∗1, e∗2, ..., e∗n}, definidos como,

e∗i (v1, ..., vn) = vi,

para cada i ∈ {1, ..., n} y v = (v1, ..., vn) ∈ Rn, luego,

e∗i (ej) = δij =

 1, si i = j,

0, otro caso.

Por el Teorema 1.1 se tiene que B∗ es una base para (Rn)∗.

1.2. Permutaciones

Definición 1.3. Sean k ∈ N y δ : {1, ..., k} → {1, ..., k}. A la función δ se llama

permutación del conjunto {1, ..., k} si es biyectiva. Al conjunto de todas las

permutaciones del conjunto {1, ..., k} se le denota por Sk, este conjunto cuenta

con k! elementos.
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Las permutaciones suelen representarse de la siguiente manera: 1 2 · · · k

δ(1) δ(2) · · · δ(k)

 .

Ejemplo 1.2. Sean el conjunto A = {1, 2, 3, 4, 5} y la función δ : A → A dada

por:

δ(i) =

 i+ 1, si i ∈ {1, 2, 3, 4},

1, si i = 5,

es fácil ver que δ es una función biyectiva, además, la representación de esta

permutación es la siguiente, 1 2 3 4 5

2 3 4 5 1

 .

Definición 1.4. Sean r, k ∈ N, tales que r ≤ k y a1, ..., ar ∈ {1, ..., k}, tales que
ai ̸= aj si i ̸= j, para cada i, j ∈ {1, .., r}. La permutación δ tal que,

para todo p ∈ {1, ..., r − 1}, δ(ap) := ap+1;

δ(ar) := a1;

para todo j ̸∈ {a1, ..., ar}, δ(j) := j,

se llama ciclo de los elementos a1, ..., ar, se dirá que este ciclo tiene longitud r y

será denotado por c(a1, a2, ..., ar).

Para una mejor explicación de ejemplos y definiciones, se le agregará un sub́ındice

p a la representación usual de ciclo, el cual indicará el número que le corresponde

al ciclo de acuerdo al orden que se definirá más adelante.

Definición 1.5. Un ciclo de dos elementos se llama transposición.

Explicación detallada: si p, q ∈ {1, ..., k}, p ̸= q, entonces:

c(p, q)(j)


p, si j = q;

q, si j = p;

j, si j ∈ {1, ..., k}\{p, q}.
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(Maximenko, 2023c). A c(p, q) lo denotaremos como τp,q.

Definición 1.6. Sean k ∈ N y δ, ϕ ∈ Sk, el producto δ · ϕ : {1, ..., k} → {1, ..., k}
se define como sigue, (δ · ϕ)(j) = δ(ϕ(j)), para todo j ∈ {1, ..., k}. Notemos que

δ · ϕ es una función biyectiva y por lo tanto δ · ϕ ∈ Sk (Maximenko, 2023d).

Además, δ · ϕ = δ ◦ ϕ, es decir, el producto de dos permutaciones es igual a la

composición de dichas permutaciones.

Propiedades:

1. Asociatividad:

para todo δ, σ, ϕ ∈ Sk, (δ · σ) · ϕ = δ · (σ · ϕ).

2. La permutación identidad, denotada por id o por e,

id =

1 2 · · · k

1 2 · · · k

 ,

es un elemento neutro con respecto a la multiplicación de las permutaciones:

δ · e = e · δ = δ, para todo δ ∈ Sk.

5. Si k = 1 o k = 2, entonces la multiplicación en Sk es conmutativa. Si k ≥ 3,

entonces la multiplicación en Sk no es conmutativa.

Cuando los conjuntos {a1,1, ..., a1,r1}, {a2,1, ..., a2,r2}, ..., {ap,1, ..., ap,rp} son dis-

juntos a pares, diremos que los ciclos

c1(a1,1, ..., a1,r1), c2(a2,1, ..., a2,r2), ..., cp(ap,1, ..., ap,rp)

son ciclos disjuntos (Maximenko, 2020b).

Teorema 1.2. Sea k ∈ N. Toda permutación δ ∈ Sk se puede ver como el producto

de ciclos disjuntos (Fraleigh, 1987).

Es decir, podemos ver a δ de la siguiente manera,

δ = c1(a1,1, ..., a1,r1)c2(a2,1, ..., a2,r2) · · · cp(ap,1, ..., ap,rp).

Para poder descomponer a una permutación δ ∈ Sk en un producto de p ciclos

disjuntos, primero construimos al ciclo que contiene al elemento 1:
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c1(a1,1, a1,2, ..., a1,r1) = c1(1, a1,2, ..., a1,r1),

posteriormente, tomamos al primer elemento de {1, ..., k} que no pertenece al

conjunto {a1,1, a1,2, ..., a1,r1} y construimos un segundo ciclo, el cual empieza en

dicho elemento:

c2(a2,1, a2,2, ..., a2,r2),

y aśı sucesivamente se construyen todos los ciclos de δ hasta que cada elemento

de {1, ..., k} pertenezca a algún ciclo, luego, δ se descompone en un producto de

p ciclos disjuntos de la siguiente manera:

δ = c1(a1,1, a2,1, ..., a1,r1) · · · cp(ap,1, ap,2, ..., ap,rp).

Ejemplo 1.3. Sea la permutación δ : {1, 2, 3, 4} → {1, 2, 3, 4} dada como sigue,

δ1 =

1 2 3 4

3 4 1 2

 ,

para poder descomponer a δ como un producto de ciclos, primero nos fijamos en el

ciclo que contiene al elemento 1, dado que δ(1) = 3 y δ(3) = 1, entonces definimos

al primer ciclo como sigue,

c1(1, 3) =

1 2 3 4

3 2 1 4

 ,

luego, para poder definir al siguiente ciclo, nos fijamos en el primer elemento de

{1, 2, 3, 4} que no pertenece a {1, 3}, en este caso, dicho elemento es 2, con esto

y debido a que δ(2) = 4 y δ(4) = 2, el segundo y último ciclo se define de la

siguiente manera,

c2(2, 4) =

1 2 3 4

1 4 3 2

 ,

aśı, δ = c1(1, 3) · c2(2, 4).

Definición 1.7. Sean k, p ∈ N. Representando a δ ∈ Sk como un producto de p

ciclos disjuntos:

δ = c1(a1,1, a2,1, ..., a1,r1) · · · cp(ap,1, ap,2, ..., ap,rp),
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con p ≤ k, y donde cada ciclo tiene longitud ri, i ∈ {1, ..., p}. Se define al decre-

mento de una permutación como sigue:

d(δ) = (r1 − 1) + · · ·+ (rp − 1).

Definición 1.8. El signo o signatura de δ se define de la siguiente manera:

sgn(δ) = (−1)d(δ).

Proposición 1.1. Sean k ∈ N y p, q ∈ {1, ..., k} tales que p ̸= q. Se cumple que

sgn(τp,q) = −1.

Teorema 1.3. Sea k ∈ N. Dadas las permutaciones δ1, δ2 ∈ Sk, se cumple que:

sgn(δ1 · δ2) = sgn(δ1)sgn(δ2).

Corolario 1.1. Sea δ ∈ Sk y sean p, q ∈ {1, ..., k} con p ̸= q. Entonces,

sgn(δ · τp,q) = −sgn(δ) (Maximenko, 2023e).

Ejemplo 1.4. Sea el conjunto {1, 2}, luego, las permutaciones posibles de este

conjunto y sus respectivos signos son:

1.

δ1 =

1 2

1 2

 ,

aśı, δ1 = c1(1)c2(2), luego, d(δ1) = (1− 1) + (1− 1) = 0, con esto,

sgn(δ1) = (−1)0 = 1.

2.

δ2 =

1 2

2 1

 ,

aśı, δ2 = c1(1, 2), luego, d(δ2) = (2− 1) = 1, con esto,

sgn(δ2) = (−1)1 = −1.

Ejemplo 1.5. Sea el conjunto {1, 2, 3}, luego, las permutaciones posibles de este

conjunto y sus respectivos signos son:
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1.

δ1 =

1 2 3

1 2 3

 ,

aśı, δ1 = c1(1)c2(2)c3(3), luego, d(δ1) = (1− 1) + (1− 1) + (1− 1) = 0, con

esto, sgn(δ1) = (−1)0 = 1.

2.

δ2 =

1 2 3

1 3 2

 ,

aśı, δ2 = c1(1)c2(2, 3), luego, d(δ2) = (1 − 1) + (2 − 1) = 1, con esto,

sgn(δ2) = (−1)1 = −1.

3.

δ3 =

1 2 3

3 2 1

 ,

aśı, δ3 = c1(1, 3)c2(2), luego, d(δ3) = (2 − 1) + (1 − 1) = 1, con esto,

sgn(δ3) = (−1)1 = −1.

4.

δ4 =

1 2 3

2 1 3

 ,

aśı, δ4 = c1(1, 2)c2(3), luego, d(δ4) = (2 − 1) + (1 − 1) = 1, con esto,

sgn(δ4) = (−1)1 = −1.

5.

δ5 =

1 2 3

2 3 1

 ,

aśı, δ5 = c1(1, 2, 3), luego, d(δ5) = 3− 1 = 2, con esto, sgn(δ5) = (−1)2 = 1.

6.

δ6 =

1 2 3

3 1 2

 ,

aśı, δ6 = c1(1, 2, 3), luego, d(δ6) = 3− 1 = 2, con esto, sgn(δ6) = (−1)2 = 1.

Ejemplo 1.6. Sea δ : {1, 2, 3, 4, 5} → {1, 2, 3, 4, 5} una permutación dada como
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sigue,

δ =

1 2 3 4 5

2 3 1 5 4

 ,

aśı,

δ = c1(1, 2, 3) · c2(4, 5),

luego, d(δ) = (3− 1) + (2− 1) = 3, con esto sgn(δ) = (−1)3 = −1.

Por otro lado, consideremos a la transposición τ4,5 : {1, 2, 3, 4, 5} → {1, 2, 3, 4, 5}
que está dada como sigue,

τ4,5 =

1 2 3 4 5

1 2 3 5 4

 ,

luego,

δ · τ4,5 =

 1 2 3 4 5

δ(1) δ(2) δ(3) δ(5) δ(4)


=

1 2 3 4 5

2 3 1 4 5

 ,

aśı, δ ·τ4,5 = c1(1, 2, 3) ·c2(4) ·c3(5), luego, d(δ ·τ4,5) = (3−1)+(1−1)+(1−1) = 2,

con esto,

sgn(δ · τ4,5) = (−1)2 = −(−1) = −sgn(δ).

Teorema 1.4. Si δ ∈ Sk. Entonces existen d(δ) transposiciones τ1, ..., τd(δ) tales

que δ = τ1 · · · τd(δ). Si m < d(δ), entonces no existen m transposiciones β1, ..., βm

tales que δ = β1 · · · βm (Maximenko, 2023a).

Recordemos que por definición, una permutación δ es una función biyectiva,

con esto, podemos asegurar la existencia de δ−1.

Definición 1.9. La inversa de una permutación δ es simplemente la función

inversa δ−1. Esto significa que si δ(p) = q, entonces δ−1(q) = p (Maximenko,

2023b).
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1.3. Determinantes

Definición 1.10. Sean n ∈ N y A = [Ai,j], con i, j ∈ {1, ..., n}, una matriz

cuadrada de orden n. El determinante de A, denotado por det(A) o |A| se

define de la siguiente manera

det(A) :=
∑
δ∈Sn

sgn(δ)A1,δ(1)A2,δ(2) · · ·An,δ(n).

(Lipschutz & Lipson, 2009).

Propiedades

Los determinantes de una matriz y de su transpuesta son iguales; es decir,

det(AT ) = det(A).

Si una fila (columna) de A consta solo de ceros, entonces det(A) = 0.

Si dos filas (columnas) de A son linealmente dependientes, entonces,

det(A) = 0.

Si la matriz B se obtiene intercambiando dos filas o intercambiando dos

columnas de A, entonces det(B) = −det(A).

Si B se obtiene a partir de A multiplicando una fila (columna) de A por un

número real c, entonces det(B) = c · det(A).

Si B = [bij] se obtiene de A = [aij] sumando a cada elemento de la r-ésima

fila (columna) de A una constante c por el elemento correspondiente de la

s-ésima fila (columna) de A, r ̸= s, entonces det(B) = det(A).

El determinante del producto de dos matrices es el producto de sus deter-

minantes; es decir, det(AB) = det(A) · det(B) (Kolman & Hill, 2006).

Definición 1.11. Sean n ∈ N y A una matriz cuadrada de orden n. La

matriz cuadrada B de orden n que satisface las siguientes condiciones

A ·B = In B · A = In,

es llamada la matriz inversa de A y es denotada por A−1 (Meyer, 2001).
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Teorema 1.5. Sean n ∈ N y A una matriz cuadrada de orden n. Las

proposiciones siguientes son equivalentes:

• A es invertible.

• rango(A) = n.

• Si Ax = 0, entonces x = 0 (Meyer, 2001).

1.4. Funciones y continuidad

Definición 1.12. Sea n ∈ N, ai, bi ∈ R para todo i ∈ {1, ..., n}. El conjunto
(a1, b1)×· · ·×(an, bn) ⊂ Rn, donde (ai, bi) es un intervalo abierto de R, es llamado

rectángulo abierto en Rn, mientras que el conjunto [a1, b1]× · · · × [an, bn] ⊂ Rn

es llamado rectángulo cerrado en Rn.

Definición 1.13. Sea n ∈ N. Un conjunto U ⊂ Rn es llamado abierto en Rn si

para cada x ∈ U existe un rectángulo abierto A tal que x ∈ A ⊂ U .

Definición 1.14. Sea A ⊂ Rn. El conjunto de puntos de x ∈ A para los cuales

existe un rectángulo abierto A tal que x ∈ A ⊂ U , es llamado interior de A y

denotado por int(A).

Definición 1.15. Sean A ⊂ Rn. El conjunto de puntos x ∈ Rn para los cuales

para todo r > 0 se cumple que

B(x, r) ∩ (A\{x}) ̸= ∅,

es llamado conjunto derivado de A y denotado por A′ (Apostol, 2006).

Teorema 1.6. Sean A ⊂ Rn+m, B ⊂ Rn y C ⊂ Rm tales que A = B × C. El

conjunto A es un conjunto abierto si y solo si B y C son conjuntos abiertos en Rn

y en Rm respectivamente.

Sean f = (f1, ..., fm) : A ⊂ Rn → Rm y a ∈ A′, luego,

ĺım
x→a

f(x) = (ĺım
x→a

f1(x), ..., ĺım
x→a

fm(x)).

Definición 1.16. Sean n,m ∈ N, A ⊂ Rn y f : A→ Rm una función. La función

f es llamada continua en a si

ĺım
x→a

f(x) = f(a).
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f es continua en A si es continua en cada a ∈ A.

Teorema 1.7. Sean n ∈ N, A ⊂ Rn. Una función f : A→ Rm es continua en A si

y solo si para cada conjunto abierto U ⊂ Rm existe un conjunto abierto V ⊂ Rn

tal que f−1(U) = V ∩ A.

1.5. Diferenciabilidad

Definición 1.17. Sean n ∈ N, A ⊂ Rn, a ∈ int(A) y f : A → Rm. Diremos que

f es diferenciable en a, si existe una transformación lineal λ : Rn → Rm tal que

ĺım
h→0

||f(a+ h)− f(a)− λ(h)||
||h||

= 0.

Si A es abierto en Rn y f es diferenciable en cada a ∈ A, entonces diremos que f

es diferenciable en A

Proposición 1.2. Sean n,m ∈ N, A ⊂ Rn, a ∈ A y f : A → Rm. Si f es

diferenciable en a ∈ Rn, entonces f es continua en a.

Definición 1.18. La transformación lineal λ dada en la Definición 1.17, es

llamada la derivada de f en a, y es denotada por Df(a).

Definición 1.19. Sean A ⊂ Rn, a ∈ (A) y f : A → Rm. Si el siguiente ĺımite

existe,

ĺımh→0

∣∣∣∣∣∣∣∣f(a1,...,ai+h,...,an)−f(a1,...,an)
h

∣∣∣∣∣∣∣∣,
entonces es denotado como Dif(a) y es llamado la i-ésima derivada parcial de

f en a.

Es importante ver que Dif(a) es la derivada ordinaria de una cierta función;

de hecho, si g(x) = f(a1, ..., x, ..., an), entonces, Dif(a) = g′(ai). Esto significa que

Dif(a) es la pendiente de la recta tangente en (a, f(a)) a la curva obtenida por

la intersección de la gráfica de f con el plano xj = aj, con j ̸= i. Si f(x1, ..., xn)

es dado por alguna fórmula involucrando x1, ..., xn, entonces podemos encontrar

a Dif(x1, ..., xn) diferenciando la función cuyo valor en xi es dado por la fórmula

cuando las variables xj son pensadas como constantes cuando j ̸= i.

Ejemplo 1.7. Sea la función f : R2 → R dada por f(x1, x2) =sen(x1x
2
2), aśı,
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D1f(x1, x2) = x22cos(x1x
2
2),

D2f(x1, x2) = 2x1x2cos(x1x
2
2).

Teorema 1.8. Sean n,m ∈ N, A ⊂ Rn y f = (f1, ..., fm) : A → Rm una función,

donde para todo i ∈ {1, ...,m} se tiene que fi : Rn → R. Si f es diferenciable en

a ∈ A, entonces Djfi(a) existe para cada j ∈ {1, ..., n}, para cada i ∈ {1, ...,m}
y,

f ′(a) =


D1f1(a) D2f1(a) · · · Dnf1(a)

D1f2(a) D2f2(a) · · · Dnf2(a)
...

... · · · ...

D1fm(a) D2fm(a) · · · Dnfm(a)

 .

La matriz f ′(a) consta de m filas y n columnas, además, representa la derivada

de f en a con respecto a las bases canónicas del dominio y cododominio de f . A

f ′(a) le llamaremos la matriz Jacobiana de f en a.

Ejemplo 1.8. Continuando con la función dada en el Ejemplo 1.7, se tiene que

la matriz Jacobiana de f en (x1, x2) ∈ R2 es,

f ′(x1, x2) =(D1f(x1, x2) D2f(x1, x2))

=(x22cos(x1x
2
2) 2x1x2cos(x1x

2
2)).

Teorema 1.9. Sean n,m, p ∈ N, A ⊂ Rn, B ⊂ Rm, f : A → Rm y g : B → Rp.

Dado a ∈ A tal que f(a) ∈ B, si f es diferenciable en a y g es diferenciable en

f(a), entonces, g ◦ f es diferenciable en a y

(g ◦ f)′(a) = g′(f(a)) · f ′(a).

Teorema 1.10. Sean n,m ∈ N y f : Rn → Rm, donde f = (f1, ..., fm).

1. Si f es una función constante, entonces Df(a) = 0, para todo a ∈ Rn. En

este caso 0 denota a la función nula.

2. Si f es una transformación lineal, entonces Df(a) = f , para todo a ∈ Rn.

3. f es diferenciable en a ∈ Rn si y solo si cada fi es diferenciable en a ∈ Rn y

Df(a)(x) = (Df1(a)(x), ..., Dfm(a)(x)), para todo x ∈ Rn,
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donde Dfi(a)(x) = f ′
i(a) · xt, para todo i ∈ {1, ..., n}.

Corolario 1.2. Sean n ∈ N y A,B ⊂ Rn conjuntos abiertos y f : A → B una

función biyectiva y diferenciable en a ∈ A. Si f−1 es diferenciable en f(a), entonces

det(f ′(a)) ̸= 0.

Teorema 1.11. Sean n,m ∈ N y f : A ⊂ Rn → Rm una función. Df(a) existe si

las funciones Djfi(a) existen en un conjunto abierto que contiene al punto a y son

continuas en a, para todo j ∈ {1, ..., n} y para todo i ∈ {1, ...,m}. En tal caso, se

dice que f es continuamente diferenciable.

Es fácil ver que toda función continuamente diferenciable es diferenciable.

Definición 1.20. Sea f : A ⊂ Rn → Rm. Si f tiene derivadas parciales de todos

los órdenes en un conjunto abierto, se dice que f es de clase C∞.

1.6. Funciones inversas

Teorema 1.12. Sean n,m ∈ N, A ⊂ Rn abierto, a ∈ A y una función f : A→ Rn.

Si f es continuamente diferenciable en A y det(f ′(a)) ̸= 0, entonces, existe un

conjunto abierto V ⊂ A que contiene al punto a y un conjunto abierto W que

contiene a f(a) tales que f : V → W tiene una inversa continua y diferenciable

f−1 : W → V . Además, para todo y ∈ W se satisface que:

(f−1)′(y) = [f ′(f−1(y))]−1.

Teorema 1.13. Sean n, p ∈ N, con p ≤ n, A ⊂ Rn y f : A → Rp una función

continuamente diferenciable en un conjunto abierto que contiene al punto a. Si

f(a) = 0 y la matriz f ′(a) tiene rango p, entonces, existen conjuntos abiertos

W,U ⊂ Rn tales que a ∈ U , además, existe una función diferenciable h : W → U

con inversa diferenciable tal que h(W ) ⊂ A y

(f ◦ h)(x) =(f ◦ h)(x1, ..., xn)

=(xn−p+1, ..., xn),

para todo x ∈ W .
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1.7. Integración

Teorema 1.14. Sean n ∈ N, A ⊂ Rn un conjunto abierto y g : A → Rn una

función inyectiva y continuamente diferenciable tal que det(g′(x)) ̸= 0, para todo

x ∈ A. Si la función f : g(A) → R es integrable, entonces:∫
g(A)

f =
∫
A
(f ◦ g)|detg′|.

Las siguientes dos definiciones fueron obtenidas de (Cárdenas, 2012).

Definición 1.21. Sean n ∈ N, K un subconjunto de Rn, F : U ⊂ Rn → Rn,

donde F = (F1, ..., Fn), un campo vectorial continuo en el conjunto abierto y

conexo U , una curva Γ ⊂ U y γ : [a, b] → Rn una función derivable a trozos tal que

Γ = γ([a, b]). Definimos la integral de F sobre la curva Γ según la parametrización

γ como: ∫
Γ

F · dγ =

∫ b

a

F (γ(t)) · γ′(t)dt.

Definición 1.22. Sean F : S ⊂ R3 → R3 un campo vectorial continuo y S ⊂ R3

una superficie parametrizada por la función σ : A ⊂ R2 → R3. Definimos la

integral de F sobre S, que denotamos como
∫
S
F · dσ, como:∫

S

F · dσ =

∫
A

F (σ(x, y)) · ∂σ
∂x

× ∂σ

∂y
.

Teorema 1.15. (Regla de Leibniz para integrales). Sea f : [a, b]× [c, d] → R una

función continua. SiD2f es una función continua y definiendo F (y) =
∫ b

a
f(x, y)dx,

entonces F es derivable y

F ′(y) =

∫ b

a

D2f(x, y)dx.

Teorema 1.16. (Corolario del Teorema de Fubini). Sean n ∈ N, ai, b1 ∈ R, para
todo i ∈ {1, ..., n}, R = [a1, b1] × · · · × [an, bn] y f : R → R. Si f es continua,

entonces:∫
R

F =

∫ bin

ain

(∫ bin−1

ain−1

(
· · ·
(∫ bi2

ai2

(∫ bi1

ai1

f(x1, ..., xn)dxi1

)
dxi2

)
· · ·
)
dxin−1

)
dxin ,

donde i1, ..., in ∈ {1, ..., n} son distintos a pares, visto de otra manera, se cumple

la siguiente igualdad: {i1, ..., in} = {1, ..., n} (Cárdenas, 2012).
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El siguiente corolario se obtuvo de (Spivak, 2017).

Teorema 1.17. (Corolario del primer Teorema Fundamental del Cálculo). Sea

f : R → R. Si f es continua en [0, 1] y f = g′ para alguna función g, entonces∫ b

a

f = g(b)− g(a).

1.8. Medida exterior de Lebesgue en Rn

Definición 1.23. La medida exterior de Lebesgue de A ⊂ Rn se denota como

µ∗(A) y se define de la siguiente manera

µ∗(A) = ı́nf

{
∞∑
i=1

µ∗(Ui) : A ⊂
∞⋃
i=1

Ui

}
,

donde {Ui}i∈N es una colección contable de rectángulos cerrados, estos rectángulos

tienen la forma Ui = [b1i, a1i]×· · ·× [bni, ani] y µ
∗ está dada de la siguiente manera

µ∗(Ui) = (b1i − a1i) · · · (bni − ani) (Hunter, 2007).

Definición 1.24. Sean n ∈ N, A ⊂ Rn. El conjunto A tiene medida cero si para

todo ϵ > 0 existe una cubierta {Ui}i∈N de A compuesta por rectángulos, tal que

∞∑
i=1

µ∗(Ui) < ϵ,

en otras palabras, A tiene medida cero si µ∗(A) = 0.

Teorema 1.18. Sean n,m ∈ N, Im = [0, 1]m el cubo unitario de Rm y una función

f : Im → Rn tal que f ∈ C1. Si m < n, entonces f(Im) tiene medida cero. Si

m = n y A ⊂ Im tiene medida cero, entonces f(A) tiene medida cero (Gualtieri,

2017).

Teorema 1.19. Sean n ∈ N, A ⊂ Rn un conjunto compacto de medida cero y

f : A→ R. Si f es una función continua, entonces
∫
A
f = 0.

Demostración: Dado que f es una función continua sobre un conjunto compac-

to, se sigue que f es una función acotada en dicho conjunto, es decir, existeM ∈ R
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tal que |f(x)| ≤M , para todo x ∈ A, aśı,∫
A

f ≤
∣∣∣∣∫

A

f

∣∣∣∣ ≤ ∫
A

|f | ≤
∫
A

M =M ·m∗(A) = 0.

Por lo tanto, se da por demostrado el teorema.

Proposición 1.3. Si n ∈ N, A = [a1, b1]× · · · × [an, bn] ⊂ Rn y ∂A la frontera de

A, entonces, ∂A tiene medida cero.

1.9. Identidades trigonométricas

cos(arctan(x)) = 1√
x2+1

, si x = z
y
se sigue que cos(arctan(x)) = |y|√

z2+y2
.

sen(arctan(x)) = x√
x2+1

, si x = z
y
se sigue que sen(arctan(x)) = |y|z

y
√

z2+y2
.

sen(arccos(x)) =
√
1− x2.

tan(x+ π) = tan(x).

1.10. Partición de unidad

Teorema 1.20. Si A ⊂ Rn y O es una cubierta abierta de A, entonces, existe una

colección Φ de funciones ϕ ∈ C∞ definidas en un conjunto abierto que contiene a

A, con las siguientes propiedades:

1. Para cada x ∈ A, se cumple que 0 ≤ ϕ(x) ≤ 1.

2. Para cada x ∈ A, existe un conjunto abierto V que contiene a x, tal que

todas las funciones ϕ ∈ Φ, a excepción de un número finito, son 0 en V .

3. Para cada x ∈ A, se cumple que:
∑

ϕ∈Φ ϕ(x) = 1.

A la colección Φ se le llama partición de la unidad para A de clase C∞.



Caṕıtulo 2

K-tensores

En este caṕıtulo se presentarán la definición y propiedades de los k-tensores.

Asimismo, se explicarán las operaciones fundamentales que se pueden realizar con

ellos y su forma general de representación.

2.1. K-tensores de V

Definición 2.1. Sea V un espacio vectorial sobre R. Denotaremos el k-producto

cartesiano V ×V ×· · ·×V por V k, con k ∈ N. Una función T : V k → R es llamada

multilineal si para todo i ∈ {1, ..., k}, para todo c ∈ R, tenemos,

T (v1, ..., c(vi + vi′), ..., vk) = c · T (v1, ..., vi, ..., vk) + c · T (v1, ..., vi′ , ..., vk).

Una función multilineal T : V k → R se llama k-tensor en V .

Ejemplo 2.1. Sean V = R2 y T : R2 × R2 → R dada por,

T ((x1, x2), (y1, y2)) = x1y1 + x2y2.

Sean (x1, x2), (y1, y2) y (z1, z2) ∈ R2 y c ∈ R, luego,

T (c((x1, x2) + (z1, z2)), (y1, y2)) =c(x1 + z1)y1 + c(x2 + z2)y2

=cx1y1 + cz1y1 + cx2y2 + cz2y2

=c(x1y1 + x2y2) + c(z1y1 + z2y2)

=c · T ((x1, x2), (y1, y2))

+ c · T ((z1, z2), (y1, y2)),

19
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además,

T ((x1, x2), c((y1, y2) + (z1, z2))) =x1c(y1 + z1) + x2c(y2 + z2)

=cx1y1 + cx1z1 + cx2y2 + cx2z2

=c(x1y1 + x2y2) + c(x1z1 + x2z2)

=c · T ((x1, x2), (y1, y2))

+ c · T ((x1, x2), (z1, z2)).

Aśı, T es un 2-tensor.

Ejemplo 2.2. Una generalización para todo k ∈ N del ejemplo anterior es el

k-tensor T : R2 × · · · × R2 = (R2)k → R dado por,

T ((x11, x12), (x21, x22), ..., (xk1, xk2)) = x11x21 · · ·xk1 + x12x22 · · ·xk2.

Ejemplo 2.3. Toda transformación lineal T : V → R es un 1-tensor, esto se debe

a que para todo x1, x2 ∈ V y para todo c ∈ R, se cumple que,

T (c(x1 + x2)) = cT (x1 + x2) = c(T (x1) + T (x”)) = c · T (x1) + c · T (x2).

Proposición 2.1. Sea V un espacio vectorial sobre R. El conjunto de k-tensores

denotado como T k(V ), con k ∈ N, es un espacio vectorial sobre R con las opera-

ciones dadas por:

(S + T )(v1, ..., vk) = S(v1, ..., vk) + T (v1, ..., vk),

(cS)(v1, ..., vk) = c · S(v1, ..., vk),

para todo S, T ∈ T k(V ) y c ∈ R.

Demostración: Sean S, T,R ∈ T k(V ) y c ∈ R.

1. Cerradura sobre la suma.

(T + S)(v1, ..., c(vi + vi′), ..., vk)

=T (v1, ..., c(vi + vi′), ..., vk) + S(v1, ..., c(vi + vi′), ..., vk)
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=c · T (v1, ..., vi, ..., vk) + c · T (v1, ..., vi′ , ..., vk)

+ c · S(v1, ..., vi, ..., vk) + c · S(v1, ..., vi′ , ..., vk)

=c(T (v1, ..., vi, ..., vk) + S(v1, ..., vi, ..., vk))

+ c(T (v1, ..., vi′ , ..., vk) + S(v1, ..., vi′ , ..., vk))

=c(T + S)(v1, ..., vi, ..., vk) + c(T + S)(v1, ..., vi′ , ..., vk).

Con esto, S + T ∈ T k(V ).

Debido a que T (v1, ..., vk), S(v1, ..., vk), R(v1, ..., vk) ∈ R, es sencillo ver que se

cumplen las siguientes dos propiedades.

2. Conmutatividad de la suma.

(T + S)(v1, ..., vk) =T (v1, ..., vk) + S(v1, ..., vk)

=S(v1, ..., vk) + T (v1, ..., vk)

=(S + T )(v1, ..., vk).

3. Asociatividad de la suma.

(T + (S +R))(v1, ..., vk)

=T (v1, ..., vk) + (S +R)(v1, ..., vk)

=T (v1, ..., vk) + (S(v1, ..., vk) +R(v1, ..., vk))

=T (v1, ..., vk) + S(v1, ..., vk) +R(v1, ..., vk)

=(T (v1, ..., vk) + S(v1, ..., vk)) +R(v1, ..., vk)

=(T + S)(v1, ..., vk) +R(v1, ..., vk)

=((T + S) +R)(v1, ..., vk).

4. Existencia de neutro aditivo.

Sea O : V k → R2 definida como sigue, O(v1, ..., vk) = 0, luego, O satisface

lo siguiente,

O(v1, ..., c(vi + vi′), ..., vk) =0

=c · 0 + c · 0

=c ·O(v1, ..., vi, ..., vk)

+ c ·O(v1, ..., vi′ , ..., vk),
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aśı, O ∈ T k(V ), luego,

(T +O)(v1, ..., vk) = T (v1, ..., vk) +O(v1, ..., vk)

= T (v1, ..., vk) + 0

= T (v1, ..., vk),

con esto, existe un elemento neutro aditivo O en T k(V ). A O le llamaremos

k-tensor nulo.

5. Existencia de inverso aditivo.

Debido a que T es un k-tensor, se sigue que,

T (v1, ..., c(vi + vi′), ...,vk)

= c · T (v1, ..., vi, ..., vk) + c · T (v1, ..., vi′ , ..., vk),

luego,

−T (v1, ..., c(vi+vi′), ..., vk)

= −(cT (v1, ..., vi, ..., vk) + cT (v1, ..., vi′ , ..., vk))

= (−1)c · T (v1, ..., vi, ..., vk) + (−1)c · T (v1, ..., vi′ , ..., vk)

= c(−1)T (v1, ..., vi, ..., vk) + c(−1)T (v1, ..., vi′ , ..., vk)

= c(−T )(v1, ..., vi, ..., vk) + c(−T )(v1, ..., vi′ , ..., vk).

Aśı, −T ∈ T k(V ), además,

(T + (−T ))(v1, ..., vk) =T (v1, ..., vk) + (−T )(v1, ..., vk)

=T (v1, ..., vk)− T (v1, ..., vk)

=0

=O(v1, ..., vk),

por ende existe un inverso aditivo en T k(V ).

6. Cerradura sobre el producto por un escalar.

Sea α ∈ R, luego,

(αT )(v1, ..., c(vi + vi′), ..., vk) = α · T (v1, ..., c(vi + vi′), ..., vk)
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= α(c · T (v1, ..., vi, ..., vk) + c · T (v1, ..., vi′ , ..., vk))

= αc · T (v1, ..., vi, ..., vk) + αc · T (v1, ..., vi′ , ..., vk)

= c(α · T (v1, ..., vi, ..., vk)) + c(α · T (v1, ..., vi′ , ..., vk))

= c(αT )(v1, ..., vi, ..., vk) + c(αT )(v1, ..., vi′ , ..., vk).

Por lo anterior, αT ∈ T k(V ).

7. Asociatividad del producto de escalares.

Sean α, β ∈ R, tenemos que,

((αβ)T )(v1, ..., vk) = αβ · T (v1, ..., vk)

= α(β · T (v1, ..., vk))

= α · (βT )(v1, ..., vk)

= (α(βT ))(v1, ..., vk).

8. Distribución de la suma escalar.

Sean α, β ∈ R,

((α + β)T )(v1, ..., vk) =(α + β) · T (v1, ..., vk)

=α · T (v1, ..., vk) + β · T (v1, ..., vk)

=(αT + βT )(v1, ..., vk).

9. Distribución de suma vectorial.

Sea α ∈ R,

(α(T + S))(v1, ..., vk) =α(T + S)(v1, ..., vk)

=α · T (v1, ..., vk) + α · S(v1, ..., vk)

=(αT + αS)(v1, ..., vk).

10. Unitaridad.

Tenemos que 1 ∈ R, luego,

(1 · T )(v1, ..., vk) = 1 · T (v1, ..., vk) = T (v1, ..., vk).

Con esto, se concluye que T k(V ) es un espacio vectorial.
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Dados un k-tensor y un l-tensor, es posible obtener un k + l-tensor como

resultado de la operación definida a continuación.

Definición 2.2. Sea V un espacio vectorial sobre R. Tomando S ∈ T k(V ) y

T ∈ T l(V ), con k, l ∈ N, definimos al producto tensorial S ⊗ T : V k+l → R
como:

(S ⊗ T )(v1, ..., vk, vk+1, ..., vk+l) = S(v1, ..., vk) · T (vk+1, ..., vk+l).

Propiedades. Si S1, S2 ∈ T k(V ), U ∈ T m(V ), T1, T2 ∈ T l(V ), con α ∈ R y

k, l,m ∈ N, entonces,

(S1 + S2)⊗ T1 = S1 ⊗ T1 + S2 ⊗ T1.

S1 ⊗ (T1 + T2) = S1 ⊗ T1 + S1 ⊗ T2.

(αS1)⊗ T1 = S1 ⊗ (αT1) = α(S1 ⊗ T1).

(S1 ⊗ T1)⊗ U = S1 ⊗ (T1 ⊗ U).

Proposición 2.2. Sea V un espacio vectorial sobre R. Dados S ∈ T k(V ) y

T ∈ T l(V ), con k, l ∈ N, se tiene que S ⊗ T ∈ T k+l(V ).

Demostración: Sean S ∈ T k(V ), T ∈ T l(V ), c ∈ R e i ∈ {1, ..., k + l}.

Caso 1. 1 ≤ i ≤ k.

(S ⊗ T )(v1, ..., c(vi + vi′), ..., vk+l)

= S(v1, ..., c(vi + vi′), ..., vk) · T (vk+1, ..., vk+l)

= (c · S(v1, ..., vi, ..., vk) + c · S(v1, ..., vi′ , ..., vk)) · T (vk+1, ..., vk+l)

= c · S(v1, ..., vi, ..., vk) · T (vk+1, ..., vk+l)

+ c · S(v1, ..., vi′ , ..., vk) · T (vk+1, ..., vk+l)

= c · (S ⊗ T )(v1, ..., vi, ..., vk+l)

+ c · (S ⊗ T )(v1, ..., vi′ , ..., vk+l).
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Caso 2. k + 1 ≤ i ≤ k + l.

(S⊗T )(v1, ..., c(vi + vi′), ..., vk+l)

= S(v1, ..., vk) · T (vk+1, ..., c(vi + vi′), ..., vk+l)

= S(v1, ..., vk) · (c · T (vk+1, ..., vi, ..., vk+l) + c · T (vk+1, ..., vi′ , ..., vk+l))

= c · S(v1, ..., vk) · T (vk+1, ..., vi, ..., vk+l)

+ c · S(v1, ..., vk) · T (vk+1, ..., vi′ , ..., vk+l)

= c · (S ⊗ T )(v1, ..., vi, ..., vk+l)

+ c · (S ⊗ T )(v1, ..., vi′ , ..., vk+l).

Aśı, S ⊗ T ∈ T k+l(V ).

Ejemplo 2.4. Sean S ∈ T 3(R2) y T ∈ T 1(R2), dadas como sigue:

S((x1, x2), (y1, y2), (z1, z2)) = x1y1z1 + x2y2z2.

T (w1, w2) = w1.

Luego,

(S ⊗ T )((x1, x2), (y1, y2), (z1, z2), (w1, w2))

=S((x1, x2), (y1, y2), (z1, z2)) · T (w1, w2)

=(x1y1z1 + x2y2z2)w1

=x1y1z1w1 + x2y2z2w1.

Sean (x1, x2), (y1, y2), (z1, z2), (u1, u2), (w1, w2) ∈ R2 y c ∈ R, con esto,

(S ⊗ T )(c((x1, x2) + (u1, u2)), (y1, y2), (z1, z2), (w1, w2))

=S(c((x1, x2) + (u1, u2)), (y1, y2), (z1, z2)) · T (w1, w2)

=S(c((x1 + u1, x2 + u2)), (y1, y2), (z1, z2)) · T (w1, w2)

=(c(x1 + u1)y1z1 + c(x2 + u2)y2z2)w1

=cx1y1z1w1 + cu1y1z1w1 + cx2y2z2w1 + cu2y2z2w1

=c(x1y1z1w1 + x2y2z2w1) + c(u1y1z1w1 + u2y2z2w1)

=c · (S ⊗ T )((x1, x2), (y1, y2), (z1, z2), (w1, w2))

+ c · (S ⊗ T )((u1, u2), (y1, y2), (z1, z2), (w1, w2)).
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De manera análoga, se demuestran las siguientes igualdades:

(S ⊗ T )((x1, x2), c((y1, y2) + (u1, u2)), (z1, z2), (w1, w2))

=c · (S ⊗ T )((x1, x2), (y1, y2), (z1, z2), (w1, w2))

+ c · (S ⊗ T )((x1, x2), (u1, u2), (z1, z2), (w1, w2)),

(S ⊗ T )((x1, x2), (y1, y2), c((z1, z2) + (u1, u2)), (w1, w2))

=c · (S ⊗ T )((x1, x2), (y1, y2), (z1, z2), (w1, w2))

+ c · (S ⊗ T )((x1, x2), (u1, u2), (u1, u2), (w1, w2)),

además,

(S ⊗ T )((x1, x2), (y1, y2),(z1, z2), c((w1, w2) + (u1, u2)))

=S((x1, x2), (y1, y2), (z1, z2)) · T (c((w1, w2) + (u1, u2)))

=(x1y1z1 + x2y2z2)c(w1 + u1)

=c(x1y1z1 + x2y2z2)w1 + c(x1y1z1 + x2y2z2)u1

=c · (S ⊗ T )((x1, x2), (y1, y2), (z1, z2), (w1, w2))

+ c · (S ⊗ T )((x1, x2), (y1, y2), (z1, z2), (u1, u2)).

Con esto se concluye que S ⊗ T ∈ T 4(R2).

Notemos que T 1(V ) es el conjunto de todas las funciones multilineales de una

sola entrada, es decir, es el conjunto de todas las transformaciones lineales cuyo

dominio es V y codominio es R, con esto, es fácil notar que T 1(V ) = V ∗.

Teorema 2.1. Sean V un espacio vectorial sobre R de dimensión finita n y una ba-

se {v1, ..., vn} de V . Si {ϕ1, ϕ2, ..., ϕn} es la base dual correspondiente a {v1, ..., vn},
entonces el conjunto de todos los productos tensoriales,

ϕi1 ⊗ · · · ⊗ ϕik , 1 ≤ i1, ..., ik ≤ n,

es una base para T k(V ), que además tiene dimensión nk.

Demostración: Sean {v1, ..., vn} una base para V, y {ϕ1, ϕ2, ..., ϕn} la base dual

correspondiente. Dados w1, ..., wk vectores de V y T ∈ T k(V ), tenemos que,

wi =
n∑

j=1

aijvj,
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donde aij ∈ R, para todo i ∈ {1, 2, ..., k} y para todo j ∈ {1, 2, ..., n}. Además,

ϕm(wi) = ϕm

( n∑
j=1

aijvj

)

=
n∑

j=1

ϕm(aijvj)

=
n∑

j=1

aijϕm(vj)

= aim,

para todo m ∈ {1, ..., k}, con esto,

T (w1, ..., wk) = T

(
n∑

j=1

a1jvj, ...,
n∑

j=1

akjvj

)
,

debido a que tenemos k sumas donde el ı́ndice j aparece en todas, cambiaremos

el ı́ndice de la suma en la entrada l por jl, para todo l ∈ {1, ..., k}, con esto,

T (w1, ..., wk) = T

(
n∑

j1=1

a1j1vj1 , ...,
n∑

jk=1

akjkvjk

)

=
n∑

j1=1

· · ·
n∑

jk=1

a1j1 · · · akjkT (vj1 , ..., vjk)

=
n∑

j1=1

· · ·
n∑

jk=1

ϕj1(w1) · · ·ϕjk(wk)T (vj1 , ..., vjk).

Haciendo un cambio de jl por il, se llega a lo siguiente,

T (w1, ..., wk) =
n∑

i1=1

· · ·
n∑

ik=1

ϕi1(w1) · · ·ϕik(wk)T (vi1 , ..., vik)

=
n∑

i1=1

· · ·
n∑

ik=1

ϕi1 ⊗ · · · ⊗ ϕik(w1, ..., wk)T (vi1 , ..., vik)

=

( n∑
i1=1

· · ·
n∑

ik=1

T (vi1 , ..., vik)ϕi1 ⊗ · · · ⊗ ϕik

)
(w1, ..., wk).
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Entonces,

T =
n∑

i1=1

· · ·
n∑

ik=1

T (vi1 , ..., vik) · ϕi1 ⊗ · · · ⊗ ϕik ,

debido a que T (vi1 , ..., vik) es un número real, podemos decir que el conjunto de

todos los k-tensores de la forma ϕi1 ⊗ · · · ⊗ ϕik genera a T k(V ). Por otro lado,

ϕi1 ⊗ · · · ⊗ ϕik(vj1 , ..., vjk) = ϕi1(vj1) · · ·ϕik(vjk),

dado que ϕil(vjl) = 1 solo si il = jl, para todo l ∈ {1, 2, ..., k}, entonces,

ϕi1(vj1) · · ·ϕik(vjk) =

 1, si jl = il, para todo l ∈ {1, 2, ..., k},

0 , otro caso.

Sea O ∈ T k(V ) el k-tensor nulo y supongamos que existen números de la forma

ai1,...,ik tales que,

n∑
i1=1

· · ·
n∑

ik=1

ai1,...,ikϕi1 ⊗ · · · ⊗ ϕik = O,

luego, al evaluar en vj1 , ..., vjk , resulta lo siguiente:( n∑
i1=1

· · ·
n∑

ik=1

ai1,...,ikϕi1 ⊗ · · · ⊗ ϕik

)
(vj1 , ..., vjk) = O(vj1 , ..., vjk) = 0,

visto de otra forma,

n∑
i1=1

· · ·
n∑

ik=1

ai1,...,ik(ϕi1 ⊗ · · · ⊗ ϕik(vj1 , ..., vjk))

=
n∑

i1=1

· · ·
n∑

ik=1

ai1,...,ikϕi1(vj1) · · ·ϕik(vjk)

=0,

notemos que ϕj1(vj1) · · ·ϕjk(vjk) = 1, aśı,

aj1,...,jkϕj1(vj1) · · ·ϕjk(vjk) = aj1,...,jk · 1 = 0,

lo que implica que aj1,...,jk = 0, para todo jl ∈ {1, ..., n}, l ∈ {1, ..., k}. Por otro
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lado, dado que para ϕil, para todo il ∈ {1, ..., n} y para todo l ∈ {1, ..., k}, existen
n posibles elecciones de funciones, se sigue que existen nk formas distintas de

combinar,

ϕi1 ⊗ · · · ⊗ ϕik ,

aśı, el conjunto de todos los productos tensoriales,

ϕi1 ⊗ · · · ⊗ ϕik , 1 ≤ i1, ..., ik ≤ n,

es linealmente independiente y T k(V ) tiene dimensión nk.

2.2. K-tensores alternantes

Definición 2.3. Sean V un espacio vectorial sobre R y k ≥ 2. Un k-tensor

ω ∈ T k(V ) se llama alternante si, para i ̸= j, con i, j ∈ {1, ..., k}, se cumple

que para todo v1, ..., vk ∈ V :

ω(v1, ..., vi, ..., vj, ..., vk) = −ω(v1, ..., vj, ..., vi, ..., vk).

Ejemplo 2.5. Sean V = R2 y ω : R2 × R2 → R dada por

ω((x1, x2), (y1, y2)) = x1y2 − x2y1.

Sean (x1, x2), (y1, y2) y (z1, z2) ∈ R2 y c ∈ R, luego,

ω(c((x1, x2) + (z1, z2)), (y1, y2)) =c(x1 + z1)y2 − c(x2 + z2)y1

=cx1y2 + cz1y2 − cx2y1 − cz2y1

=c(x1y2 − x2y1) + c(z1y2 − z2y1)

=c · ω((x1, x2), (y1, y2)) + c · ω((z1, z2), (y1, y2)),

análogamente,

ω((x1, x2), c((y1, y2) + (z1, z2))) =c · ω((x1, x2), (y1, y2)) + c · ω((x1, x2), (z1, z2)).

Aśı, ω es un 2-tensor, además,

ω((x1, x2), (y1, y2)) = x1y2 − x2y1
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= −(−x1y2 + x2y1)

= −(x2y1 − x1y2)

= −(y1x2 − y2x1)

= −ω((y1, y2), (x1, x2)).

Con esto, ω es un 2-tensor alternante de R2.

A diferencia del Ejemplo 2.1, el Ejemplo 2.5 no puede ser generalizado para

todo k ∈ N, pero śı para Rn como explica en el siguiente ejemplo.

Ejemplo 2.6. Sean V = Rn, n par y ω : Rn × Rn → R dada por

ω((x1, x2, ..., xn), (y1, y2, ..., yn)) =x1yn − xny1 + x2yn−1 − xn−1y2

+ · · ·+ xn
2
yn

2
+1 − xn

2
+1yn

2
.

Se tiene que ω es 2-tensor alternante de Rn.

Proposición 2.3. Sea V espacio vectorial sobre R. El conjunto de k-tensores

alternantes, denotado por Λk(V ), es un subespacio de T k(V ).

Demostración: Sean ω, η ∈ Λk(V ) y c ∈ R.

1. Cerradura sobre la suma.

Como ya se vió anteriormente ω + η es un k-tensor, además,

(ω + η)(v1, ..., vi, ..., vj, ..., vk)

=ω(v1, ..., vi, ..., vj, ..., vk) + η(v1, ..., vi, ..., vj, ..., vk)

=− ω(v1, ..., vj, ..., vi, ..., vk)− η(v1, ..., vj, ..., vi, ..., vk)

=− (ω(v1, ..., vj, ..., vi, ..., vk) + η(v1, ..., vj, ..., vi, ..., vk))

=− (ω + η)(v1, ..., vj, ..., vi, ..., vk).

Por lo tanto, ω + v ∈ Λk(V ).

2. Cerradura sobre el producto por un escalar.

Sea α ∈ R, luego,

(αω)(v1, ..., vi, ..., vj, ..., vk) = α · ω(v1, ..., vi, ..., vj, ..., vk)
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= α(−ω(v1, ..., vj, ..., vi, ..., vk))

= −α · ω(v1, ..., vj, ..., vi, ..., vk)

= (−αω)(v1, ..., vj, ..., vi, ..., vk).

Con esto, αω ∈ Λk(V ).

Por lo tanto, Λk(V ) es un subespacio de T k(V ).

Si k > n el único tensor alternante es el k-tensor nulo. Por otro lado, dados

ω ∈ Λk(V ) y η ∈ Λl(V ), no siempre se cumple que ω ⊗ η ∈ Λk+l(V ), tal como lo

ilustra el siguiente ejemplo.

Ejemplo 2.7. Sean ω ∈ Λ2(R2) y η ∈ Λ2(R2), dadas como sigue,

ω((x1, x2), (y1, y2)) = x1y2 − x2y1,

η((z1, z2), (u1, u2)) = z1u2 − z2u1.

Intercambiando el vector (y1, y2) con el vector (u1, u2) se sigue que,

ω ⊗ η((x1, x2), (u1, u2), (z1, z2), (y1,y2))

=ω((x1, x2), (u1, u2))η((z1, z2), (y1, y2))

=(x1u2 − x2u1)(z1y2 − z2y1).

Sean (x1, x2) = (y1, y2) = (1, 1) y (z1, z2) = (u1, u2) = (1, 1
2
), aśı,

ω ⊗ η((x1, x2), (y1, y2), (z1, z2), (u1, u2)) =ω ⊗ η((1, 1), (1, 1), (1, 1
2
), (1

2
, 1))

=(1 · 1− 1 · 1)(1 · 1− 1
2
· 1
2
)

=0,

por otro lado, al intercambiar el vector (y1, y2) con el vector (u1, u2) se obtiene el

siguiente resultado,

ω ⊗ η((x1, x2), (u1, u2), (z1, z2), (y1, y2)) =ω ⊗ η((1, 1), (1
2
, 1), (1, 1

2
), (1, 1))

=(1 · 1− 1
2
· 1
2
)(1 · 1− 1

2
· 1
2
)

= 9
16
.
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Con esto,

ω ⊗ η((x1, x2), (y1, y2), (z1, z2), (u1, u2))

=0

̸=− 9
16

=− ω ⊗ η((x1, x2), (u1, u2), (z1, z2), (y1, y2)).

Definición 2.4. Sea V un espacio vectorial sobre R. Dado T ∈ T k(V ) con k ∈ N,
definimos a Alt(T ) : V k → R como sigue:

Alt(T )(v1, ..., vk) =
1

k!

∑
δ∈Sk

sgn(δ) T (vδ(1), ..., vδ(k)).

Notemos que cuando k = 1, se tiene que:

Alt(T )(v1) =
1

1!

∑
δ∈S1

sgn(δ) T (vδ(1)) = T (v1).

Recordemos que por definición, los k-tensores alternantes solo existen cuando

k ≥ 2, pero, por la igualdad previa, diremos que todo 1-tensor es alternante, aśı,

Λ1(V ) = T 1(V ).

Ejemplo 2.8. Sea T ∈ T 3(R2) dado por:

T ((x1, x2), (y1, y2), (z1, z2)) = x1y1z1 + x2y2z2.

Considerando las permutaciones δi, i ∈ {1, 2, 3, 4, 5, 6} dadas en el Ejemplo 1.5

y tomando v1 = (x1, x2), v2 = (y1, y2) y v3 = (z1, z2), resulta,

Alt(T )((x1, x2), (y1, y2), (z1, z2))

=Alt(T )(v1, v2, v3)

=
1

3!
[sgn(δ1)T (vδ1(1), vδ1(2), vδ1(3)) + sgn(δ2)T (vδ2(1), vδ2(2), vδ2(3))

+ sgn(δ3)T (vδ3(1), vδ3(2), vδ3(3)) + sgn(δ4)T (vδ4(1), vδ4(2), vδ4(3))

+ sgn(δ5)T (vδ5(1), vδ5(2), vδ5(3)) + sgn(δ6)T (vδ6(1), vδ6(2), vδ6(3))]

=
1

6
[1 · T (v1, v2, v3) + (−1) · T (v1, v3, v2)

+ (−1) · T (v3, v2, v1) + (−1) · T (v2, v1, v3)
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+ 1 · T (v2, v3, v1) + 1 · T (v3, v1, v2)]

=
1

6
[T ((x1, x2), (y1, y2), (z1, z2))− T ((x1, x2), (z1, z2), (y1, y2))

− T ((z1, z2), (y1, y2), (x1, x2))− T ((y1, y2), (x1, x2), (z1, z2))

+ T ((y1, y2), (z1, z2), (x1, x2)) + T ((z1, z2), (x1, x2), (y1, y2))]

=
1

6
[x1y1z1 − x2y2z2 − x1z1y1 − x2z2y2

− z1y1x1 − z2y2x2 − y1x1z1 − y2x2z2

+ y1z1x1 + y2z2x2 + z1x1y1 + z2x2y2]

=0.

Ejemplo 2.9. Sea {e1, e2} la base canónica de R2 y {ϕ1, ϕ2} la base dual corres-

pondiente. Considerando las permutaciones δi, para cada i ∈ {1, 2} dadas como

en el Ejemplo 1.4 y tomando v1 = (x1, x2) y v2 = (y1, y2) ∈ R2, resulta,

Alt(ϕ1 ⊗ ϕ2)(v1, v2) =
1

2!

∑
δ∈S2

(ϕ1 ⊗ ϕ2)(vδ(1), vδ(2))

=
1

2!

∑
δ∈S2

ϕ1(vδ(1)) · ϕ2(vδ(2))

=
1

2!
[ϕ1(v1) · ϕ2(v2)− ϕ1(v2) · ϕ2(v1)]

=
1

2
[x1 · y2 − y1 · x2]

=
1

2

∣∣∣∣∣∣x1 x2

y1 y2

∣∣∣∣∣∣ .
Teorema 2.2. Sean V un espacio vectorial sobre R y k ≥ 2.

1) Si T ∈ T k(V ), entonces Alt(T ) ∈ Λk(V ).

2) Si ω ∈ Λk(V ), entonces Alt(ω) = ω.

3) Si T ∈ T k(V ), entonces Alt(Alt(T )) = Alt(T ).

Demostración:

1. Sean T ∈ T k(V ) y la transposición τp,q ∈ Sk. Dado δ ∈ Sk definimos a
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δ′ = δ · τp,q, notemos que δ′ cumple lo siguiente,

δ′(p) =(δ · τp,q)(p) = δ(τp,q(p)) = δ(q),

δ′(q) =(δ · τp,q)(q) = δ(τp,q(q)) = δ(p),

δ′(j) =(δ · τp,q)(j) = δ(τp,q(j)) = δ(j), para todo j ∈ {1, ..., k}\{p, q},

además, δ′ ∈ Sk. Sin pérdida de generalidad, supongamos que p < q, luego,

Alt(T )(v1, ..., vp, ..., vq, ..., vk)

=
1

k!

∑
δ∈Sk

sgn(δ) T (vδ(1), ..., vδ(p), ..., vδ(q), ..., vδ(k))

=
1

k!

∑
δ∈Sk

sgn(δ) T (vδ′(1), ..., vδ′(q), ..., vδ′(p), ..., vδ′(k)),

por Corolario 1.1 se tiene que,

sgn(δ′) =sgn(δ · τp,q)

=− sgn(δ),

es decir, sgn(δ) = −sgn(δ′). Por otro lado, debido a que para cada δ ∈ Sk

se define a δ′ = δ · τp,q y δ′ ∈ Sk, se puede cambiar el ı́ndice de la suma de δ

por δ′, con esto,

1

k!

∑
δ∈Sk

sgn(δ) T (vδ′(1), ..., vδ′(q), ..., vδ′(p), ..., vδ′(k))

=
1

k!

∑
δ′∈Sk

−sgn(δ′) T (vδ′(1), ..., vδ′(q), ..., vδ′(p), ..., vδ′(k))

=− 1

k!

∑
δ′∈Sk

sgn(δ′) T (vδ′(1), ..., vδ′(q), ..., vδ′(p), ..., vδ′(k))

=− Alt(T )(v1, ..., vq, ..., vp, ..., vk).

Aśı,

Alt(T )(v1, ..., vp, ..., vq, ..., vk) = −Alt(T )(v1, ..., vq, ..., vp, ..., vk).

Con esto, Alt(T ) ∈ Λk(V ).
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2. Sean ω ∈ Λk(V ) y la transposición τp,q, aśı,

ω(v1, ..., vp, ..., vq, ..., vk) =− ω(v1, ..., vq, ..., vp, ..., vk)

=− ω(vτp,q(1), ..., vτp,q(p), ..., vτp,q(q), ..., vτp,q(k)),

con esto,

ω(vτp,q(1), ..., vτp,q(k)) = −ω(v1, ..., vk) = sgn(τp,q)ω(v1, ..., vk). (2.1)

Por otro lado, sea δ ∈ Sk. Por Teorema 1.4, existen d(δ) transposiciones

τ1, ..., τd(δ) tales que

δ = τ1 · · · τd(δ). (2.2)

De (2.1), (2.2) y del Teorema 1.3, se sigue que,

ω(vδ(1), ..., vδ(k)) =ω(v(τ1···τd(δ))(1), ..., v(τ1···τd(δ))(k))

=ω(vτ1(τ2(···(τd(δ)(1)))), ..., vτ1(τ2(···(τd(δ)(k)))))

=sgn(τ1)ω(vτ2(···(τd(δ)(1))), ..., vτ2(···(τd(δ)(k))))

=sgn(τ1)sgn(τ2)ω(vτ3(···(τd(δ)(1))), ..., vτ3(···(τd(δ)(k))))

=sgn(τ1)sgn(τ2) · · · sgn(τd(δ))ω(v1, ..., vk)

=sgn(τ1 · · · τd(δ))ω(v1, ..., vk)

=sgn(δ)ω(v1, ..., vk),

aśı,

Alt(ω)(v1, ..., vk) =
1

k!

∑
δ∈Sk

sgn(δ) ω(vδ(1), ..., vδ(k))

=
1

k!

∑
δ∈Sk

sgn(δ)sgn(δ) ω(v1, ..., vk)

=ω(v1, ..., vk)
1

k!

∑
δ∈Sk

(sgn(δ))2

=ω(v1, ..., vk)
1

k!

∑
δ∈Sk

1

=ω(v1, ..., vk)
1

k!
k!

=ω(v1, ..., vk),
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(sgn(δ))2 = 1 debido a que el signo de una permutación es igual a 1 o a −1.

3. Sea T ∈ T k(V ). Por 1) se cumple que Alt(T ) ∈ Λk(V ), aśı, aplicando 2) se

concluye que Alt(Alt(T )) = Alt(T ).

Por lo tanto, se da por demostrado el teorema.

Ejemplo 2.10. Sea ω dado como en el Ejemplo 2.5, recordemos que ω es un

2-tensor alternante, para este ejemplo nos apoyaremos del Ejemplo 1.4, tomando

a v1 = (x1, x2) y v2 = (y1, y2) se tiene que,

Alt(ω)(v1, v2) =
1

2!
[sgn(δ1)ω(vδ1(1), vδ1(2)) + sgn(δ2)ω(vδ2(1), vδ2(2))]

=
1

2
[1 · ω(v1, v2)) + (−1) · ω(v2, v1)]

=
1

2
[ω((x1, x2), (y1, y2)))− ω((y1, y2), (x1, x2))]

=
1

2
[x1y2 − x2y1 − (y1x2 − y2x1)]

=
1

2
[x1y2 − x2y1 − (x2y1 − x1y2)]

=
1

2
[x1y2 − x2y1 − x2y1 + x1y2]

=
1

2
[2x1y2 − 2x2y1]

=x1y2 − x2y1

=ω((x1, x2), (y1y2))

=ω(v1, v2).

Definición 2.5. Sean V y W espacios vectoriales sobre R. Dada una transforma-

ción lineal f : V → W , se puede definir una transformación lineal

f • : T k(W ) → T k(V ),

dada por,

f •T (v1, ..., vk) = T (f(v1), ..., f(vk)),

para algún T ∈ T k(W ) y para cada v1, ..., vk ∈ V.

Definición 2.6. Sea V espacio vectorial sobre R. Dados dos tensores, T ∈ T k(V )

y S ∈ T l(V ), con k, l ∈ N. Se define al producto cuña T ∧ S como sigue:
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T ∧ S = (k+l)!
k!l!

Alt(T ⊗ S).

Propiedades. Sea V un espacio vectorial sobre R. Dados ω1, ω2 ∈ Λk(V ),

η1, η2 ∈ Λl(V ), con k, l ∈ N, y α ∈ R, se cumple lo siguiente,

(ω1 + ω2) ∧ η1 = ω1 ∧ η1 + ω2 ∧ η1.

ω1 ∧ (η1 + η2) = ω1 ∧ η1 + ω1 ∧ η2.

(αω1) ∧ η1 = ω1 ∧ (αη1) = α(ω1 ∧ η1).

SeanW un espacio vectorial sobre R y una transformación lineal f : W → V ,

entonces

f •(ω1 ∧ η1) = f •(ω1) ∧ f •(η1).

Proposición 2.4. Sean V espacio vectorial sobre R y k, l ∈ N. Tomando T ∈
T k(V ) y S ∈ T l(V ), se cumple que T ∧ S ∈ Λk+l(V ).

Demostración: Sean T ∈ T k(V ) y S ∈ T l(V ), luego, por la Proposición 2.2

se tiene que T ⊗ S ∈ T k+l(V ), aśı, aplicando el Teorema 2.2, 1), se sigue que

Alt(T ⊗S) ∈ Λk+l(V ), debido a que Λk+l(V ) es un subespacio vectorial, entonces,

T ∧ S = (k+l)!
k!l!

Alt(ω ⊗ η) ∈ Λk+l(V ).

Por lo tanto, queda demostrada la proposición.

Notemos que T y S son arbitrarios, con esto, podemos considerar el caso

cuando ambos son k-tensores alternantes, aśı, el hecho de que el producto cuña

de dos tensores alternantes de como resultado un tensor alternante nos será muy

útil para poder determinar una base para Λk(V ).

Proposición 2.5. Sea V un espacio vectorial sobre R. Tomando ω ∈ Λk(V ) y

η ∈ Λl(V ), con k, l ∈ N, se cumple la siguiente igualdad,

ω ∧ η = (−1)klη ∧ ω.
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Demostración: Sean ω ∈ Λk(V ), η ∈ Λl(V ) y v1, ..., vk, vk+1, ..., vk+l ∈ V , luego,

ω ∧ η(v1, ...,vk, vk+1, ..., vk+l)

=
(k + l)!

k!l!
Alt(ω ⊗ η)(v1, ..., vk, vk+1, ..., vk+l)

=
(k + l)!

k!l!

1

(k + l)!

∑
δ∈Sk+l

sgn(δ)(ω ⊗ η)(vδ(1), ..., vδ(k), vδ(k+1), ..., vδ(k+l))

=
(k + l)!

k!l!

1

(k + l)!

∑
δ∈Sk+l

sgn(δ)ω(vδ(1), ..., vδ(k)) · η(vδ(k+1), ..., vδ(k+l))

=
(k + l)!

k!l!

1

(k + l)!

∑
δ∈Sk+l

sgn(δ)η(vδ(k+1), ..., vδ(k+l)) · ω(vδ(1), ..., vδ(k))

=
(k + l)!

k!l!

1

(k + l)!

∑
δ∈Sk+l

sgn(δ)(η ⊗ ω)(vδ(k+1), ..., vδ(k+l), vδ(1), ..., vδ(k))

=
(k + l)!

k!l!
Alt(η ⊗ ω)(vk+1, ..., vk+l, v1, ..., vk),

ahora modificaremos el orden de las entradas de (vk+1, ..., vk+l, v1, ..., vk), para esto,

primero trasladaremos al vector v1 a la primera entrada,

Alt(η ⊗ ω)(vk+1, ..., vk+l, v1, ..., vk)

=(−1)Alt(η ⊗ ω)(vk+1, ..., vk+l−1, v1, vk+l, v2, ..., vk)

=(−1)2Alt(η ⊗ ω)(vk+1, ..., vk+l−2, v1, vk+l−1, vk+l, v2, ..., vk)

...

=(−1)lAlt(η ⊗ ω)(v1, vk+1, ..., vk+l−2, vk+l−1, vk+l, v2, ..., vk),

repitiendo el proceso para el vector v2,

Alt(η ⊗ ω)(vk+1, ..., vk+l, v1, ..., vk)

=(−1)lAlt(η ⊗ ω)(v1, vk+1, ..., vk+l−2, vk+l−1, vk+l, v2, ..., vk)

=(−1)l(−1)Alt(η ⊗ ω)(v1, vk+1, ..., vk+l−2, vk+l−1, v2, vk+l, v3, ..., vk)

=(−1)l(−1)2Alt(η ⊗ ω)(v1, vk+1, ..., vk+l−2, v2, vk+l−1, vk+l, v3, ..., vk)

...

=(−1)l(−1)lAlt(η ⊗ ω)(v1, v2, vk+1, ..., vk+l−1, vk+l, v3, ..., vk)

=((−1)l)2Alt(η ⊗ ω)(v1, v2, vk+1, ..., vk+l−1, vk+l, v3, ..., vk),
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siguiendo el mismo proceso para los vectores v3, ..., vk, notemos que son k − 2

vectores, se concluye lo siguiente,

Alt(η ⊗ ω)(vk+1, ..., vk+l, v1, ..., vk)

=((−1)l)2((−1)l)k−2Alt(η ⊗ ω)(v1, v2, v3, ..., vk, vk+1, ..., vk+l−1, vk+l)

=((−1)l)kAlt(η ⊗ ω)(v1, v2, v3, ..., vk, vk+1, ..., vk+l−1, vk+l)

=(−1)klAlt(η ⊗ ω)(v1, v2, v3, ..., vk, vk+1, ..., vk+l−1, vk+l),

aśı,

ω ∧ η(v1, ..., vk, vk+1, ..., vk+l)

=
(k + l)!

k!l!
Alt(η ⊗ ω)(vk+1, ..., vk+l, v1, ..., vk)

=
(k + l)!

k!l!
(−1)klAlt(η ⊗ ω)(v1, ..., vk, vk+1, ..., vk+l)

=(−1)kl
(k + l)!

k!l!
Alt(η ⊗ ω)(v1, ..., vk, vk+1, ..., vk+l)

=(−1)klη ∧ ω(v1, ..., vk, vk+1, ..., vk+l).

Por lo tanto, queda demostrada la proposición.

Ejemplo 2.11. Sean S ∈ T 2(R2) y T ∈ T 1(R2), dadas como sigue:

S((x1, x2), (y1, y2)) = x1y1 + x2y2,

T (v1, v2) = v1.

Luego, considerando las permutaciones δi, i ∈ {1, 2, 3, 4, 5, 6} dadas en el Ejemplo

1.5 y los vectores v1 = (x1, x2), v2 = (y1, y2) y v3 = (z1, z2), resulta,

(S ⊗ T )(v1, v2, v3) =(S ⊗ T )((x1, x2), (y1, y2), (z1, z2))

=S((x1, x2), (y1, y2)) · T (z1, z2)

=(x1y1 + x2y2)z1

=x1y1z1 + x2y2z1.

Aśı,

T ∧ S(v1, v2,3) =
(2 + 1)!

2!1!
Alt(T ⊗ S)(v1, v2, v3)
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=
3!

2

∑
δ∈S3

(S ⊗ T )(vδ(1), vδ(2), vδ(3))

=
6

2

∑
δ∈S3

S(vδ(1), vδ(2)) · T (vδ(3))

=3[sgn(δ1)S(v1, v2) · T (v3) + sgn(δ2)S(v1, v3) · T (v2)

+ sgn(δ3)S(v3, v2) · T (v1) + sgn(δ4)S(v2, v1) · T (v3)

+ sgn(δ5)S(v2, v3) · T (v1) + sgn(δ6)S(v2, v1) · T (v2)]

=3[S((x1, x2), (y1, y2)) · T (z1, z2)− S((x1, x2), (z1, z2)) · T (y1, y2)

− S((z1, z2), (y1, y2)) · T (x1, x2)− S((y1, y2), (x1, x2)) · T (z1, z2)

+ S((y1, y2), (z1, z2)) · T (x1, x2) + S((z1, z2), (x1, x2)) · T (y1, y2)]

=3[x1y1z1 + x2y2z1 − x1z1y1 − x2z2y1 − z1y1x1 − z2y2x1

− y1x1z1 − y2x2z1 + y1z1x1 + y2z2x1 + z1x1y1 + z2x2y1]

=0.

Proposición 2.6. Sea V un espacio vectorial sobre R. Sean Ti ∈ T ki(V ), con

i ∈ {1, ..., n}. Si para algún j, con j ∈ {1, ..., n}, se tiene que Tj = O, entonces:

T1 ∧ · · · ∧ Tj ∧ · · · ∧ Tn = O, para todo j ∈ {1, ..., n}.

Demostración: Sean Ti ∈ T ki(V ), con i ∈ {1, ..., n}, k′ = k1 + · · · + kn y

v1, ..., vk′ ∈ V . Supongamos que Tj = O, donde j ∈ {1, ..., n}, luego,

T1 ∧ · · · ∧Tn(v1, ..., vk′)

=
k′!

k1! · · · kn!
Alt(T1 ⊗ · · · ⊗ Tn)(v1, ..., vk′)

=
k′!

k1! · · · kn!
1

k′!

∑
δ∈Sk′

sgn(δ)(T1 ⊗ · · · ⊗ Tn)(vδ(1), ..., vδ(k′))

=
1

k1! · · · kn!
∑
δ∈Sk′

sgn(δ)T1(vδ(1), ..., vδ(k1))

· · ·Tj(vδ(k1+···kj−1), ..., vδ(k1+···kj)) · · ·Tn(vδ(k′−kn), ..., vδ(k′))

=
1

k1! · · · kn!
∑
δ∈Sk′

sgn(δ)T1(vδ(1), ..., vδ(k1)) · · · 0 · · ·Tn(vδ(k′−kn), ..., vδ(k′))

=
1

k1! · · · kn!
∑
δ∈Sk′

0
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= 0

= O(v1, ..., vk′).

Por lo tanto, queda demostrada la proposición.

Teorema 2.3. Sea V un espacio vectorial sobre R.

1) Si S ∈ T k(V ), T ∈ T l(V ) y Alt(S) = O, entonces:

Alt(S ⊗ T ) = Alt(T ⊗ S) = O.

2) Si ω ∈ Λk(V ), η ∈ Λl(V ) y θ ∈ Λm(V ), entonces:

Alt(Alt(ω ⊗ η)⊗ θ) = Alt(ω ⊗ η ⊗ θ) = Alt(ω ⊗ Alt(η ⊗ θ)).

3) Si ω ∈ Λk(V ), η ∈ Λl(V ) y θ ∈ Λm(V ), entonces:

(ω ∧ η) ∧ θ = ω ∧ (η ∧ θ) = (k + l +m)!

k!l!m!
Alt(ω ⊗ η ⊗ θ).

Demostración: En efecto:

1. Sean S ∈ T k(V ), T ∈ T l(V ) y supongamos que Alt(S) = O, tenemos que,

(k + l)!Alt(S ⊗ T )(v1, ...,vk+l)

=
∑

δ∈Sk+l

sgn(δ)(S ⊗ T )(vδ(1), ..., vδ(k+l))

=
∑

δ∈Sk+l

sgn(δ)S(vδ(1), ..., vδ(k))T (vδ(k+1), ..., vδ(k+l)).

Sea G ⊂ Sk+l el conjunto de permutaciones que solo dejan fijos a los ele-

mentos k + 1, ..., k + l, aśı,∑
δ∈G

sgn(δ)(S ⊗ T )(vδ(1), ...,vδ(k+l))

=
∑
δ∈G

sgn(δ)S(vδ(1), ..., vδ(k))T (vδ(k+1), ..., vδ(k+l))

=
∑
δ∈G

sgn(δ)S(vδ(1), ..., vδ(k))T (vk+1, ..., vk+l)

=T (vk+1, ..., vk+l)
∑
δ∈G

sgn(δ)S(vδ(1), ..., vδ(k)).
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Dado que toda permutación de G solo cambia a los elementos 1, ..., k y S se

evalúa en k vectores, podemos reescribir la sumatoria anterior de la siguiente

manera,∑
δ∈G

sgn(δ)S(vδ(1), ..., vδ(k)) =
∑
δ′∈Sk

sgn(δ′)S(vδ′(1), ..., vδ′(k)), (2.3)

luego,

T (vk+1, ..., vk+l)
∑
δ∈G

sgn(δ)S(vδ(1), ..., vδ(k))

=T (vk+1, ..., vk+l)
∑
δ′∈Sk

sgn(δ′)S(vδ′(1), ..., vδ′(k))

=T (vk+1, ..., vk+l)
k!

k!

∑
δ′∈Sk

sgn(δ′)S(vδ′(1), ..., vδ′(k))

=T (vk+1, ..., vk+l)k!

[
1

k!

∑
δ′∈Sk

sgn(δ′)S(vδ′(1), ..., vδ′(k))

]
=T (vk+1, ..., vk+l)k!Alt(S)(vδ′(1), ..., vδ′(k))

=T (vk+1, ..., vk+l)k! · 0

=0.

Es decir, ∑
δ∈G

sgn(δ)(S ⊗ T )(v1, ..., vk+l) = 0.

Sea δ0 ∈ Sk+l\G, definamos ahora a G′ de la siguiente manera,

G′ = {σ = δ · δ0 : δ ∈ G},

y consideremos el cambio, vδ0(i) = ui, para todo i ∈ {1, ..., k + l}, aśı,∑
σ∈G′

sgn(σ)(S ⊗ T )(vσ(1), ..., vσ(k+l))

=
∑
σ∈G′

sgn(σ)S(vσ(1), ..., vσ(k))T (vσ(k+1), ..., vσ(k+l))

=
∑
δ∈G

sgn(δ · δ0)S(v(δ·δ0)(1), ..., v(δ·δ0)(k))T (v(δ·δ0)(k+1), ..., v(δ·δ0)(k+l))
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=
∑
δ∈G

sgn(δ)sgn(δ0)S(vδ(δ0(1)), ..., vδ(δ0(k)))T (vδ(δ0(k+1)), ..., vδ(δ0(k+l)))

=
∑
δ∈G

sgn(δ)sgn(δ0)S(uδ(1), ..., uδ(k))T (uδ(k+1), ..., uδ(k+l))

=
∑
δ∈G

sgn(δ)sgn(δ0)S(uδ(1), ..., uδ(k))T (uk+1, ..., uk+l)

=sgn(δ0)T (uk+1, ..., uk+l)
∑
δ∈G

sgn(δ)S(vδ(1), ..., vδ(k)),

siguiendo un razonamiento similar al usado en (2.3), se sigue que,

sgn(δ0)T (uk+1, ...,uk+l)
∑
δ∈G

sgn(δ)S(vδ(1), ..., vδ(k))

=sgn(δ0)T (uk+1, ..., uk+l)
∑
δ′∈Sk

sgn(δ′)S(vδ′(1), ..., vδ′(k)

=sgn(δ0)T (uk+1, ..., uk+l)k!

[
1

k!

∑
δ′∈Sk

sgn(δ′)S(vδ′(1), ..., vδ′(k)

]
=sgn(δ0)T (uk+1, ..., uk+l)k! · 0

=0.

De aqúı, se tiene que,∑
σ∈G′

sgn(σ)(S ⊗ T )(vσ(1), ..., vσ(k+l)) = 0.

A continuación demostraremos por contradicción que G y G′ son conjuntos

disjuntos. Supongamos que G∩G′ ̸= ∅, aśı, existe al menos alguna permuta-

ción δ1 ∈ G∩G′, luego, existe alguna permutación δ2 ∈ G tal que δ1 = δ2 ·δ0,
lo que implica lo siguiente,

(δ2)
−1 · δ1 =(δ2)

−1 · (δ2 · δ0)

=((δ2)
−1δ2) · δ0

=e · δ0
=δ0,

aśı, δ0 ∈ G, lo cual es una contradicción. Repitiendo el proceso de fragmentar

a Sk+l en conjuntos disjuntos, donde la suma sobre cada conjunto es 0,

entonces, la suma sobre Sk+l es 0, con lo cual Alt(S ⊗ T ) = O. La igualdad
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Alt(T ⊗ S) = O se demuestra de manera similar.

2. Sean ω ∈ Λk(V ), η ∈ Λl(V ) y θ ∈ Λm(V ). Dados S, T ∈ T k(V ) y α ∈ R, se
cumple que:

Alt(T + α · S)(v1, ..., vk)

=
1

k!

∑
δ∈Sk

sgn(δ) (T + α · S)(vδ(1), ..., vδ(k))

=
1

k!

∑
δ∈Sk

sgn(δ) T (vδ(1), ..., vδ(k)) +
1

k!

∑
δ∈Sk

sgn(δ) α · S(vδ(1), ..., vδ(k))

= Alt(T )(v1, ..., vk) + α · Alt(S)(v1, ..., vk)

= (Alt(T ) + α · Alt(S))(v1, ..., vk).

Luego,

Alt(Alt(η ⊗ θ)− η ⊗ θ) = Alt(Alt(η ⊗ θ))− Alt(η ⊗ θ)

= Alt(η ⊗ θ)− Alt(η ⊗ θ)

= O,

(2.4)

además,

Alt(Alt(ω ⊗ η)− ω ⊗ η) = Alt(Alt(ω ⊗ θ))− Alt(ω ⊗ η)

= Alt(ω ⊗ η)− Alt(ω ⊗ η)

= O.

(2.5)

Por (2.4) y por 1), se tiene que:

O =Alt(ω ⊗ [Alt(η ⊗ θ)− η ⊗ η])

=Alt(ω ⊗ Alt(η ⊗ θ)− ω ⊗ η ⊗ θ)

=Alt(ω ⊗ Alt(η ⊗ θ))− Alt(ω ⊗ η ⊗ θ),

aśı,

Alt(ω ⊗ Alt(η ⊗ θ)) = Alt(ω ⊗ η ⊗ θ). (2.6)

Por otro lado, de (2.5) e 1), se sigue que,

O =Alt([Alt(ω ⊗ η)− ω ⊗ η]⊗ θ)
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=Alt(Alt(ω ⊗ η)⊗ θ − ω ⊗ η ⊗ θ)

=Alt(Alt(ω ⊗ η)⊗ θ)− Alt(ω ⊗ η ⊗ θ),

aśı,

Alt(Alt(ω ⊗ η)⊗ θ) = Alt(ω ⊗ η ⊗ θ). (2.7)

De (2.5) y (2.6) se concluye lo siguiente,

Alt(Alt(ω ⊗ η)⊗ θ) =Alt(ω ⊗ η ⊗ θ)

=Alt(ω ⊗ Alt(η ⊗ θ)).

3. Sean ω ∈ Λk(V ), η ∈ Λl(V ) y θ ∈ Λm(V ), luego,

(ω ∧ η) ∧ θ = (k + l +m)!

(k + l)!m!
Alt((ω ∧ η)⊗ θ)

=
(k + l +m)!

(k + l)!m!
Alt(

(k + l)!

k!l!
Alt(ω ⊗ η)⊗ θ)

=
(k + l +m)!

(k + l)!m!

(k + l)!

k!l!
Alt(Alt(ω ⊗ η)⊗ θ)

=
(k + l +m)!

k!l!m!
Alt(ω ⊗ η ⊗ θ).

Por lo tanto, queda demostrado el teorema.

Teorema 2.4. Sea V un espacio vectorial sobre R y {v1, ..., vn} una base del

mismo. Si {ϕ1, ϕ2, ..., ϕn} es la base dual correspondiente a {v1, ..., vn}, entonces
el conjunto de todos los k-tensores alternantes:

ϕi1 ∧ · · · ∧ ϕik , 1 ≤ i1 < · · · < ik ≤ n,

es una base para Λk(V ), que además tiene dimensión:n
k

 .

Demostración: Sea ω ∈ Λk(V ) ⊂ T k(V ), por Teorema 2.1, podemos ver a ω

de la siguiente manera:

ω =
n∑

i1=1

· · ·
n∑

ik=1

bi1,...,ikϕi1 ⊗ · · · ⊗ ϕik .
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Entonces, dado que ω ∈ Λk(V ), por el Teorema 2.2, 2), se sigue que:

ω =Alt(ω)

=Alt

(
n∑

i1=1

· · ·
n∑

ik=1

bi1,...,ikϕi1 ⊗ · · · ⊗ ϕik

)

=
n∑

i1=1

· · ·
n∑

ik=1

bi1,...,ikAlt(ϕi1 ⊗ · · · ⊗ ϕik).

Por Teorema 2.3, 3) se tiene que,

ϕi1 ∧ · · · ∧ ϕik =
(1 + · · ·+ 1)!

1! · · · 1!
Alt(ϕi1 ⊗ · · · ⊗ ϕik),

lo que implica que, Alt(ϕi1 ⊗ · · · ⊗ ϕik) =
1
k!
ϕi1 ∧ · · · ∧ ϕik , con esto,

ω =
n∑

i1=1

· · ·
n∑

ik=1

bi1,...,ik
1

k!
ϕi1 ∧ · · · ∧ ϕik

=
n∑

i1=1

· · ·
n∑

ik=1

ci1,...,ikϕi1 ∧ · · · ∧ ϕik ,

(2.8)

donde ci1,...,ik es un escalar. Por lo tanto, se concluye que el conjunto de todos los

k-tensores ϕi1 ∧ · · · ∧ ϕik genera a Λk(V ). La demostración de que este conjunto

es linealmente independiente es análoga a la demostración del Teorema 2.1. Aśı,

este conjunto es una base para Λk(V ).

A continuación se dará la razón de que los ı́ndices de las sumas cumplen que

1 ≤ i1 < · · · < ik ≤ n y posteriormente se encontrará la dimensión del conjunto

mencionado anteriormente. Sean w1, w2 ∈ V , luego, para todo l ∈ {1, ..., k} se

cumple,

ϕil ∧ ϕil(w1, w2) =
(1 + 1)!

1!1!
Alt(ϕil ⊗ ϕil)(w1, w2)

=
2!

1

1

2!

∑
δ∈S2

sgn(δ)(ϕil ⊗ ϕil)(wδ(1), wδ(2))

=
∑
δ∈S2

sgn(δ)[ϕil(wδ(1)) · ϕil(wδ(2))]

=sgn(δ1)ϕil(wδ1(1))ϕil(wδ1(2)) + sgn(δ2)ϕil(wδ2(1))ϕil(wδ2(2)

=ϕil(w1)ϕil(w2)− ϕil(w2)ϕil(w1)
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=0

=O(w1, w2),

donde O es el 2-tensor nulo; con esto, si ij = il, con j ̸= l y j, l ∈ {1, ..., k},
entonces,

ci1,...,ikϕi1 ∧ · · · ∧ ϕik

=ci1,...,ikϕi1 ∧ · · · ∧ ϕij ∧ · · · ∧ ϕil ∧ · · · ∧ ϕik

=(−1)1·(l−1)ci1,...,ikϕil ∧ ϕi1 ∧ · · · ∧ ϕij ∧ · · · ∧ ϕil−1
∧ · · · ∧ ϕik

=(−1)l−1(−1)1·(j−1)ci1,...,ikϕil ∧ ϕij ∧ ϕi1 ∧ · · · ∧ ϕij−1
∧ · · · ∧ ϕil−1

∧ · · · ∧ ϕik

=(−1)l+j−2ci1,...,ik(ϕil ∧ ϕil) ∧ ϕi1 ∧ · · · ∧ ϕij−1
∧ · · · ∧ ϕil−1

∧ · · · ∧ ϕik

=(−1)l+j−2ci1,...,ikO ∧ ϕi1 ∧ · · · ∧ ϕij−1
∧ · · · ∧ ϕil−1

∧ · · · ∧ ϕik

=O,

luego, trabajando con las primeras dos sumatorias,

ω =
n∑

i1=1

· · ·
n∑

ik=1

ci1,...,ikϕi1 ∧ · · · ∧ ϕik

=
n∑

ik=1

· · ·
n∑

i2=1

n∑
i1=1

ci1,...,ikϕi1 ∧ · · · ∧ ϕik

=
n∑

ik=1

· · ·
n∑

i2=1

[c1,i2,...,ikϕ1 ∧ ϕi2 ∧ · · · ∧ ϕik + c2,i2,...,ikϕ2 ∧ ϕi2 ∧ · · · ∧ ϕik

+ c3,i2,...,ikϕ3 ∧ ϕi2 ∧ · · · ∧ ϕik + · · ·+ cn,i2,...,ikϕn ∧ ϕi2 ∧ · · · ∧ ϕik ]

=
n∑

ik=1

· · ·
n∑

i3=1

[c1,1,...,ikϕ1 ∧ ϕ1 ∧ · · · ∧ ϕik + c1,2,...,ikϕ1 ∧ ϕ2 ∧ · · · ∧ ϕik

+ c1,3,...,ikϕ1 ∧ ϕ3 ∧ · · · ∧ ϕik + · · ·+ c1,n,...,ikϕ1 ∧ ϕn ∧ · · · ∧ ϕik

+ c2,1,...,ikϕ2 ∧ ϕ1 ∧ · · · ∧ ϕik + c2,2,...,ikϕ2 ∧ ϕ2 ∧ · · · ∧ ϕik

+ c2,3,...,ikϕ2 ∧ ϕ3 ∧ · · · ∧ ϕik + · · ·+ c2,n,...,ikϕ2 ∧ ϕn ∧ · · · ∧ ϕik

+ c3,1,...,ikϕ3 ∧ ϕ1 ∧ · · · ∧ ϕik + c3,2,...,ikϕ3 ∧ ϕ2 ∧ · · · ∧ ϕik

+ c3,3,...,ikϕ3 ∧ ϕ3 ∧ · · · ∧ ϕik + · · ·+ c3,n,...,ikϕ3 ∧ ϕn ∧ · · · ∧ ϕik

+ · · ·+ cn,1,...,ikϕn ∧ ϕ1 ∧ · · · ∧ ϕik + cn,2,...,ikϕn ∧ ϕ2 ∧ · · · ∧ ϕik

+ cn,3,...,ikϕn ∧ ϕ3 ∧ · · · ∧ ϕik + · · ·+ cn,n,...,ikϕn ∧ ϕn ∧ · · · ∧ ϕik ]
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=
n∑

ik=1

· · ·
n∑

i3=1

[O + c1,2,...,ikϕ1 ∧ ϕ2 ∧ · · · ∧ ϕik

+ c1,3,...,ikϕ1 ∧ ϕ3 ∧ · · · ∧ ϕik + · · ·+ c1,n,...,ikϕ1 ∧ ϕn ∧ · · · ∧ ϕik

+ (−1)1·1c2,1,...,ikϕ1 ∧ ϕ2 ∧ · · · ∧ ϕik +O

+ c2,3,...,ikϕ2 ∧ ϕ3 ∧ · · · ∧ ϕik + · · ·+ c2,n,...,ikϕ2 ∧ ϕn ∧ · · · ∧ ϕik

+ (−1)1·1c3,1,...,ikϕ1 ∧ ϕ3 ∧ · · · ∧ ϕik + (−1)1·1c3,2,...,ikϕ2 ∧ ϕ3 ∧ · · · ∧ ϕik

+O + · · ·+ c3,n,...,ikϕ3 ∧ ϕn ∧ · · · ∧ ϕik

+ · · ·+ (−1)1·1cn,1,...,ikϕ1 ∧ ϕn ∧ · · · ∧ ϕik + (−1)1·1cn,2,...,ikϕ2 ∧ ϕn ∧ · · · ∧ ϕik

+ (−1)1·1cn,3,...,ikϕ3 ∧ ϕn ∧ · · · ∧ ϕik + · · ·+ (−1)1·1cn,n−1,...,ikϕn−1 ∧ ϕn

∧ · · · ∧ ϕik +O]

=
n∑

ik=1

· · ·
n∑

i3=1

[(c1,2,...,ik − c2,1,...,ik)ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕik

+ (c1,3,...,ik − c3,1,...,ik)ϕ1 ∧ ϕ3 ∧ · · · ∧ ϕik

+ · · ·+ (c1,n,...,ik − cn,1,...,ik)ϕ1 ∧ ϕn ∧ · · · ∧ ϕik

+ (c2,3,...,ik − c3,2,...,ik)ϕ2 ∧ ϕ3 ∧ · · · ∧ ϕik

+ · · ·+ (c2,n,...,ik − cn,2,...,ik)ϕ2 ∧ ϕn ∧ · · · ∧ ϕik

+ (c3,4,...,ik − c4,3,...,ik)ϕ3 ∧ ϕ4 ∧ · · · ∧ ϕik

+ · · ·+ (c3,n,...,ik − cn,3,...,ik)ϕ3 ∧ ϕn ∧ · · · ∧ ϕik

+ · · ·+ (cn−1,n,...,ik − cn,n−1,...,ik)ϕn−1 ∧ ϕn ∧ · · · ∧ ϕik ]

=
n∑

ik=1

· · ·
n∑

i3=1

[d1,2,...,ikϕ1 ∧ ϕ2 ∧ · · · ∧ ϕik + d1,3,...,ikϕ1 ∧ ϕ3 ∧ · · · ∧ ϕik

+ · · ·+ d1,n,...,ikϕ1 ∧ ϕn ∧ · · · ∧ ϕik

+ d2,3,...,ikϕ2 ∧ ϕ3 ∧ · · · ∧ ϕik + · · ·+ d2,n,...,ikϕ2 ∧ ϕn ∧ · · · ∧ ϕik

+ d3,4,...,ikϕ3 ∧ ϕ4 ∧ · · · ∧ ϕik

+ · · ·+ d3,n,...,ikϕ3 ∧ ϕn ∧ · · · ∧ ϕik

+ · · ·+ dn−1,n,...,ikϕn−1 ∧ ϕn ∧ · · · ∧ ϕik ]

=
n∑

ik=1

· · ·
n∑

i3=1

n∑
i2=i1+1

n−1∑
i1=1

di1,i2,...,ikϕi1 ∧ ϕi2 ∧ · · · ∧ ϕik ,

para fines prácticos, en lugar de escribir i2 = i1+1, se escribirá i2 > i1. Trabajando

con las demás sumatorias de una forma similar a lo anterior mostrado, se concluirá
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que i3 > i2 y aśı sucesivamente ik > ik−1, por todo lo anterior explicado, podemos

ver al k-tensor alternante ω de la siguiente manera,

ω =

n−(k−1)∑
i1=1

n−(k−2)∑
i2>i1

· · ·
n−1∑

ik−1>ik−2

n∑
ik>ik−1

ai1,...,ikϕi1 ∧ · · · ∧ ϕik ,

dado que ik > ik−1 e ik puede ser igual a n, entonces el valor máximo que puede

tomar el ı́ndice ik−1 es n− 1, siguiendo este mismo argumento se puede encontrar

a los valores máximos de las demás sumatorias.

Para un mejor aprovechamiento del espacio, se reescribirá a las k sumatorias de

la siguiente manera,

n−(k−1)∑
i1=1

n−(k−2)∑
i2>i1

· · ·
n∑

ik>ik−1

=
∑

i1<i2<···<ik

,

y por ende,

ω =
∑

i1<i2<···<ik

bi1,...,ikϕi1 ∧ · · · ∧ ϕik .

Sean los conjuntos de ı́ndices {i1, ..., ik} y {j1, ..., jk}, con il, jl ∈ {1, ..., n}, para
todo l ∈ {1, ..., k}, se probará que si {i1, ..., ik} ≠ {j1, ..., jk}, entonces,

ϕi1 ∧ · · · ∧ ϕik ̸= ϕj1 ∧ · · · ∧ ϕjk ,

tomemos a la base canónica de Rn, {e1, ..., en}, y renombremos a los vectores

vl = eil , para todo l ∈ {1, ..., k} luego,

ϕi1 ∧ · · · ∧ ϕik(ei1 , ..., eik) =ϕi1 ∧ · · · ∧ ϕik(v1, ..., vk)

=
k!

1! · · · 1!
Alt(ϕi1 ⊗ · · · ⊗ ϕik)(v1, ..., vk)

=k!
1

k!

∑
δ∈Sk

sgn(δ)(ϕi1 ⊗ · · · ⊗ ϕik)(vδ(1), ..., vδ(k+l))

=
∑
δ∈Sk

sgn(δ)ϕi1(vδ(1)) · · ·ϕik(vδ(k+l))

=sgn(e)ϕi1(ve(1)) · · ·ϕik(ve(k+l))

+
∑

δ∈Sk\{e}

sgn(δ)ϕi1(vδ(1)) · · ·ϕik(vδ(k+l))
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=1 · ϕi1(v1) · · ·ϕik(vk+l)

+
∑

δ∈Sk\{e}

sgn(δ)ϕi1(vδ(1)) · · ·ϕik(vδ(k+l))

=1 · ϕi1(ei1) · · ·ϕik(eik+l
)

+
∑

δ∈Sk\{e}

sgn(δ)ϕi1(vδ(1)) · · ·ϕik(vδ(k+l))

=1 · · · 1 +
∑

δ∈Sk\{e}

sgn(δ)ϕi1(vδ(1)) · · ·ϕik(vδ(k+l))

=1 +
∑

δ∈Sk\{e}

sgn(δ)ϕi1(vδ(1)) · · ·ϕik(vδ(k+l)),

debido a que en toda permutación diferente de la permutación identidad se cumple

que δ(m) = m′ ̸= m, para algún m ∈ {1, ..., k}, se sigue que,

ϕi1 ∧ · · · ∧ ϕik(ei1 , ..., eik) =1 +
∑

δ∈Sk\{e}

sgn(δ)ϕi1(vδ(1)) · · ·ϕik(vδ(k+l))

=1 +
∑

δ∈Sk\{e}

sgn(δ)ϕi1(vδ(1)) · · ·ϕim(vδ(m)) · · ·ϕik(vδ(k+l))

=1 +
∑

δ∈Sk\{e}

sgn(δ)ϕi1(vδ(1)) · · ·ϕim(vm′) · · ·ϕik(vδ(k+l))

=1 +
∑

δ∈Sk\{e}

sgn(δ)ϕi1(vδ(1)) · · ·ϕim(eim′ ) · · ·ϕik(vδ(k+l))

=1 +
∑

δ∈Sk\{e}

sgn(δ)ϕi1(vδ(1)) · · · 0 · · ·ϕik(vδ(k+l))

=1 +
∑

δ∈Sk\{e}

0

=1,

por otro lado, dado que {i1, ..., ik} ≠ {j1, ..., jk}, existe algún jm, conm ∈ {1, ..., k}
tal que jm /∈ {i1, ..., ik}, luego ϕjm(eil) = 0, para todo l ∈ {1, ..., k}, aśı,

ϕj1 ∧ · · · ∧ ϕjk(ei1 , ..., eik) =
∑
δ∈Sk

sgn(δ)ϕj1(vδ(1)) · · ·ϕjk(vδ(k+l))

=
∑
δ∈Sk

sgn(δ)ϕj1(vδ(1)) · · ·ϕjm(vδ(m)) · · ·ϕjk(vδ(k+l))

=
∑
δ∈Sk

sgn(δ)ϕj1(vδ(1)) · · ·ϕjm(vm′) · · ·ϕjk(vδ(k+l))
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=
∑
δ∈Sk

sgn(δ)ϕj1(vδ(1)) · · ·ϕjm(eim′ ) · · ·ϕjk(vδ(k+l))

=
∑
δ∈Sk

sgn(δ)ϕj1(vδ(1)) · · · 0 · · ·ϕjk(vδ(k+l))

=
∑
δ∈Sk

0

= 0,

luego, ϕi1 ∧ · · · ∧ ϕik(ei1 , ..., eik) ̸= ϕj1 ∧ · · · ∧ ϕjk(ei1 , ..., eik), debido a que existe al

menos un conjunto de vectores que cumplen la desigualdad anterior, se concluye

que,

ϕi1 ∧ · · · ∧ ϕik ̸= ϕj1 ∧ · · · ∧ ϕjk .

Aunado a lo anterior, no importa el orden en que se acomoden los ı́ndices {i1, ..., ik}
en el producto cuña, ya que como se vio anteriormente, se estaŕıa obteniendo

prácticamente el mismo k-tensor en cualquier orden.

Aśı, el número de formas posibles de combinar k de los n elementos de la base

dual en el producto cuña es, n
k

 .

Por lo tanto, se da por demostrado el teorema.

Ejemplo 2.12. Sean {e1, e2, e3, e4} la base canónica de R4 y {ϕ1, ϕ2, ϕ3, ϕ4} la

base dual correspondiente. Para este ejemplo, primero encontraremos el producto

tensorial de todos los pares posibles de elementos de la base dual, ϕi ⊗ ϕj tales

que i < j e i, j ∈ {1, 2, 3, 4}. Sean v1 = (x1, x2, x3, x4), v2 = (y1, y2, y3, y4) ∈ R4,

luego,

ϕ1 ⊗ ϕ2(v1, v2) =ϕ1(v1) · ϕ2(v2) = x1y2,

ϕ1 ⊗ ϕ3(v1, v2) =ϕ1(v1) · ϕ3(v2) = x1y3,

ϕ1 ⊗ ϕ4(v1, v2) =ϕ1(v1) · ϕ3(v2) = x1y3,

ϕ1 ⊗ ϕ4(v1, v2) =ϕ1(v1) · ϕ4(v2) = x1y4,

ϕ2 ⊗ ϕ3(v1, v2) =ϕ2(v1) · ϕ3(v2) = x1y3,
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ϕ2 ⊗ ϕ4(v1, v2) =ϕ2(v1) · ϕ4(v2) = x2y4,

ϕ3 ⊗ ϕ4(v1, v2) =ϕ2(v1) · ϕ4(v2) = x2y4,

luego, apoyándonos del Ejemplo 2.9, se sigue que,

ϕ1 ∧ ϕ2(v1, v2) =
1 + 1

1!1!
Alt(ϕ1 ⊗ ϕ2)(v1, v2)

=2 · 1
2!

∑
δ∈S2

sgn(δ)(ϕ1 ⊗ ϕ2)(vδ(1), vδ(2))

=x1y2 − x2y1

=

∣∣∣∣∣∣x1 x2

y1 y2

∣∣∣∣∣∣
=det1,2(v1, v2),

ϕ1 ∧ ϕ3(v1, v2) =
1 + 1

1!1!
Alt(ϕ1 ⊗ ϕ3)(v1, v2)

=2 · 1
2!

∑
δ∈S2

sgn(δ)(ϕ1 ⊗ ϕ3)(vδ(1), vδ(2))

=x1y3 − x3y1

=

∣∣∣∣∣∣x1 x3

y1 y3

∣∣∣∣∣∣
=det1,3(v1, v2),

ϕ1 ∧ ϕ4(v1, v2) =
1 + 1

1!1!
Alt(ϕ1 ⊗ ϕ4)(v1, v2)

=2 · 1
2!

∑
δ∈S2

sgn(ϕ1 ⊗ ϕ4)(vδ(1), vδ(2))

=x1y4 − x4y1

=

∣∣∣∣∣∣x1 x4

y1 y4

∣∣∣∣∣∣
=det1,4(v1, v2),

ϕ2 ∧ ϕ3(v1, v2) =
1 + 1

1!1!
Alt(ϕ2 ⊗ ϕ3)(v1, v2)

=2 · 1
2!

∑
δ∈S2

sgn(δ)(ϕ2 ⊗ ϕ3)(vδ(1), vδ(2))

=x2y3 − x3y2
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=

∣∣∣∣∣∣x2 x3

y2 y3

∣∣∣∣∣∣
=det2,3(v1, v2),

ϕ2 ∧ ϕ4(v1, v2) =
1 + 1

1!1!
Alt(ϕ2 ⊗ ϕ4)(v1, v2)

=2 · 1
2!

∑
δ∈S2

sgn(δ)(ϕ2 ⊗ ϕ4)(vδ(1), vδ(2))

=x2y4 − x4y2

=

∣∣∣∣∣∣x2 x4

y2 y4

∣∣∣∣∣∣
=det2,4(x, y),

ϕ3 ∧ ϕ4(v1, v2) =
1 + 1

1!1!
Alt(ϕ3 ⊗ ϕ4)(v1, v2)

=2 · 1
2!

∑
δ∈S2

sgn(δ)(ϕ3 ⊗ ϕ4)(vδ(1), vδ(2))

=x3y4 − x4y3

=

∣∣∣∣∣∣x3 x4

y3 y4

∣∣∣∣∣∣
=det3,4(v1, v2).

Por el Teorema 2.4, podemos decir que {det1,2, det1,3, det1,4, det2,3, det2,4, det3,4}
es una base para Λ2(R4), aunque técnicamente es igual a la base dual dada al

inicio, existe una gran diferencia, ya que es mucho más fácil manejar 2-tensores

con esta nueva base.

Más aún, el Ejemplo 2.12 ilustra el hecho de que el producto cuña de dos tensores

se puede ver como el determinante de una matriz cuadrada de orden 2, esto será

generalizado y demostrado como un teorema para todo n ∈ N.

Proposición 2.7. Sean φ1, ..., φk ∈ T 1(V ) , con k ∈ N. Dados v1, ..., vk ∈ V se

cumple que φ1 ∧ · · · ∧ φk(v1, ..., vk) = det(A), donde A está dada de la siguiente

manera,

A =


φ1(v1) · · · φ1(vk)

... · · · ...

φk(v1) · · · φk(vk)

 .
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Demostración: Sean φ1, ..., φk ∈ T 1(V ) y v1, ..., vk ∈ V , luego,

φ1 ∧ · · · ∧ φk(v1, ..., vk) =
(1 + · · ·+ 1)!

1! · · · 1!
Alt(φ1 ⊗ · · · ⊗ φk)(v1, ..., vk)

=k!
1

k!

∑
δ∈Sk

sgn(δ)(φ1 ⊗ · · · ⊗ φk)(vδ(1), ..., vδ(k)))

=
∑
δ∈Sk

sgn(δ)φ1(vδ(1)) · · ·φk(vδ(k)),

consideremos a la siguiente matriz,

A =


φ1(v1) · · · φ1(vk)

... · · · ...

φk(v1) · · · φk(vk)

 ,

luego, usando la definición de determinante dada en la Definición 1.10, de la

Sección 1.3, se sigue que,

φ1 ∧ · · · ∧ φk(v1, ..., vk) =
∑
δ∈Sk

sgn(δ)φ1(vδ(1)) · · ·φk(vδ(k)) = det(A).

Por lo tanto, queda demostrada la proposición.

En el siguiente ejemplo se definirá un nuevo n-tensor alternante que nos será

muy útil para la demostración de un teorema que se presentará páginas más ade-

lante. A este nuevo tensor lo denotaremos por det y debido a que está relaciona-

do con la función determinante que conocemos usualmente, es posible que existan

confusiones, aśı, se usará det para hacer referencia a la función determinante usual

empleado en matrices.

Ejemplo 2.13. Sea el n-tensor det : (Rn)n → R, definido como sigue:

det((x11, ..., x1n), ..., (xn1, ..., xnn)) = det


x11 · · · x1n
... · · · ...

xn1 · · · xnn

.

Sean n+1 vectores (x11, ..., x1n), ..., (xn1, ..., xnn), (z1, ..., zn) ∈ Rn y c ∈ R, primero
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se demostrará que det es un n-tensor,

det((x11, ..., x1n), ..., c((xj1, ..., xjn) + (z1, ..., zn)), ..., (xn1, ..., xnn))

=det



x11 x12 · · · x1n
...

... · · · ...

cxj1 + cz1 cxj2 + cz2 · · · cxjn + czn
...

... · · · ...

xn1 xn2 · · · xnn



=det



x11 x12 · · · x1n
...

... · · · ...

cxj1 cxj2 · · · cxjn
...

... · · · ...

xn1 xn2 · · · xnn


+ det



x11 x12 · · · x1n
...

... · · · ...

cz1 cz2 · · · czn
...

... · · · ...

xn1 xn2 · · · xnn



=c · det



x11 x12 · · · x1n
...

... · · · ...

xj1 xj2 · · · xjn
...

... · · · ...

xn1 xn2 · · · xnn


+ c · det



x11 x12 · · · x1n
...

... · · · ...

z1 z2 · · · zn
...

... · · · ...

xn1 xn2 · · · xnn


=c · det((x11, ..., x1n), ..., (xj1, ..., xjn), ..., (xn1, ..., xnn))

+ c · det((x11, ..., x1n), ..., (z1, ..., zn), ..., (xn1, ..., xnn)).

Por lo tanto, det es un n- tensor de Rn. Ahora se demostrará que es un n- tensor

alternante,

det((x11, ..., x1n), ..., (xi1, ..., xin), ..., (xj1, ..., xjn), ...,(xn1, ..., xnn))

=det



x11 x12 · · · x1n
...

... · · · ...

xi1 xi2 · · · xin
...

... · · · ...

xj1 xj2 · · · xjn
...

... · · · ...

xn1 xn2 · · · xnn


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= −det



x11 x12 · · · x1n
...

... · · · ...

xj1 xi2 · · · xjn
...

... · · · ...

xi1 xj2 · · · xin
...

... · · · ...

xn1 xn2 · · · xnn


= −det((x11, ..., x1n), ..., (xj1, ..., xjn), ..., (xi1, ..., xin), ..., (xn1, ..., xnn)).

Con esto, det ∈ Λn(Rn).

Si V es un espacio vectorial de dimensión n, entonces, por el Teorema 2.4, se

tiene que Λn(V ) tiene dimensión 1. Visto de otra forma, todo n-tensor alternante

de V es múltiplo de algún n-tensor alternante diferente del n-tensor nulo O de V .

Teorema 2.5. Sean V un espacio vectorial sobre R, {v1, ..., vn} de V y ω ∈ Λn(V ).

Si wi =
∑n

j=1 aijvj son n vectores en V , aij ∈ R, con i, j ∈ {1, ..., n}, entonces,

ω(w1, ..., wn) = det(aij) · ω(v1, ..., vn).

Demostración: Sea η : (Rn)n → R definida como sigue,

η((a11, ..., a1n), ..., (an1, ..., ann)) = ω

( n∑
j=1

a1jvj, ...,
n∑

j=1

anjvj

)
.

Primero veamos que η ∈ Λn(Rn).

Sean n+ 1 vectores (a11, ..., a1n), ..., (an1, ..., ann), (b1, ..., bn) ∈ R y α ∈ R, aśı,

η((a11, ..., a1n), ..., α((al1, ..., aln) + (b1, ..., bn)), ..., (an1, ..., ann))

=ω

(
n∑

j=1

a1jvj, ...,

n∑
j=1

α(alj + bj)vj, ...,
n∑

j=1

anjvj

)

=ω

(
n∑

j=1

a1jvj, ..., α

n∑
j=1

aljvj, ...,

n∑
j=1

anjvj

)

+ ω

(
n∑

j=1

a1jvj, ..., α
n∑

j=1

bjvj, ...,
n∑

j=1

anjvj

)
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=α · ω

(
n∑

j=1

a1jvj, ...,

n∑
j=1

aljvj, ...,

n∑
j=1

anjvj

)

+ α · ω

(
n∑

j=1

a1jvj, ...,

n∑
j=1

bjvj, ...,

n∑
j=1

anjvj

)
=α · η((a11, ..., a1n), ..., (al1, ..., aln), ..., (an1, ..., ann))

+ α · η((a11, ..., a1n), ..., (b1, ..., bn), ..., (an1, ..., ann)),

con esto, η es un n-tensor, además,

η((a11, ..., a1n), ..., (al1, ..., aln), ..., (am1, ..., amn), ..., (an1, ..., ann))

=ω

(
n∑

j=1

a1jvj, ...,
n∑

j=1

aljvj, ...,
n∑

j=1

amjvj, ...,
n∑

j=1

anjvj

)

=− ω

(
n∑

j=1

a1jvj, ...,
n∑

j=1

amjvj, ...,
n∑

j=1

aljvj, ...,
n∑

j=1

anjvj

)
=− η((a11, ..., a1n), ..., (am1, ..., amn), ..., (al1, ..., aln), ..., (an1, ..., ann)),

luego, η ∈ Λn(Rn), dado que det∈ Λn(Rn), podemos decir que η = det · λ, para
algún λ ∈ R, con esto, tomando a la base canónica {e1, ..., en} de Rn, se sigue que,

λ =1 · λ

=det(ei) · λ

=η(e1, ..., en)

=ω(v1 + 0 · v2 + · · ·+ 0 · vn, ..., 0 · v1 + 0 · v2 + · · ·+ vn)

=ω(v1, ..., vn).

De aqúı,

ω(w1, ..., wn) = η((a11, ..., a1n), ..., (an1, ..., ann))

= det(aij) · λ

= det(aij) · ω(v1, ..., vn).

Por lo tanto, se cumple que ω(w1, ..., wn) = det(aij) · ω(v1, ..., vn).
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2.3. Orientación

Las definiciones que se presentan a continuación, son importantes para caṕıtu-

los posteriores.

Definición 2.7. Sean V un espacio vectorial sobre R, y {v1, ..., vn} una base del

mismo. A la n-ada (v1, ..., vn) se le llama base orientada de V .

Definición 2.8. Sea V un espacio vectorial sobre R. Dado un n-tensor ω ∈ Λn(V )

diferente del n-tensor nulo O, se tienen dos grupos disjuntos de las bases orientadas

de V ; uno se conforma de bases orientadas (v1, ..., vn) tales que ω(v1, ..., vn) > 0,

y el segundo se conforma de bases (w1, ..., wn) tales que ω(w1, ..., wn) < 0. Cada

uno de estos conjuntos es llamado orientación de V.

Sean {v1, ..., vn} y {w1, ..., wn} dos bases de V y la matriz A = (aij), donde

wi =
∑n

j=1 aijvj, luego, (v1, ..., vn) y (w1, ..., wn) pertenecen a la misma orientación

si y solo si det(A) > 0.

La orientación a la cual una base orientada (v1, ..., vn) de V pertenece es denotada

como [v1, ..., vn], mientras que la segunda orientación se denota como −[v1, ..., vn].

Definición 2.9. En Rn definimos a la orientación usual como [e1, ..., en].

En Rn se usa al tensor det para definir una orientación en una base orientada.

Ejemplo 2.14. Sea {e1, e2} la base canónica de R2. Consideremos a las siguientes

bases orientadas β = (e1, e2) y β
′ = (e2, e1) de R2. Luego,

det(e1, e2) =

∣∣∣∣∣∣1 0

0 1

∣∣∣∣∣∣ = 1, det(e2, e1) =

∣∣∣∣∣∣0 1

1 0

∣∣∣∣∣∣ = −1,

con esto, β y β′ pertenecen a diferentes orientaciones, las cuales se representan en

la Figura 2.1.

(a) Orientación de β (b) Orientación de β′



Caṕıtulo 3

Formas diferenciales en Rn

En este caṕıtulo se presentan la definición y las propiedades principales de las

formas diferenciales en Rn, aśı mismo, se darán algunas definiciones necesarias

para la demostración del Teorema de Stokes.

3.1. Espacio tangente

Definición 3.1. Sea p ∈ Rn. El conjunto de todos los pares (p, v) con v ∈ Rn, se

denota como Rn
p , y es llamado el espacio tangente de Rn en p.

Un vector (p, v) ∈ Rn
p = {(p, v) : v ∈ Rn}, se puede interpretar geométrica-

mente como un vector que tiene la misma dirección y la misma longitud que v,

pero con punto inicial p, es decir, este vector va del punto p al punto p + v. Se

escribirá a (p, v) como vp.

v

p+ v

p

vp

Figura 3.1: Espacio tangente de R2 en p

Proposición 3.1. El espacio tangente de Rn en p es un espacio vectorial sobre

R con las siguientes operaciones:

59
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(p, v) + (p, w) = (p, v + w),

α(p, v) = (p, αv).

para todo v, w ∈ Rn y α ∈ R.

Demostración: Sean (p, v), (p, w), (p, u) ∈ Rn
p , con v, w, u ∈ Rn y α, β ∈ R,

1. Cerradura sobre la suma.

Tenemos que,

(p, v) + (p, w) = (p, v + w),

luego, dado que v + w ∈ Rn, se sigue que (p, v + w) ∈ Rn
p , con esto,

(p, v) + (p, w) ∈ Rn
p .

2. Conmutatividad de la suma.

(p, v) + (p, w) =(p, v + w)

=(p, w + v)

=(p, w) + (p, v).

3. Asociatividad de la suma.

(p, v) + ((p, w) + (p, u)) =(p, v) + (p, w + u)

=(p, v + w + u)

=(p, (v + w) + u)

=(p, v + w) + (p, u)

=((p, v) + (p, w)) + (p, u).

4. Existencia de neutro aditivo.

Sea on el vector nulo de Rn, luego, (p, on) ∈ Rn
p . Aśı,

(p, v) + (p, on) = (p, v + on) = (p, v),

con esto, existe un elemento neutro aditivo en Rn
p .
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5. Existencia de inverso aditivo.

Dado v ∈ Rn, se sigue que −v ∈ Rn, y por ende (p,−v) ∈ Rn
p , debido a que,

(p, v) + (p,−v) = (p, v − v) = (p, on),

se puede asegurar la existencia de un inverso aditivo en Rn
p .

6. Cerradura sobre el producto por un escalar.

Tenemos que,

α(p, v) = (p, αv).

Dado que α ∈ R y v ∈ Rn se sigue que αv ∈ Rn, aśı, (p, αv) ∈ Rn
p , luego,

α(p, v) ∈ Rn
p .

7. Asociatividad del producto de escalares.

αβ(p, v) = (p, αβv)

= (p, α(βv))

= α(p, βv)

= α(β(p, v)).

8. Distribución de la suma escalar.

(α + β)(p, v) =(p, (α + β)v)

=(p, αv + βv)

=(p, αv) + (p, βv)

=α(p, v) + β(p, v).

9. Distribución de suma vectorial.

α((p, v) + (p, w)) =α((p, v + w))

=(p, α(v + w))

=(p, αv + αw)

=(p, αv) + (p, αw).
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10. Unitaridad.

Tenemos que 1 ∈ R, luego,

1 · (p, v) = (p, 1 · v) = (p, v).

Con esto, se concluye que Rn
p es un espacio vectorial sobre R.

Sea p ∈ Rn. Dados n vectores de Rn, v1, ..., vn, se cumple la siguiente igualdad,( n∑
i=1

aivi

)
p

=
n∑

i=1

ai(vi)p,

que es equivalente a (
p,

n∑
i=1

aivi

)
=

n∑
i=1

ai(p, vi),

para cualesquiera escalares ai ∈ R. Aśı, si consideramos al conjunto {e1, ..., en}
como la base canónica de Rn, se sigue que {(e1)p, ..., (en)p} es una base de Rn

p

conocida como la base canónica de Rn
p .

Muchas de las estructuras en Rn tienen análogos en Rn
p , en particular, el pro-

ducto interno usual <,>p para Rn
p está definido como < vp, wp >p=< v,w > y la

orientación usual para Rn
p es [(e1)p, ..., (en)p].

3.2. Campos vectoriales

Definición 3.2. Un campo vectorial en Rn es una función F : Rn → ∪q∈RnRn
q

tal que F (p) ∈ Rn
p para todo p ∈ Rn. Para cada p existen F1(p), ..., Fn(p) ∈ R

tales que:

F (p) = (p, (F1(p), ..., Fn(p))) = F1(p)(e1)p + · · ·+ Fn(p)(en)p.

Esto define n funciones F1, ..., Fn : Rn → R llamadas funciones componente

de F . Si para todo i ∈ {1, ..., n} las funciones Fi son continuas o diferenciables,

entonces diremos que F es un campo vectorial continuo o diferenciable, res-

pectivamente.

En los libros de matemáticas, a los campos vectoriales se les define como una

función F : X ⊂ Rn → Rn que a cada punto x ∈ X le asigna un vector F (x) ∈ Rn
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y que se representan de la siguiente manera

F (x) = (F1(x), ..., Fn(x)),

aun cuando ambas definiciones parecen muy distintas, en realidad representan lo

mismo, y es que la única diferencia entre ambas definiciones es que la primera es

más formal, ya que espećıfica el punto de anclaje del vector que se está evaluando.

Ejemplo 3.1. Sean las funciones componente Fi : R2 → R, i ∈ {1, 2} definidas

como sigue,

F1(x1, x2) = x1 + x2, F2(x1, x2) = x1 · x2.

Con las funciones componente anteriores podemos definir un campo vectorial,

F : R2 →
⋃
q∈R2

R2
q,

dado por, F (p) = F1(p)(e1)p + F2(p)(e2)p. A continuación se encontrará a F (p),

para algunos p ∈ R2.

1. Para p = (3, 4),

F (3, 4) = F1(3, 4)(e1)(3,4) + F2(3, 4)(e2)(3,4)

= 7(e1)(3,4) + 12(e2)(3,4).

2. Para p = (1, 6),

F (1, 6) = F1(1, 6)(e1)(1,6) + F2(1, 6)(e2)(1,6)

= 7(e1)(1,6) + 6(e2)(1,6).

3. Para p = (5,−2),

F (5,−2) = F1(5,−2)(e1)(5,−2) + F2(5,−2)(e2)(5,−2)

= 3(e1)(5,−2) +−10(e2)(5,−2).

Para una mejor presentación visual, en la Figura 3.2 se muestran los vectores

normalizados asociados a este campo vectorial.
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−4 −2 0 2 4
−4

−2

0

2

4

Figura 3.2: Campo vectorial F (p)

Definición 3.3. Sea F un campo vectorial en Rn. Definimos la divergencia,

divF : Rn → R, como
∑n

i=1DiFi. Si introducimos el simbolismo formal,

▽ =
n∑

i=1

Di · ei = (D1, ..., Dn),

la podemos escribir de forma simbólica, divF =< ▽, F >.

Definición 3.4. Sea F un campo vectorial en R3. A partir de F , podemos definir

un nuevo campo vectorial ▽×F : R3 → R, llamado rotacional de F , y denotado

como rotF , el cual está dado de la siguiente manera,

rotF =(▽× F )(p) =

∣∣∣∣∣∣∣∣∣
(e1)p (e2)p (e3)p

D1 D2 D3

F1 F2 F3

∣∣∣∣∣∣∣∣∣
=(D2F3 −D3F2)(e1)p − (D1F3 −D3F1)(e2)p + (D1F2 −D2F1)(e3)p.

Ejemplo 3.2. Sea F : R3 → R el campo vectorial dado por,

F (x1, x2, x3) = (x1+x2−x3)(e1)(x1,x2,x3)+(x2

10
)(e2)(x1,x2,x3)+(sen(x3))(e3)(x1,x2,x3),

luego,

F1(x1, x2, x3) = x1 + x2 − x3,
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F2(x1, x2, x3) =
x2

10
,

F3(x1, x2, x3) = sen(x3),

con esto, la divergencia de F es,

divF =< ▽, F >

= (D1, D2, D3) · (F1, F2, F3)

= D1F1 +D2F2 +D3F3

= D1(x1 + x2 − x3) +D2(
x2

10
) +D3(sen(x3))

= 1 +
1

10
+ cos(x3)

=
11

10
+ cos(x3),

y el rotacional de F es,

rotF =(▽× F )(p)

=

∣∣∣∣∣∣∣∣∣
(e1)(x1,x2,x3) (e2)(x1,x2,x3) (e3)(x1,x2,x3)

D1 D2 D3

x1 + x2 − x3
x2

10
cos(x3)

∣∣∣∣∣∣∣∣∣
=(D2(cos(x3))−D3(

x2

10
))(e1)p + (D3(x1 + x2 − x3)−D1(cos(x3)))(e2)p

+ (D1(
x2

10
)−D2(x1 + x2 − x3))(e3)p

=(0− 0)(e1)p + (−1− 0)(e2)p + (0− 1)(e3)p

=0(e1)p − (e2)p − (e3)p.

Los campos vectoriales se ocupan en muchas aplicaciones f́ısicas, a continua-

ción, se presentará una definición similar pero usando tensores alternantes.

3.3. K-formas

A partir de ahora, a menos que se especifique lo contrario, se considerará a Rn

con la métrica usual, es decir, con la métrica Euclidiana.

Definición 3.5. Sea A ⊂ Rn abierto. Una función ω : A → ∪q∈RnΛk(Rn
q ) con

ω(p) ∈ Λk(Rn
p ), es llamada k-forma o simplemente forma diferencial en Rn.
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Notemos que ω(p) es un k-tensor alternante de Rn
p , aśı, por el Teorema 2.4

podemos ver a ω(p) de la siguiente manera,

ω(p) =
∑

i1<i2<···<ik

ωi1,...,ik(p)ϕi1(p) ∧ · · · ∧ ϕik(p),

donde {ϕ1(p), ϕ2(p), ..., ϕn(p)} es la base dual correspondiente a {(e1)p, ..., (en)p}
y ωi1,...,ik : Rn → R, para todo il ∈ {1, ..., n} y para todo l ∈ {1, ..., k}.
Con base en la igualdad anterior podemos ver a la k-forma ω como sigue,

ω =
∑

i1<i2<···<ik

ωi1,...,ikϕi1 ∧ · · · ∧ ϕik ,

ω es llamada diferenciable, es decir que ω es de orden C∞, o continua si las

funciones ωi1,...,ik lo son.

Asumiremos que las formas y los campos vectoriales son diferenciables, y dife-

renciable significará C∞. Además, su dominio puede ser un subconjunto abierto de

Rn, a partir de este punto, muchas de las definiciones que se darán a continuación

también aplican a este caso. Una función f : R → R se considera una 0-forma y

fω = f ∧ ω. Con esto, si una 0-forma f es diferenciable, entonces f es de clase

C∞ y por ende es continuamente diferenciable.

Proposición 3.2. Sea f : Rn → R. Si f es diferenciable, entonces,

Df(p) ∈ Λ1(Rn).

Demostración: Sea f : Rn → R una función diferenciable, luego, por definición

se tiene que Df(p) es un operador lineal, como ya se explicó en el Ejemplo 2.3,

Df(p) es un 1-tensor, aśı, Alt(Df(p)) = Df(p), por último, aplicando elTeorema

2.2 1) se concluye que Df(p) ∈ Λ1(Rn).

Por una pequeña modificación obtenemos una 1-forma df : Rn
p → R, definida

por,

df(p)(vp) = Df(p)(v).

Definición 3.6. Sea (x1, ..., xn) ∈ Rn. La función πi : Rn → R dada por

πi(x1, ..., xi, ..., xn) = xi, para todo i ∈ {1, ..., n},

es llamada i-ésima función proyección.
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Es usual que se denote a la función πi por xi, con esto

dxi(p)(vp) = dπi(p)(vp).

Proposición 3.3. Sean Rn
p , con p ∈ Rn y {dx1(p), ..., dxn(p)} es la base dual de

{(e1)p, ..., (en)p}.

Demostración: Sean i, j ∈ {1, ..., n}, notemos que πi es una transformación

lineal, aśı, por Teorema 1.10 se tiene que Dπi(p) = πi, luego,

dxi(p)((ej)p) =dπi(p)((ej)p)

=Dπi(p)(ej)

=πi(ej)

=

 1, si i = j,

0, otro caso.

Aśı, {dx1(p), ..., dxn(p)} es la base dual de {(e1)p, ..., (en)p}.

De la proposición anterior se sigue que toda k-forma puede ser escrita de la

siguiente manera,

ω =
∑

i1<i2<···<ik

ωi1,...,ikdxi1 ∧ · · · ∧ dxik .

Ejemplo 3.3. En R4 las 3-formas se pueden escribir como,

ω =
2∑

i1=1

3∑
i2>i1

4∑
i3>i2

ωi1,i2,i3dxi1 ∧ dxi2 ∧ dxi3

=ω1,2,3dx1 ∧ dx2 ∧ dx3 + ω1,2,4dx1 ∧ dx2 ∧ dx4
+ ω1,3,4dx1 ∧ dx3 ∧ dx4 + ω2,3,4dx2 ∧ dx3 ∧ dx4.

Ejemplo 3.4. En R2 las 1-formas son de la siguiente manera,

ω =
2∑

i1=1

ωi1dxi1

=ω1dx1 + ω2dx2,
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luego, sean p = (p1, p2) ∈ R2, ω1 y ω2 dadas como sigue,

ω1(x1, x2) =
x1+x2

10
, ω2(x1, x2) = x1 cos(x2),

aśı,

ω(p) =ω1(p)dx1(p) + ω2(p)dx2(p)

=
p1 + p2

10
dx1(p) + p1 cos(p2)dx2(p).

Teorema 3.1. Sea f : Rn → R. Si f es diferenciable, entonces

df = D1f · dx1 + · · ·+Dnf · dxn.

En notación clásica,

df = ∂f
∂x1

· dx1 + · · ·+ ∂f
∂xn

· dxn.

Demostración: Sean f : Rn → R diferenciable y p ∈ Rn, luego,

df(p)(vp) =Df(p)(v)

=(D1f(p), ..., Dnf(p)) ·


v1
...

vn


=

n∑
i=1

vi ·Dif(p)

=
n∑

i=1

Dif(p) · dxi(p)(vp)

=

( n∑
i=1

Dif(p) · dxi(p)
)
(vp).

Por lo tanto, se da por demostrado el teorema.

Recordemos que dada una función diferenciable f : Rn → Rm, es posible definir

una transformación lineal Df(p) : Rn → Rm.

Definición 3.7. Sea f : Rn → Rm una función diferenciable. Luego, con una

modificación a Df(p), podemos obtener una transformación lineal f∗ : Rn
p → Rm

f(p)

definida por

f∗(vp) = (Df(p)(v))f(p).
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La transformación lineal dada en la Definición 3.7, nos permite definir una

segunda transformación lineal, tal como se explica a continuación.

Definición 3.8. Sea f : Rn → Rm una función diferenciable. La transformación

lineal, f ∗ : Λk(Rm
f(p)) → Λk(Rn

p ), transforma una k-forma ω en Rm en una k-forma

f ∗ω en Rn. Esta transformación se define punto a punto de la siguiente manera:

dados p ∈ Rn y v1, ..., vk ∈ Rn
p , se tiene que,

f ∗ω(p)(v1, ..., vk) = ω(f(p))(f∗(v1), ..., f∗(vk)),

donde f ∗ω(p) es un k-tensor alternante de Rn
p y ω(f(p)) es un k-tensor alternante

de Rm
f(p).

Ejemplo 3.5. En R las 1-formas se pueden escribir como,

ω =
1∑

i1=1

ωi1dxi1 = ω1dx1.

Sean p ∈ R y ω1(x) = sen(x), aśı,

ω(p) =ω1(p)dx1(p)

=sen(p)dx1(p).

Sean f = x3 : R3 → R la 3-ésima proyección y p′ = (p1, p2, p3) ∈ R3.Notemos que

f es una función diferenciable. Tomando a vp′ = (v1, v2, v3)p′ ∈ R3
p′ , se sigue que:

f ∗ω(p′)(vp′) =x
∗
3ω(p

′)(vp′)

=ω(x3(p
′))((x3)∗(vp′))

=ω(p3)((Dx3(p
′)(v))x3(p′))

=ω(p3)(π3(v))p3)

=ω(p3)((v3)p3)

=sen(p3)dx1(p3)((v3)p3)

=sen(p3)Dx1(p3)(v3)

=sen(p3)(π1(v3))

=sen(p3) · (v3).

Debido a que no siempre es fácil hallar f ∗ω, nos apoyaremos del Teorema 3.2

para realizar los cálculos de forma más directa.
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Teorema 3.2. Sea f : Rn → Rm una función diferenciable.

1. Si xi es la i-ésima función proyección en Rm, entonces,

f ∗(dxi) =
n∑

j=i

Djfi · dxj =
n∑

j=1

∂fi
∂xj

dxj.

2. Si ω1, ω2 son dos k-formas de Rm, entonces,

f ∗(ω1 + ω2) = f ∗(ω1) + f ∗(ω2).

3. Si g es una 0-forma, g : Rm → R, entonces,

f ∗(g · ω) = (g ◦ f) · f ∗ω.

4. Si ω es una k-forma y η es una l-forma, entonces,

f ∗(ω ∧ η) = f ∗ω ∧ f ∗η.

5. Si g es una 0-forma, g : Rm → Rp, entonces,

g∗ ◦ f∗ =(g ◦ f)∗
(g ◦ f)∗ =f ∗ ◦ g∗.

Demostración: Sean p ∈ Rn y (v1)p, ..., (vk)p, vp ∈ Rn
p .

1. Sea xi la i-ésima función proyección, recordemos que dxi es una 1-forma,

f ∗((dxi)(p))(vp) =dxi(f(p))(f∗(vp))

=dxi(f(p))(Df(p)(v))f(p)

=dxi(f(p))(Df1(p)(v), ..., Dfi(p)(v), ..., Dfn(p)(v))f(p)

=dxi(f(p))

( n∑
j=1

vj ·Djf1(p), ...,
n∑

j=1

vj ·Djfi(p)

, ...,

n∑
j=1

vj ·Djfm(p)

)
f(p)
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=Dxi(f(p))

( n∑
j=1

vj ·Djf1(p), ...,
n∑

j=1

vj ·Djfi(p)

, ...,
n∑

j=1

vj ·Djfm(p)

)

=πi

( n∑
j=1

vj ·Djf1(p), ...,
n∑

j=1

vj ·Djfi(p)

, ...,
n∑

j=1

vj ·Djfm(p)

)

=
n∑

j=1

vj ·Djfi(p)

=
n∑

j=1

Djfi(p)dxj(p)(vp)

=

(
n∑

j=1

Djfi(p)dxj(p)

)
(vp)

=

(
n∑

j=1

∂fi(p)

∂xj
dxj(p))(vp)

)
.

2. Sean ω1 y ω2 k-formas.

f ∗(ω1+ω2)(p)((v1)p, ..., (vk)p)

=(ω1 + ω2)(f(p))(f∗((v1)p), ..., f∗((vk)p))

=ω1(f(p))(f∗((v1)p), ..., f∗((vk)p)) + ω2(f(p))(f∗((v1)p), ..., f∗((vk)p))

=f ∗(ω1)(p)((v1)p, ..., (vk)p) + f ∗(ω2)(p)((v1)p, ..., (vk)p)

=(f ∗(ω1) + f ∗(ω2))(p)((v1)p, ..., (vk)p).

3. Sean g una 0-forma, g : Rm → R, y ω una k-forma. Dado que g y ω tienen

el mismo dominio y g(q) es un escalar para todo q ∈ Rm, se cumple lo

siguiente:

g · ω : Rm →
⋃

q∈Rm

Λk(Rm
q ),

es decir, g · ω es una k-forma de Rm, además,

(g · ω)(q) = g(q) · ω(q), para todo q ∈ Rm,
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aśı,

f ∗(g · ω)(p)((v1)p, ..., (vk)p) =(g · ω)(f(p))(f∗((v1)p), ..., f∗((vk)p))

=(g · ω)(f(p))(f∗((v1)p), ..., f∗((vk)p))

=g(f(p)) · ω(f(p))(f∗((v1)p), ..., f∗((vk)p))

=(g ◦ f)(p) · f ∗((ω)(p))((v1)p, ..., (vk)p)

=((g ◦ f) · f ∗(ω))(p)((v1)p, ..., (vk)p).

4. Sean ω una k-forma y η una l-forma dadas como sigue,

ω =
∑

i1<i2<···<ik

ωi1,...,ikdxi1 ∧ · · · ∧ dxik ,

η =
∑

j1<j2<···<jl

ηj1,...,jldxj1 ∧ · · · ∧ dxjl .

Para poder demostrar este inciso, primero se demostrará para 1-formas y

posteriormente se demostrará de forma general.

Sean φ1, ..., φk 1-formas de Rn y v1, ..., vk ∈ Rn, luego, por la Proposición

2.7:

f ∗(φ1 ∧ · · · ∧ φk)(p)((v1)p, ...,(vk)p)

=(φ1 ∧ · · · ∧ φk)(f(p))(f∗((v1)p), ..., f∗((vk)p))

=det(φi(f(p))(f∗((vj)p)))

=det(f ∗φi((vj)p))

=(f ∗φ1 ∧ · · · ∧ f ∗φk)(p)((v1)p, ..., (vk)p).

Con lo anterior demostrado, por 2) y 3), se tiene que,

f ∗(ω) =f ∗
( ∑

i1<i2<···<ik

ωi1,...,ikdxi1 ∧ · · · ∧ dxik
)

=
∑

i1<i2<···<ik

(ωi1,...,ik ◦ f)f ∗(dxi1) ∧ · · · ∧ f ∗(dxik),

análogamente,

f ∗(η) =
∑

j1<j2<···<jl

(ηj1,...,jl ◦ f)f ∗(dxj1) ∧ · · · ∧ f ∗(dxjl).
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Para poder encontrar a ω∧η, aplicaremos distintas propiedades del producto

cuña: ∧, vistas previamente,

ω ∧ η

=

( ∑
i1<···<ik

ωi1,...,ikdxi1 ∧ · · · ∧ dxik
)
∧
( ∑

j1<···<jl

ηj1,...,jldxj1 ∧ · · · ∧ dxjl
)

=
∑

i1<···<ik

∑
j1<···<jl

ωi1,...,ikdxi1 ∧ · · · ∧ dxik ∧ ηj1,...,jldxj1 ∧ · · · ∧ dxjl

=
∑

i1<···<i1,j1<···<jl

(−1)k·0ωi1,...,ikηj1,...,jldxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjl

=
∑

i1<···<i1,j1<···<jl

ωi1,...,ikηj1,...,jldxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjl ,

con esto, y de nueva cuenta aplicando 2) y 3) y lo previamente ya demos-

trado,

f ∗(ω ∧ η) =f ∗
( ∑

i1<i2<···<i1,j1<j2<···<jl

ωi1,...,ikηj1,...,jldxi1 ∧ · · · ∧ dxik

∧ dxj1 ∧ · · · ∧ dxjl
)

=
∑

i1<i2<···<i1,j1<j2<···<jl

(ωi1,...,ikηj1,...,jl ◦ f)f ∗(dxi1) ∧ · · · ∧ f ∗(dxik)

∧ f ∗(dxj1) ∧ · · · ∧ f ∗(dxjl)

=
∑

i1<i2<···<i1,j1<j2<···<jl

(ωi1,...,ik ◦ f) · (ηj1,...,jl ◦ f)f ∗(dxi1)

∧ · · · ∧ f ∗(dxik) ∧ f ∗(dxj1) ∧ · · · ∧ f ∗(dxjl)

=
∑

i1<i2<···<i1,j1<j2<···<jl

(−1)k·0(ωi1,...,ik ◦ f)f ∗(dxi1) ∧ · · · ∧ f ∗(dxik)

∧ (ηj1,...,jl ◦ f)f ∗(dxj1) ∧ · · · ∧ f ∗(dxjl)

=

( ∑
i1<i2<···<i1

(ωi1,...,ik ◦ f)f ∗(dxi1) ∧ · · · ∧ f ∗(dxik)

)
∧
( ∑

j1<j2<···<jl

(ηj1,...,jl ◦ f)f ∗(dxj1) ∧ · · · ∧ f ∗(dxjl)

)
=f ∗(ω) ∧ f ∗(η).

5. Sean g una 0-forma, g : Rm → Rp y vp ∈ Rn
p , por definición de f∗, tenemos
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que, f∗(vp) = (Df(p)(v))f(p), aśı

(g∗ ◦ f∗)(vp) =g∗(f∗(vp))

=g∗((Df(p)(v))f(p))

=(Dg(f(p))(Df(p)(v)))g(f(p))

=((Dg(f(p)) ◦Df(p))(v))g(f(p)),

por otro lado,

(g ◦ f)∗(p)(vp) = (D(g ◦ f)(p)(v))(g◦f)(p) = (Dg(f(p)) ◦Df(p)(v))g(f(p)),

aśı, (g∗ ◦ f∗) = (g ◦ f)∗. Resolvamos ahora la segunda igualdad.

(g ◦ f)∗ω(p)(v1, ..., vk) =ω((g ◦ f)(p))((g ◦ f)∗(v1), ..., (g ◦ f)∗(vk))

=ω((g ◦ f)(p))((g∗ ◦ f∗)(v1), ..., (g∗ ◦ f∗)(vk))

=ω(g(f(p))(g∗(f∗(v1)), ..., g∗(f∗(vk)))

=g∗ω(f(p))(f∗(v1), ..., f∗(vk))

=g∗(f ∗ω(p)(v1, ..., vk))

=(g∗ ◦ f ∗)ω(p)(v1, ..., vk).

Por lo tanto, se da por demostrado el teorema.

Teorema 3.3. Si f : Rn → Rn es una función diferenciable y h : Rn → R es una

función, entonces:

f ∗(h · dx1 ∧ · · · ∧ dxn) = (h ◦ f)(detf ′)dx1 ∧ · · · ∧ dxn.

Demostración: Sea h : Rn → R. Dado que dx1 ∧ · · · ∧ dxn es una k-forma, por

Teorema 3.2, 3) se sigue que:

f ∗(h · dx1 ∧ · · · ∧ dxn) = (h ◦ f)f ∗(dx1 ∧ · · · ∧ dxn). (3.1)

Por otro lado, sea p ∈ Rn y consideremos a la matriz f ′(p) = (aij). Luego:

f ∗(dx1 ∧ · · · ∧ dxn(p))((e1)p, ..., (en)p)

= dx1 ∧ · · · ∧ dxn(f(p))(f∗((e1)p), ..., f∗((en)p))

= dx1 ∧ · · · ∧ dxn(f(p))((Df(p)(e1))f(p), ..., (Df(p)(en))f(p))
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= dx1 ∧ · · · ∧ dxn(f(p))((f ′(p) · e1)tf(p), ..., (f ′(p) · en)tf(p))

= dx1 ∧ · · · ∧ dxn(f(p))((a11, ..., an1)f(p), ..., (an1, ..., ann)f(p))

= dx1 ∧ · · · ∧ dxn(f(p))

(
(

n∑
i=1

ai1ei)f(p), ..., (
n∑

i=1

ainei)f(p)

)

= dx1 ∧ · · · ∧ dxn(f(p))

(
n∑

i=1

ai1(ei)f(p), ...,
n∑

i=1

ain(ei)f(p)

)
.

Por el Teorema 2.5, se tiene la siguiente igualdad:

dx1 ∧ · · · ∧ dxn(f(p))
( n∑

i=1

ai1(ei)f(p), ...,
n∑

i=1

ain(ei)f(p)

)
=det(aij) · dx1 ∧ · · · ∧ dxn(f(p))((ei)f(p), ..., (ei)f(p)).

Aśı,

f ∗(dx1 ∧ · · · ∧ dxn(p))((e1)p, ..., (en)p)

=det(aij) · dx1 ∧ · · · ∧ dxn(f(p))((ei)f(p), ..., (ei)f(p)).

Dado que el producto cuña solo evalúa las entradas de los vectores y no sobre qué

puntos se encuentran trasladados, podemos asegurar lo siguiente:

f ∗(dx1 ∧ · · · ∧ dxn(p)) = det(aij) · dx1 ∧ · · · ∧ dxn(f(p)). (3.2)

De (3.2) y (3.3) se concluye que,

f ∗(h · dx1 ∧ · · · ∧ dxn) = (h ◦ f)(detf ′)dx1 ∧ · · · ∧ dxn.

Por lo tanto, queda demostrado el teorema.

Ejemplo 3.6. Para este ejercicio obtendremos a f ∗(ω) usando las propiedades

vistas en el Teorema 3.2, y posteriormente lo encontraremos directamente con

el Teorema 3.3.

Sean la 2-forma y la función f : R2 → R2 dadas como sigue

ω =x1 ∗ x2dx1 ∧ dx2,

f(x1, x2) =(x1 + x2, x1 − x2),
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luego, por 3) y 4) del Teorema 3.2, y tomando g(x1, x2) = x1 ∗ x2, se tiene que:

f ∗(ω) =f ∗(gdx1 ∧ dx2)

=(g ◦ f)f ∗(dx1 ∧ dx2)

=(x1 + x2)(x1 − x2)f
∗(dx1) ∧ f ∗(dx2),

de aqúı, por 1) del Teorema 3.2, se sigue que:

f ∗(dx1) =
∂f1
∂x1

dx1 +
∂f1
∂x2

dx2 = dx1 + dx2,

f ∗(dx2) =
∂f2
∂x1

dx1 +
∂f2
∂x2

dx2 = dx1 − dx2,

aśı,

f ∗(ω) =(x1 + x2)(x1 − x2)(dx1 + dx2) ∧ (dx1 − dx2)

=(x1 + x2)(x1 − x2)(dx1 ∧ dx1 − dx1 ∧ dx2 + dx2 ∧ dx1 − dx2 ∧ dx2)

=(x1 + x2)(x1 − x2)(−dx1 ∧ dx2 + (−1)1·1dx1 ∧ dx2)

=(x1 + x2)(x1 − x2)(−dx1 ∧ dx2 − dx1 ∧ dx2)

=(x1 + x2)(x1 − x2)(−2)dx1 ∧ dx2.

Por otro lado, aplicando directamente el Teorema 3.3 para encontrar a f ∗(ω):

f ∗(ω) =f ∗(gdx1 ∧ dx2)

=(g ◦ f)det(f ′)dx1 ∧ dx2
=(x1 + x2)(x1 − x2)det(f

′)dx1 ∧ dx2,

tenemos que,

f ′ =

1 1

1 −1

 ,

luego, det(f ′) = −2, con esto, f ∗(ω) = (x1 + x2)(x1 − x2)(−2)dx1 ∧ dx2.

3.4. Diferencial de una forma

Una construcción importante asociada con formas, es una generalización del

operador d, la cual se explica a continuación.
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Definición 3.9. Sea ω una k-forma en Rn, dada como sigue,

ω =
∑

i1<i2<···<ik

ωi1,...,ikdxi1 ∧ · · · ∧ dxik ,

definimos la (k + 1)-forma dω, la diferencial de ω por,

dω =
∑

i1<i2<···<ik

dωi1,...,ik ∧ dxi1 ∧ · · · ∧ dxik

=
∑

i1<i2<···<ik

n∑
α=1

Dαωi1,...,ikdxα ∧ dxi1 ∧ · · · ∧ dxik .

Ejemplo 3.7. Sea la 0-forma dada como sigue:

f(x1, x2, x3, x4) = x1 + x1x3 +
x4

x3
.

Luego,

df =
4∑

α=1

Dα(x1 + x1x3 +
x4

x3
)dxα

=D1(x1 + x1x3 +
x4

x3
)dx1 +D2(x1 + x1x3 +

x4

x3
)dx2

+D3(x1 + x1x3 +
x4

x3
)dx3 +D4(x1 + x1x3 +

x4

x3
)dx4

=(1 + x3)dx1 + 0dx2 + (x1 − x4

x2
3
)dx3 +

1
x3
dx4.

Ejemplo 3.8. Continuando con el Ejemplo 3.3, tenemos que:

dω =
2∑

i1=1

3∑
i2>i1

4∑
i3>i2

4∑
α=1

Dαωi1,i2,i3dxα ∧ dxi1 ∧ dxi2 ∧ dxi3

=
4∑

α=1

2∑
i1=1

3∑
i2>i1

4∑
i3>i2

Dαωi1,i2,i3dxα ∧ dxi1 ∧ dxi2 ∧ dxi3

=
4∑

α=1

[Dαω1,2,3dxα ∧ dx1 ∧ dx2 ∧ dx3 +Dαω1,2,4dxα ∧ dx1 ∧ dx2 ∧ dx4

+Dαω1,3,4dxα ∧ dx1 ∧ dx3 ∧ dx4 +Dαω2,3,4dxα ∧ dx2 ∧ dx3 ∧ dx4]

=
4∑

α=1

Dαω1,2,3dxα ∧ dx1 ∧ dx2 ∧ dx3 +
4∑

α=1

Dαω1,2,4dxα ∧ dx1 ∧ dx2 ∧ dx4

+
4∑

α=1

Dαω1,3,4dxα ∧ dx1 ∧ dx3 ∧ dx4 +
4∑

α=1

Dαω2,3,4dxα ∧ dx2 ∧ dx3 ∧ dx4
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=D4ω1,2,3dx4 ∧ dx1 ∧ dx2 ∧ dx3 +D3ω1,2,4dx3 ∧ dx1 ∧ dx2 ∧ dx4
+D2ω1,3,4dx2 ∧ dx1 ∧ dx3 ∧ dx4 +D1ω2,3,4dx1 ∧ dx2 ∧ dx3 ∧ dx4,

debido a que dxi ∧ dxi = O, se tiene que solo un sumando de cada suma de la

segunda igualdad va a ser diferente de O.

Ejemplo 3.9. Sea la 0-forma θ : {(x1, x2) ∈ R2 : x21 + x22 = 1 y x2 ̸= 0} → R
definida como sigue,

θ(x1, x2) =



arctan(x2

x1
), si x1, x2 > 0,

π
2
, si x1 = 0, x2 > 0,

arctan(x2

x1
) + π, si x1 < 0, x2 ̸= 0,

3π
2
, si x1 = 0, x2 < 0,

arctan(x2

x1
) + 2π, si x1 > 0, x2 < 0.

Caso x1 ̸= 0, aunque existen tres partes de θ donde x1 ̸= 0, solo habrá una

sola dθ, debido a que

D1(arctan(
x2

x1
)) =D1(arctan(

x2

x1
) + π) = D1(arctan(

x2
x1

) + 2π),

D2(arctan(
x2

x1
)) =D2(arctan(

x2

x1
) + π) = D2(arctan(

x2
x1

) + 2π),

aśı,

dθ =
−x2

x21 + x22
dx1 +

x1
x21 + x22

dx2.

Caso x1 = 0, en esto si x2 > 0, al acercarnos a x1 por la derecha debemos

considerar a la función arctan(x2

x1
), mientras, que si x2 < 0 se considera a la

función arctan(x2

x1
) + 2π, al acercarnos por la izquierda se debe tomar a la

función arctan(x2

x1
) + π sin importar el valor de x2, por lo tanto, debemos

revisar los ĺımites por la izquierda y por la derecha de esta funciones, para

esto, haremos uso de la regla de L’Hopital.

• x1, x2 > 0.

ĺım
h→0+

θ(x1 + h, x2)− θ(0, x2)

h
= ĺım

h→0+

arctan(x2

h
)− π

2

h
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= ĺım
h→0+

−x2

h2
1+x2

2

1

= ĺım
h→0+

−x2

h2
1+x2

2

=
−x2
x22

=
−x2

x21 + x22
.

• x1 > 0, x2 < 0.

ĺım
h→0+

θ(x1 + h, x2)− θ(0, x2)

h
= ĺım

h→0+

arctan(x2

h
)− 3π

2

h

= ĺım
h→0+

−x2

h2
1+x2

2

1

= ĺım
h→0+

−x2

h2
1+x2

2

=
−x2
x22

=
−x2

x21 + x22
.

• x1 < 0, x2 > 0.

ĺım
h→0−

θ(x1 + h, x2)− θ(0, x2)

h
= ĺım

h→0−

arctan(x2

h
) + π − π

2

h

= ĺım
h→0−

arctan(x2

h
) + π

2

h

= ĺım
h→0−

−x2

h2
1+x2

2

1

= ĺım
h→0−

−x2

h2
1+x2

2

=
−x2
x22

=
−x2

x21 + x22
,

cuando x2 < 0 la demostración es análoga. Aśı,

D1θ(0, x2) =
−x2

x21 + x22
.

Notemos que debido a que x2 ̸= 0 no existe problema alguno al acercarnos
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a x2 por la izquierda o por la derecha, aśı,

D2θ(0, x2) =D2(0,
π
2
)

=D2(0,
3π
2
)

=0

=
x1

x21 + x22
.

Con esto,

dθ =
−x2

x21 + x22
dx1 +

x1
x21 + x22

dx2.

Para poder facilitar los cálculos de las diferenciales sobre k-formas, nos ayu-

daremos del siguiente teorema.

Teorema 3.4.

1. Si ω y µ son dos k-formas, entonces,

d(ω + µ) = dω + dµ.

2. Si ω es una k-forma y η es una l-forma, entonces,

d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη.

3. Si ω es una k-forma, entonces, d(dω) = d2(ω) = O, donde O denota a la

(k + 2)-forma nula.

4. Si ω es una k-forma en Rm y f : Rn → Rm es diferenciable, entonces

f ∗(dω) = d(f ∗ω).

Demostración: Sean ω y µ dos k-formas y η una l-forma dadas de la siguiente

manera,

ω =
∑

i1<i2<···<ik

ωi1,...,ikdxi1 ∧ · · · ∧ dxik ,

µ =
∑

i1<i2<···<ik

µi1,...,ikdxi1 ∧ · · · ∧ dxik ,

η =
∑

j1<j2<···<jl

ηj1,...,jldxj1 ∧ · · · ∧ dxjl .
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1. Tenemos que,

d(ω + µ) =d

( ∑
i1<i2<···<ik

ωi1,...,ikdxi1 ∧ · · · ∧ dxik

+
∑

i1<i2<···<ik

µi1,...,ikdxi1 ∧ · · · ∧ dxik

)

=d

( ∑
i1<i2<···<ik

(ωi1,...,ik + µi1,...,ik) dxi1 ∧ · · · ∧ dxik

)
=

∑
i1<i2<···<ik

d(ωi1,...,ik + µi1,...,ik)dxi1 ∧ · · · ∧ dxik

=
∑

i1<i2<···<ik

n∑
α=1

Dα(ωi1,...,ik + µi1,...,ik) ∧ dxα ∧ dxi1 ∧ · · · ∧ dxik

=
∑

i1<i2<···<ik

n∑
α=1

(Dαωi1,...,ik +Dαµi1,...,ik) ∧ dxα ∧ dxi1 ∧ · · · ∧ dxik

=
∑

i1<i2<···<ik

n∑
α=1

Dαωi1,...,ik ∧ dxα ∧ dxi1 ∧ · · · ∧ dxik

+
∑

i1<i2<···<ik

n∑
α=1

Dαµi1,...,ik ∧ dxα ∧ dxi1 ∧ · · · ∧ dxik

=
∑

i1<i2<···<ik

dωi1,...,ikdxi1 ∧ · · · ∧ dxik

+
∑

i1<i2<···<ik

dµi1,...,ikdxi1 ∧ · · · ∧ dxik

=dω + dµ.

2. Tenemos que,

ω ∧ η =
∑

i1<i2<···<ik,j1<j2<···<jl

ωi1,...,ikηj1,...,jldxi1 ∧ · · · ∧ dxik ∧ dxj1

∧ · · · ∧, dxjl ,

luego,

d(ω ∧ η) =
∑

i1<i2<···<ik,j1<j2<···<jl

d(ωi1,...,ikηj1,...,jl) ∧ dxi1 ∧ · · · ∧ dxik

∧ dxj1 ∧ · · · ∧ dxjl
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=
∑

i1<i2<···<ik,j1<j2<···<jl

n∑
α=1

Dα(ωi1,...,ikηj1,...,jl) ∧ dxα ∧ dxi1 ∧ · · · ∧ dxik

∧ dxj1 ∧ · · · ∧ dxjl

=
∑

i1<i2<···<ik,j1<j2<···<jl

n∑
α=1

(Dα(ωi1,...,ik)ηj1,...,jl + ωi1,...,ikDα(ηj1,...,jl))

∧ dxα ∧ dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjl

=
∑

i1<i2<···<ik,j1<j2<···<jl

n∑
α=1

Dα(ωi1,...,ik)ηj1,...,jl ∧ dxα ∧ dxi1 ∧ · · · ∧ dxik

∧ dxj1 ∧ · · · ∧ dxjl

=
∑

i1<i2<···<ik,j1<j2<···<jl

n∑
α=1

ωi1,...,ikDα(ηj1,...,jl) ∧ dxα ∧ dxi1 ∧ · · · ∧ dxik

∧ dxj1 ∧ · · · ∧ dxjl
=

∑
i1<i2<···<ik,j1<j2<···<jl

ηj1,...,jld(ωi1,...,ik) ∧ dxi1 ∧ · · · ∧ dxik

∧ dxj1 ∧ · · · ∧ dxjl
+

∑
i1<i2<···<ik,j1<j2<···<jl

ωi1,...,ikd(ηj1,...,jl) ∧ dxi1 ∧ · · · ∧ dxik

∧ dxj1 ∧ · · · ∧ dxjl
=dω ∧ η +

∑
i1<i2<···<ik,j1<j2<···<jl

ωi1,...,ikd(ηj1,...,jl) ∧ dxi1

∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjl .

Tenemos que d(ηj1,...,jl) es una 1-forma y dxi1 ∧ · · · ∧ dxik , es una k-forma,

aśı, por la Proposición 2.5:

d(ηj1,...,jl) ∧ dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjl
=(−1)1·kdxi1 ∧ dxi2 ∧ · · · ∧ dxik ∧ d(ηj1,...,jl) ∧ dxj1 ∧ · · · ∧ dxjl
=(−1)kdxi1 ∧ dxi2 ∧ · · · ∧ dxik ∧ d(ηj1,...,jl) ∧ dxj1 ∧ · · · ∧ dxjl ,

con esto,

d(ω ∧ η) =dω ∧ η +
∑

i1<i2<···<ik,j1<j2<···<jl

ωi1,...,ik(−1)kdxi1 ∧ dxi2 ∧ · · · ∧ dxik

∧ d(ηj1,...,jl) ∧ dxj1 ∧ · · · ∧ dxjl
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=dω ∧ η + (−1)k
∑

i1<i2<···<ik,j1<j2<···<jl

ωi1,...,ikdxi1 ∧ · · · ∧ dxik

∧ d(ηj1,...,jl) ∧ dxj1 ∧ · · · ∧ dxjl
=dω ∧ η + (−1)kω ∧ dη.

3. Primero se demostrará para k = 0, sea la 0-forma f : Rn → R, luego, por
Teorema 3.1, tenemos que: df =

∑n
j=1

∂f
∂xj
dxj, aśı,

d(df) =d

(
n∑

j=1

∂f

∂xj
dxj

)

=
n∑

j=1

d

(
∂f

∂xj

)
∧ dxj

=
n∑

j=1

n∑
α=1

Dα

(
∂f

∂xj

)
dxα ∧ dxj

=
n∑

j=1

n∑
α=1

∂2f

∂xα∂xj
dxα ∧ dxj

=
n∑

j=1

[ j−1∑
α=1

∂2f

∂xα∂xj
dxα ∧ dxj +

∂2f

∂xj∂xj
dxj ∧ dxj

+
n∑

α=j+1

∂2f

∂xα∂xj
dxα ∧ dxj

]

=
n∑

j=1

[
j−1∑
α=1

∂2f

∂xα∂xj
dxα ∧ dxj +O +

n∑
α=j+1

∂2f

∂xα∂xj
dxα ∧ dxj

]

=
n∑

j=1

[
j−1∑
α=1

∂2f

∂xα∂xj
dxα ∧ dxj +

n∑
α=j+1

∂2f

∂xα∂xj
dxα ∧ dxj

]

=
n∑

j=1

j−1∑
α=1

∂2f

∂xα∂xj
dxα ∧ dxj +

n∑
j=1

n∑
α=j+1

∂2f

∂xα∂xj
dxα ∧ dxj.

Ahora se trabajará con uno de los dos sumandos anteriores, para esto, no-

temos que cuando j = n, no existirán términos debido a que α será igual a

n+ 1, esto ocurrirá más adelante cuando j = 1 y α tome el valor de j − 1

n∑
j=1

n∑
α=j+1

∂2f

∂xα∂xj
dxα ∧ dxj =

n∑
α=j+1

[
∂2f

∂xα∂x1
dxα ∧ dx1 +

∂2f

∂xα∂x2
dxα ∧ dx2
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+
∂2f

∂xα∂x3
dxα ∧ dx3 + · · ·+ ∂2f

∂xα∂xn
dxα ∧ dxn

]
=

∂2f

∂x2∂x1
dx2 ∧ dx1 +

∂2f

∂x3∂x1
dx3 ∧ dx1

+
∂2f

∂x4∂x1
dx4 ∧ dx1 + · · ·+ ∂2f

∂xn∂x1
dxn ∧ dx1

+
∂2f

∂x3∂x2
dx3 ∧ dx2 +

∂2f

∂x4∂x2
dx4 ∧ dx2

+
∂2f

∂x5∂x2
dx5 ∧ dx2 + · · ·+ ∂2f

∂xn∂x2
dxn ∧ dx2

+ · · ·+ ∂2f

∂xn∂xn−1

dxn ∧ dxn−1,

recordemos que dxα ∧ dxj = (−1)1·1dxj ∧ dxα = −dxj ∧ dxα, para α ̸= j, y

además ∂2f
∂xα∂xj

= ∂2f
∂xj∂xα

, aśı,

n∑
j=1

n∑
α=j+1

∂2f

∂xα∂xj
dxα∧dxj

=− ∂2f

∂x1∂x2
dx1 ∧ dx2 −

∂2f

∂x1∂x3
dx1 ∧ dx3

− ∂2f

∂x1∂x4
dx1 ∧ dx4 − · · · − ∂2f

∂x1∂xn
dx1 ∧ dxn

− ∂2f

∂x2∂x3
dx2 ∧ dx3 −

∂2f

∂x2∂x4
dx2 ∧ dx4

− ∂2f

∂x2∂x5
dx2 ∧ dx5 − · · · − ∂2f

∂x2∂xn
dx2 ∧ dxn

− · · · − ∂2f

∂xn−1∂xn
dxn−1 ∧ dxn

=− ∂2f

∂x1∂x2
dx1 ∧ dx2

− ∂2f

∂x1∂x3
dx1 ∧ dx3 −

∂2f

∂x2∂x3
dx2 ∧ dx3

− ∂2f

∂x1∂x4
dx1 ∧ dx4 −

∂2f

∂x2∂x4
dx2 ∧ dx4

− ∂2f

∂x3∂x4
dx3 ∧ dx4

− · · · − ∂2f

∂x1∂xn
dx1 ∧ dxn −

∂2f

∂x2∂xn
dx2 ∧ dxn
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− ∂2f

∂x3∂xn
dx3 ∧ dxn − · · · − · · · − ∂2f

∂xn−1∂xn
dxn−1 ∧ dxn

=

j−1∑
α=1

[
− ∂2f

∂xα∂x1
dxα ∧ dx1 −

∂2f

∂xα∂x2
dxα ∧ dx2

− ∂2f

∂xα∂x3
dxα ∧ dx3 − · · · − ∂2f

∂xα∂xn
dxα ∧ dxn

]
=−

n∑
j=1

j−1∑
α=1

∂2f

∂xα∂xj
dxα ∧ dxj,

con esto,

d(df) =
n∑

j=1

j−1∑
α=1

∂2f

∂xα∂xj
dxα ∧ dxj −

n∑
j=1

j−1∑
α=1

∂2f

∂xα∂xj
dxα ∧ dxj = O.

Sea ahora una k- forma ω con k > 1. Tenemos que,

ω =
∑

i1<i2<···<ik

ωi1,...,ikdxi1 ∧ · · · ∧ dxik ,

luego,

dω =
∑

i1<i2<···<ik

n∑
α=1

Dαωi1,...,ikdxα ∧ dxi1 ∧ · · · ∧ dxik ,

aplicando ahora la diferencial a dω,

d(dω) =
∑

i1<i2<···<ik

n∑
α=1

d(Dαωi1,...,ik)dxα ∧ dxi1 ∧ · · · ∧ dxik

=
∑

i1<i2<···<ik

n∑
α=1

n∑
j=1

Dj(Dαωi1,...,ik)dxj ∧ dxα ∧ dxi1 ∧ · · · ∧ dxik

=
∑

i1<i2<···<ik

( n∑
α=1

n∑
j=1

∂2ωi1,...,ik

∂xj∂xα
dxj ∧ dxα

)
∧ dxi1 ∧ · · · ∧ dxik

=
∑

i1<i2<···<ik

O ∧ dxi1 ∧ · · · ∧ dxik

= O.

4. Primero se demostrará para una 0-forma. Sea g : Rm → R una función
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diferenciable que asocia a cada (y1, ..., ym) ∈ Rm el valor g(y1, ..., ym). Luego:

f ∗(d(g)) =f ∗

(
m∑
i=1

∂g

∂yi
dyi

)

=
m∑
i=1

f ∗
(
∂g

∂yi
dyi

)
=

m∑
i=1

∂g

∂yi
f ∗(dyi)

=
m∑
i=1

∂g

∂yi

n∑
j=1

∂fi
∂xj

dxj

=
m∑
i=1

n∑
j=1

∂g

∂yi

∂fi
∂xj

dxj

=
n∑

j=1

m∑
i=1

∂g

∂yi

∂fi
∂xj

dxj

=
n∑

j=1

(
∂g

∂y1

∂fi
∂xj

+ · · ·+ ∂g

∂ym

∂fi
∂xj

)
dxj

=
n∑

j=1

∂(g ◦ f)
∂xj

dxj

=d(g ◦ f)

=d(f ∗g).

Sea ahora la k- forma,

ω =
∑

i1<i2<···<ik

ωi1,...,ikdxi1 ∧ · · · ∧ dxik ,

aśı,

d(f ∗ω) =d

(
f ∗

( ∑
i1<i2<···<ik

ωi1,...,ik · dxi1 ∧ · · · ∧ dxik

))

=d

( ∑
i1<i2<···<ik

f ∗(ωi1,...,ik · dxi1 ∧ · · · ∧ dxik)

)

=d

( ∑
i1<i2<···<ik

f ∗(ωi1,...,ik) · f ∗(dxi1 ∧ · · · ∧ dxik)

)
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=d

( ∑
i1<i2<···<ik

f ∗(ωi1,...,ik) · f ∗(dxi1 ∧ · · · ∧ dxik)

)
=

∑
i1<i2<···<ik

d(f ∗(ωi1,...,ik) ∧ f ∗(dxi1 ∧ · · · ∧ dxik))

=
∑

i1<i2<···<ik

(d(f ∗(ωi1,...,ik)) ∧ f ∗(dxi1 ∧ · · · ∧ dxik)

+ (−1)0f ∗(ωi1,...,ik)d(f
∗(dxi1 ∧ · · · ∧ dxik)))

=
∑

i1<i2<···<ik

(f ∗(d(ωi1,...,ik)) ∧ f ∗(dxi1 ∧ · · · ∧ dxik)

+ f ∗(ωi1,...,ik)d(f
∗(dxi1 ∧ · · · ∧ dxik)))

=
∑

i1<i2<···<ik

(f ∗(d(ωi1,...,ik) ∧ dxi1 ∧ · · · ∧ dxik)

+ f ∗(ωi1,...,ik)d(f
∗(dxi1 ∧ · · · ∧ dxik))),

tenemos que,

d(f ∗(dxi1 ∧ · · · ∧ dxik)) = d(d(f ∗(xi1)) ∧ · · · ∧ d(f ∗(xik))) = O,

lo que implica lo siguiente,

d(f ∗ω) =
∑

i1<i2<···<ik

f ∗(d(ωi1,...,ik) ∧ dxi1 ∧ · · · ∧ dxik)

=f ∗

( ∑
i1<i2<···<ik

d(ωi1,...,ik) ∧ dxi1 ∧ · · · ∧ dxik

)
=f ∗(d(ω)).

Por lo tanto, se da por demostrado el teorema.

Definición 3.10. Una k-forma w es llamada cerrada si dω = O.

Definición 3.11. Una k-forma w es llamada exacta si ω = dη, para alguna

(k − 1)-forma η.

Proposición 3.4. Toda forma exacta es cerrada.

Demostración: Sea ω una k-forma exacta, aśı, existe alguna (k− 1)-forma η tal

que ω = dη, luego, por el Teorema 3.4, 3) se tiene que dω = d(dη) = O, con

esto, ω es una k-forma cerrada.
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En la Proposición 3.4, el dominio de ω es cualquier conjunto abierto, además

el rećıproco no siempre se cumple, a menos que el dominio satisfaga ciertas con-

diciones, tal como se demostrará más adelante.

3.5. Conjunto estelar

Definición 3.12. Sea A ⊂ Rn un conjunto abierto. Si para todo x ∈ A, el

segmento de ĺınea que va de 0 a x queda contenida en A (ver Figura 3.3), entonces,

A es llamado conjunto estelar con respecto a 0.

Figura 3.3: Conjunto estelar

Lema 3.1. Sea f : Rn → R. Si f es diferenciable y se cumple que f(0) = 0,

entonces, para cada i ∈ {1, ..., n}, existen gi : Rn → R, tal que:

f(x) =
n∑

i=1

xigi(x).

Demostración: Sea hx(t) = f(tx). Luego:∫ 1

0

h′x(t)dt =hx(1)− hx(0) = f(x)− f(0) = f(x),

aśı,

f(x) =

∫ 1

0

h′x(t)dt
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=

∫ 1

0

f ′(tx)dt

=

∫ 1

0

(
n∑

i=1

xiDif(tx)

)
dt

=
n∑

i=1

xi

∫ 1

0

Dif(tx)dt

=
n∑

i=1

xigi(x),

donde gi =
∫ 1

0
Df (tx)dt.

Supongamos que ω =
∑n

i=1 ωidxi y df =
∑n

i=1Dif · dxi son 1-formas en Rn,

tales que ωi = Dif , para todo i ∈ {1, ..., n}, donde f es una función diferenciable

y f(0) = 0, aśı, por el Lema 3.1, se tiene que:

f(x) =

∫ 1

0

(
n∑

i=1

xiωi(tx)

)
dt.

Con esto, podemos definir una función I(ω), que nos permite encontrar a f dado

una 1-forma ω, de la siguiente manera,

I(ω(x)) =

∫ 1

0

(
n∑

i=1

xiωi(tx)

)
dt.

Una generalización para toda l-forma está dada en la siguiente definición.

Definición 3.13. Sea A un conjunto estelar y una l-forma,

ω =
∑

i1<i2<···<il

ωi1,...,ildxi1 ∧ · · · ∧ dxil .

La función I : A ⊂ Rn → R se define como:

I(ω(x))

=
∑

i1<i2<···<il

l∑
α=1

(−1)α−1

(∫ 1

0

tl−1ωi1,...,il(tx)dt

)
xiαdxi1 ∧ · · · ∧ d̂xiα ∧ · · · ∧ dxil ,

el śımbolo ̂ sobre dxiα significa que este último será omitido. Si ω = O, entonces,

I(ω) = O.
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Ejemplo 3.10. Sea la 0-forma f(x1, x2, x3, x4) = x1 + x1x3 + sen(x4), luego:

df =D1fdx1 +D2fdx2 +D3fdx3 +D4fdx4

=(1 + x3)dx1 + 0dx2 + x1dx3 + cos(x4)dx4,

notemos que df es una 1-forma y que f(0, 0, 0, 0) = 0, aśı,

I(df(x)) =

∫ 1

0

(
4∑

i=1

xiDif(tx)

)
dt

=
4∑

i=1

xi

∫ 1

0

Dif(tx)dt

=x1

∫ 1

0

(1 + tx3)dt+ x2

∫ 1

0

0dt+ x3

∫ 1

0

tx1dt

+ x4

∫ 1

0

cos(tx4)dt

=x1

(
t+

t2

2
x3

)∣∣∣∣1
0

+ x3
t2

2
x1

∣∣∣∣1
0

+ x4
sen(tx4)

x4

∣∣∣∣1
0

=x1

[
1 +

12

2
x3 − 0− 02

2
x3

]
+ x3

[
12

2
x1 −

02

2
x1

]
+ x4

[
sen(1 · x4)

x4
− sen(0 · x4)

x4

]
=x1

(
1 + 1

2
x3
)
+ x3

(
1

2
x1

)
+ x4

(
sen(x4)

x4

)
=x1 +

2

2
x1x3 + sen(x4)

=x1 + x1x3 + sen(x4)

=f(x).

Ejemplo 3.11. En este ejemplo se calcularán d(I(ω)) y I(dω). Sea la 3-forma de

R4 siguiente,

ω = (x21 + x4)dx1 ∧ dx2 ∧ dx3 + (x2 · x4)dx1 ∧ dx3 ∧ dx4,

luego, por lo visto en el Ejemplo 3.8, se tiene que:

dω =D4(x
2
1 + x4)dx4 ∧ dx1 ∧ dx2 ∧ dx3

+D2(x2 · x4)dx2 ∧ dx1 ∧ dx3 ∧ dx4
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=1 · dx4 ∧ dx1 ∧ dx2 ∧ dx3
+ x4dx2 ∧ dx1 ∧ dx3 ∧ dx4

=1 · (−1)1·3 · dx1 ∧ dx2 ∧ dx3 ∧ dx4
+ (−1)1·1x4dx1 ∧ dx2 ∧ dx3 ∧ dx4

=(−1) · dx1 ∧ dx2 ∧ dx3 ∧ dx4
− x4dx1 ∧ dx2 ∧ dx3 ∧ dx4

=(−1− x4)dx1 ∧ dx2 ∧ dx3 ∧ dx4.

Notemos que dω es una 4-forma. Aplicando la función I a dω, resulta lo siguiente,

I(dω) =
4∑

α=1

(−1)α−1

(∫ 1

0

tl−1(−1− tx4)dt

)
xiα

d̂xiα ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx4

=(−1)1−1

(∫ 1

0

t4−1(−1− tx4)dt

)
x1dx2 ∧ dx3 ∧ dx4

+ (−1)2−1

(∫ 1

0

t4−1(−1− tx4)dt

)
x2dx1 ∧ dx3 ∧ dx4

+ (−1)3−1

(∫ 1

0

t4−1(−1− tx4)dt

)
x3dx1 ∧ dx2 ∧ dx4

+ (−1)4−1

(∫ 1

0

t4−1(−1− tx4)dt

)
x4dx1 ∧ dx2 ∧ dx3

=

(∫ 1

0

(−t3 − t4x4)dt

)
x1dx2 ∧ dx3 ∧ dx4

−
(∫ 1

0

(−t3 − t4x4)dt

)
x2dx1 ∧ dx3 ∧ dx4

+

(∫ 1

0

(−t3 − t4x4)dt

)
x3dx1 ∧ dx2 ∧ dx4

−
(∫ 1

0

(−t3 − t4x4)dt

)
x4dx1 ∧ dx2 ∧ dx3

=

[
−t

4

4
− t5

5
x4

]∣∣∣∣1
0

x1dx2 ∧ dx3 ∧ dx4

−
[
−t

4

4
− t5

5
x4

]∣∣∣∣1
0

x2dx1 ∧ dx3 ∧ dx4

+

[
−t

4

4
− t5

5
x4

]∣∣∣∣1
0

x3dx1 ∧ dx2 ∧ dx4
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−
[
−t

4

4
− t5

5
x4

]∣∣∣∣1
0

x4dx1 ∧ dx2 ∧ dx3

=

(
−1

4
x1 −

1

5
x1x4

)
dx2 ∧ dx3 ∧ dx4

+

(
1

4
x2 +

1

5
x2x4

)
dx1 ∧ dx3 ∧ dx4

+

(
−1

4
x3 −

1

5
x3x4

)
dx1 ∧ dx2 ∧ dx4

+

(
1

4
x4 +

1

5
x24

)
dx1 ∧ dx2 ∧ dx3.

Ahora se calculará d(I(ω)). Tenemos que,

ωi1,i2,i3(x1, x2, x3, x4) = x21 + x4 y ωi1,i3,i4(x1, x2, x3, x4) = x2 · x4,

las demás funciones componente de ω son iguales a la función nula. Aśı,

I(ω(x)) =
3∑

α=1

(−1)α−1

(∫ 1

0

t3−1(t2x21 + tx4)dt

)
xiαdx1 ∧ dx2 ∧ dx3 ∧ d̂xiα

+
3∑

α=1

(−1)α−1

(∫ 1

0

t3−1(t2x2 · x4)dt
)
xiαdx1 ∧ dx3 ∧ dx4 ∧ d̂xiα ,

para encontrar el valor de I(ω(x)) primero encontraremos el valor de la primera

sumatoria y posteriormente el valor de la segunda. Para la primera sumatoria

tenemos que, i1 = 1, i2 = 2 e i3 = 3, con esto,

3∑
α=1

(−1)α−1

(∫ 1

0

t2(t2x21 + tx4)dt

)
xiαdx1 ∧ dx2 ∧ dx3 ∧ d̂xiα

=(−1)1−1

(∫ 1

0

(t4x21 + t3x4)dt

)
x1dx2 ∧ dx3

+ (−1)2−1

(∫ 1

0

(t4x21 + t3x4)dt

)
x2dx1 ∧ dx3

+ (−1)3−1

(∫ 1

0

(t4x21 + t3x4)dt

)
x3dx1 ∧ dx2

=

[
t5

5
x21 +

t4

4
x4

]∣∣∣∣1
0

x1dx2 ∧ dx3

−
[
t5

5
x21 +

t4

4
x4

]∣∣∣∣1
0

x2dx1 ∧ dx3
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+

[
t5

5
x21 +

t4

4
x4

]∣∣∣∣1
0

x2dx1 ∧ dx2

=

(
1

5
x31 +

1

4
x1x4

)
dx2 ∧ dx3

−
(
1

5
x21x2 +

1

4
x2x4

)
dx1 ∧ dx3

+

(
1

5
x21x3 +

1

4
x3x4

)
dx1 ∧ dx2.

Para la segunda sumatoria, tenemos que, i1 = 1, i2 = 3 e i3 = 4, luego,

3∑
α=1

(−1)α−1

(∫ 1

0

t2(t2x2 · x4)dt
)
xiαdx1 ∧ dx3 ∧ dx4 ∧ d̂xiα

=(−1)1−1

(∫ 1

0

t4 · x2x4dt
)
x1dx3 ∧ dx4

+ (−1)2−1

(∫ 1

0

t4 · x2x4dt
)
x3dx1 ∧ dx4

+ (−1)3−1

(∫ 1

0

t4 · x2x4dt
)
x4dx1 ∧ dx3

=

[
t5

5
x2x4

]∣∣∣∣1
0

x1dx3 ∧ dx4

−
[
t5

5
x2x4

]∣∣∣∣1
0

x3dx1 ∧ dx4

+

[
t5

5
x2x4

]∣∣∣∣1
0

x4dx1 ∧ dx3

=
1

5
x1x2x4dx3 ∧ dx4

− 1

5
x2x3x4dx1 ∧ dx4

+
1

5
x2x

2
4dx1 ∧ dx3.

Con esto,

I(ω(x)) =

(
1

5
x31 +

1

4
x1x4

)
dx2 ∧ dx3 −

(
1

5
x21x2 +

1

4
x2x4

)
dx1 ∧ dx3

+

(
1

5
x21x3 +

1

4
x3x4

)
dx1 ∧ dx2 +

(
1

5
x1x2x4

)
dx3 ∧ dx4
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−
(
1

5
x2x3x4

)
dx1 ∧ dx4 +

(
1

5
x2x

2
4

)
dx1 ∧ dx3

=

(
1

5
x21x3 +

1

4
x3x4

)
dx1 ∧ dx2

+

(
−1

5
x21x2 −

1

4
x2x4 +

1

5
x2x

2
4

)
dx1 ∧ dx3

−
(
1

5
x2x3x4

)
dx1 ∧ dx4

+

(
1

5
x31 +

1

4
x1x4

)
dx2 ∧ dx3

+

(
1

5
x1x2x4

)
dx3 ∧ dx4.

Luego, la diferencial de I(ω) es,

d(I(ω)) =
4∑

α=1

Dα

(
1

5
x21x3 +

1

4
x3x4

)
dxα ∧ dx1 ∧ dx2

+
4∑

α=1

Dα

(
−1

5
x21x2 −

1

4
x2x4 +

1

5
x2x

2
4

)
dxα ∧ dx1 ∧ dx3

−
4∑

α=1

Dα

(
1

5
x2x3x4

)
dxα ∧ dx1 ∧ dx4

+
4∑

α=1

Dα

(
1

5
x31 +

1

4
x1x4

)
dxα ∧ dx2 ∧ dx3

+
4∑

α=1

Dα

(
1

5
x1x2x4

)
dxα ∧ dx3 ∧ dx4

=

(
1

5
x21 +

1

4
x4

)
dx3 ∧ dx1 ∧ dx2

+
1

4
x3dx4 ∧ dx1 ∧ dx2

+

(
−1

5
x21 −

1

4
x4 +

1

5
x24

)
dx2 ∧ dx1 ∧ dx3

+

(
−1

4
x2 +

2

5
x2x4

)
dx4 ∧ dx1 ∧ dx3

− 1

5
x3x4dx2 ∧ dx1 ∧ dx4

− 1

5
x2x4dx3 ∧ dx1 ∧ dx4
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+

(
3

5
x21 +

1

4
x4

)
dx1 ∧ dx2 ∧ dx3

+
1

4
x1dx4 ∧ dx2 ∧ dx3

+
1

5
x2x4dx1 ∧ dx3 ∧ dx4

+
1

5
x1x4dx2 ∧ dx3 ∧ dx4

=(−1)1·2
(
1

5
x21 +

1

4
x4

)
dx1 ∧ dx2 ∧ dx3

+ (−1)1·2
1

4
x3dx1 ∧ dx2 ∧ dx4

+ (−1)1·1
(
−1

5
x21 −

1

4
x4 +

1

5
x24

)
dx1 ∧ dx2 ∧ dx3

+ (−1)1·2
(
−1

4
x2 +

2

5
x2x4

)
dx1 ∧ dx3 ∧ dx4

− (−1)1·1
1

5
x3x4dx1 ∧ dx2 ∧ dx4

− (−1)1·1
1

5
x2x4dx1 ∧ dx3 ∧ dx4

+

(
3

5
x21 +

1

4
x4

)
dx1 ∧ dx2 ∧ dx3

+ (−1)1·2
1

4
x1dx2 ∧ dx3 ∧ dx4

+
1

5
x2x4dx1 ∧ dx3 ∧ dx4

+
1

5
x1x4dx2 ∧ dx3 ∧ dx4

=

(
1

5
x21 +

1

4
x4

)
dx1 ∧ dx2 ∧ dx3

+
1

4
x3dx1 ∧ dx2 ∧ dx4

−
(
−1

5
x21 −

1

4
x4 +

1

5
x24

)
dx1 ∧ dx2 ∧ dx3

+

(
−1

4
x2 +

2

5
x2x4

)
dx1 ∧ dx3 ∧ dx4

+
1

5
x3x4dx1 ∧ dx2 ∧ dx4

+
1

5
x2x4dx1 ∧ dx3 ∧ dx4

+

(
3

5
x21 +

1

4
x4

)
dx1 ∧ dx2 ∧ dx3
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+
1

4
x1dx2 ∧ dx3 ∧ dx4

+
1

5
x2x4dx1 ∧ dx3 ∧ dx4

+
1

5
x1x4dx2 ∧ dx3 ∧ dx4

=

(
1

5
x21 +

1

4
x4 +

1

5
x21 +

1

4
x4 −

1

5
x24 +

3

5
x21 +

1

4
x4

)
dx1 ∧ dx2 ∧ dx3

+

(
1

4
x3 +

1

5
x3x4

)
dx1 ∧ dx2 ∧ dx4

+

(
−1

4
x2 +

2

5
x2x4 +

1

5
x2x4 +

1

5
x2x4

)
dx1 ∧ dx3 ∧ dx4

+

(
1

4
x1 +

1

5
x1x4

)
dx2 ∧ dx3 ∧ dx4

=

(
x21 +

3

4
x4 −

1

5
x24

)
dx1 ∧ dx2 ∧ dx3

+

(
1

4
x3 +

1

5
x3x4

)
dx1 ∧ dx2 ∧ dx4

+

(
−1

4
x2 +

4

5
x2x4

)
dx1 ∧ dx3 ∧ dx4

+

(
1

4
x1 +

1

5
x1x4

)
dx2 ∧ dx3 ∧ dx4.

Sumando I(d(ω)) y d(I(ω)) da como resultado,

I(d(ω)) + d(I(ω)) =

(
−1

4
x1 −

1

5
x1x4

)
dx2 ∧ dx3 ∧ dx4

+

(
1

4
x2 +

1

5
x2x4

)
dx1 ∧ dx3 ∧ dx4

+

(
−1

4
x3 −

1

5
x3x4

)
dx1 ∧ dx2 ∧ dx4

+

(
1

4
x4 +

1

5
x24

)
dx1 ∧ dx2 ∧ dx3

+

(
x21 +

3

4
x4 −

1

5
x24

)
dx1 ∧ dx2 ∧ dx3

+

(
1

4
x3 +

1

5
x3x4

)
dx1 ∧ dx2 ∧ dx4

+

(
−1

4
x2 +

4

5
x2x4

)
dx1 ∧ dx3 ∧ dx4
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+

(
1

4
x1 +

1

5
x1x4

)
dx2 ∧ dx3 ∧ dx4

=

(
1

4
x4 +

1

5
x24 + x21 +

3

4
x4 −

1

5
x24

)
dx1 ∧ dx2 ∧ dx3

+

(
−1

4
x3 −

1

5
x3x4 +

1

4
x3 +

1

5
x3x4

)
dx1 ∧ dx2 ∧ dx4

+

(
1

4
x2 +

1

5
x2x4 −

1

4
x2 +

4

5
x2x4

)
dx1 ∧ dx3 ∧ dx4

+

(
−1

4
x1 −

1

5
x1x4 +

1

4
x1 +

1

5
x1x4

)
dx2 ∧ dx3 ∧ dx4

=(x4 + x21)dx1 ∧ dx2 ∧ dx3
+ 0 · dx1 ∧ dx2 ∧ dx4
+ x2x4dx1 ∧ dx3 ∧ dx4
+ 0 · dx2 ∧ dx3 ∧ dx4

=ω.

3.6. Lema de Poincaré

Para la siguiente demostración se hará uso de la función I dada en la Defini-

ción 3.13.

Teorema 3.5. (Lema de Poincaré) Si A ⊂ Rn es un conjunto estelar con respecto

a 0, entonces, toda forma cerrada en A es exacta.

Demostración: Para esta demostración se probará que d(I(ω)) + I(dω) = ω, y

con base a eso probaremos lo que se nos pide. Primero encontraremos a d(I(ω)),

sea,

ω =
∑

i1<i2<···<il

ωi1,...,ildxi1 ∧ · · · ∧ dxil ,

una l-forma, luego,

I(ω(x)) =
∑

i1<i2<···<il

l∑
α=1

(−1)α−1

(∫ 1

0

tl−1ωi1,...,il(tx)dt

)
xiα

dxi1 ∧ · · · ∧ d̂xiα ∧ · · · ∧ dxil ,
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aśı,

d(I(ω)) =
∑

i1<i2<···<il

d

(
l∑

α=1

(−1)α−1

(∫ 1

0

tl−1ωi1,...,ik(tx)dt

)
xiα

)
dxi1 ∧ · · · ∧ d̂xiα ∧ · · · ∧ dxil

=
∑

i1<i2<···<il

l∑
α=1

(−1)α−1d

((∫ 1

0

tl−1ωi1,...,ik(tx)dt

)
xiα

)
dxi1 ∧ · · · ∧ d̂xiα ∧ · · · ∧ dxil

=
∑

i1<i2<···<il

l∑
α=1

(−1)α−1

[
d

(∫ 1

0

tl−1ωi1,...,ik(tx)dt

)
xiα

+

(∫ 1

0

tl−1ωi1,...,ik(tx)dt

)
dxiα

]
dxi1 ∧ · · · ∧ d̂xiα ∧ · · · ∧ dxil

=
∑

i1<i2<···<il

l∑
α=1

(−1)α−1d

(∫ 1

0

tl−1ωi1,...,ik(tx)dt

)
xiα

dxi1 ∧ · · · ∧ d̂xiα ∧ · · · ∧ dxil

+
∑

i1<i2<···<il

l∑
α=1

(−1)α−1

(∫ 1

0

tl−1ωi1,...,ik(tx)dt

)
dxiα

dxi1 ∧ · · · ∧ d̂xiα ∧ · · · ∧ dxil .

Sea g =
∫ 1

0
tl−1ωi1,...,ik(tx)dt, aplicando el Teorema 1.15, se sigue que,

d(g) =d

(∫ 1

0

tl−1ωi1,...,ik(tx)dt

)
=

∫ 1

0

d(tl−1ωi1,...,ik(tx))dt

=

∫ 1

0

tl−1d(ωi1,...,ik(tx))dt

=

∫ 1

0

tl−1

(
n∑

j=1

Djωi1,...,ik(tx)tdxj

)
dt

=

∫ 1

0

tl

(
n∑

j=1

Djωi1,...,ik(tx)dxj

)
dt

=

(
n∑

j=1

∫ 1

0

tlDjωi1,...,ik(tx)dt

)
dxj,
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aśı,

d(I(ω)) =
∑

i1<i2<···<il

l∑
α=1

(−1)α−1xiα

n∑
j=1

(∫ 1

0

tlDjωi1,...,ik(tx)dt

)
dxj ∧ dxi1 ∧ · · · ∧ d̂xiα ∧ · · · ∧ dxil

+
∑

i1<i2<···<il

l∑
α=1

(−1)α−1

(∫ 1

0

tl−1ωi1,...,ik(tx)dt

)
dxiα

dxi1 ∧ · · · ∧ d̂xiα ∧ · · · ∧ dxil

=
∑

i1<i2<···<il

l∑
α=1

(−1)α−1xiα

n∑
j=1

(∫ 1

0

tlDjωi1,...,ik(tx)dt

)
dxj ∧ dxi1 ∧ · · · ∧ d̂xiα ∧ · · · ∧ dxil

+
∑

i1<i2<···<il

l∑
j=1

l∑
α=1

(−1)α−1

(∫ 1

0

tl−1ωi1,...,ik(tx)dt

)
Djxiα

dxj ∧ dxi1 ∧ · · · ∧ d̂xiα ∧ · · · ∧ dxil

=
∑

i1<i2<···<il

l∑
α=1

(−1)α−1xiα

n∑
j=1

(∫ 1

0

tlDjωi1,...,ik(tx)dt

)
dxj ∧ dxi1 ∧ · · · ∧ d̂xiα ∧ · · · ∧ dxil

+
∑

i1<i2<···<il

(∫ 1

0

tl−1ωi1,...,ik(tx)dt

)
( l∑

α=1

(−1)α−1dxiα ∧ dxi1 ∧ · · · ∧ d̂xiα ∧ · · · ∧ dxil
)
.

De lo anterior se tiene que,

l∑
α=1

(−1)α−1dxiα ∧ dxi1 ∧ · · · ∧ d̂xiα∧ · · · ∧ dxil

=(−1)1−1dxi1 ∧ dxi2 ∧ · · · ∧ dxil
+ (−1)2−1dxi2 ∧ dxi1 ∧ dxi3 ∧ · · · ∧ dxil

...

+ (−1)l−1dxil ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxil−1

=dxi1 ∧ dxi2 ∧ · · · ∧ dxil
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+ (−1)(−1)1·1dxi1 ∧ dxi2 ∧ dxi3 ∧ · · · ∧ dxil
...

+ (−1)l−1(−1)1·(l−1)dxi1 ∧ dxi2 ∧ · · · ∧ dxil
=dxi1 ∧ dxi2 ∧ · · · ∧ dxil
+ dxi1 ∧ dxi2 ∧ · · · ∧ dxil

...

+ dxi1 ∧ dxi2 ∧ · · · ∧ dxil
=l · dxi1 ∧ dxi2 ∧ · · · ∧ dxil ,

luego,

d(I(ω)) =
∑

i1<i2<···<il

l∑
α=1

(−1)α−1xiα

n∑
j=1

(∫ 1

0

tlDjωi1,...,ik(tx)dt

)
dxj ∧ dxi1 ∧ · · · ∧ d̂xiα ∧ · · · ∧ dxil

+
∑

i1<i2<···<il

(∫ 1

0

tl−1ωi1,...,ik(tx)dt

)
l · dxi1 ∧ dxi2 ∧ · · · ∧ dxil .

(3.3)

Ahora encontraremos a I(dω). Tenemos que,

dω =
∑

i1<i2<···<il

n∑
j=1

Djωi1,...,ik · dxj ∧ dxi1 ∧ · · · ∧ dxil ,

luego, intercambiando al 1-tensor dxj con el l-tensor dxi1∧· · ·∧dxil en el producto

cuña resulta lo siguiente,

dω =
∑

i1<i2<···<il

n∑
j=1

(−1)l·1Djωi1,...,ikdxi1 ∧ · · · ∧ dxil ∧ dxj

=
∑

i1<i2<···<il

n∑
j=1

(−1)lDjωi1,...,ikdxi1 ∧ · · · ∧ dxil ∧ dxj,

más adelante se revertirá lo anterior hecho, aśı, aplicando I a dω,

I(dω) =
∑

i1<i2<···<il

n∑
j=1

l+1∑
α=1

(−1)α−1(−1)l
(∫ 1

0

t(l+1)−1Dj(ωi1,...,ik)(tx)dt

)
xiα

dxi1 ∧ · · · ∧ d̂xiα ∧ · · · ∧ dxil ∧ dxj
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=
∑

i1<i2<···<il

n∑
j=1

l+1∑
α=1

(−1)α−1(−1)l
(∫ 1

0

tlDj(ωi1,...,ik)(tx)dt

)
xiα

dxi1 ∧ · · · ∧ d̂xiα ∧ · · · ∧ dxil ∧ dxj,

notemos que cuando α ∈ {1, ..., l} se tiene que iα ∈ {i1, i2, ..., il}, aśı, cuando
α = l + 1, se cumple que iα = j, con esto, separando del resto al último término

de la suma,

I(dω) =
∑

i1<i2<···<il

n∑
j=1

l∑
α=1

(−1)α−1(−1)l
(∫ 1

0

tlDj(ωi1,...,ik)(tx)dt

)
xiα

dxi1 ∧ · · · ∧ d̂xiα ∧ · · · ∧ dxil ∧ dxj

+
∑

i1<i2<···<il

n∑
j=1

(−1)(l+1)−1(−1)l
(∫ 1

0

tlDj(ωi1,...,ik)(tx)dt

)
xil+1

dxi1 ∧ · · · ∧ d̂xil+1
∧ · · · ∧ dxil ∧ dxj

=
∑

i1<i2<···<il

n∑
j=1

l∑
α=1

(−1)α−1(−1)l(−1)(l−1)·1
(∫ 1

0

tlDj(ωi1,...,ik)(tx)dt

)
xiα

dxj ∧ dxi1 ∧ · · · ∧ d̂xiα ∧ · · · ∧ dxil

+
∑

i1<i2<···<il

n∑
j=1

(−1)l(−1)l
(∫ 1

0

tlDj(ωi1,...,ik)(tx)dt

)
xj

dxi1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxil ∧ dxj

=(−1)2l−1
∑

i1<i2<···<il

n∑
j=1

l∑
α=1

(−1)α−1

(∫ 1

0

tlDj(ωi1,...,ik)(tx)dt

)
xiα

dxj ∧ dxi1 ∧ · · · ∧ d̂xiα ∧ · · · ∧ dxil

+
∑

i1<i2<···<il

n∑
j=1

(−1)2l
(∫ 1

0

tlDj(ωi1,...,ik)(tx)dt

)
xjdxi1 ∧ · · · ∧ dxil

=−
∑

i1<i2<···<il

n∑
j=1

l∑
α=1

(−1)α−1

(∫ 1

0

tlDj(ωi1,...,ik)(tx)dt

)
xiα

dxj ∧ dxi1 ∧ · · · ∧ d̂xiα ∧ · · · ∧ dxil

+
∑

i1<i2<···<il

n∑
j=1

(∫ 1

0

tlDj(ωi1,...,ik)(tx)dt

)
xjdxi1 ∧ · · · ∧ dxil .

(3.4)
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Sumando (3.4) y (3.5), obtenemos,

d(I(ω)) + I(dω)

=
∑

i1<i2<···<il

(∫ 1

0

tl−1ωi1,...,ik(tx)dt

)
l · dxi1 ∧ dxi2 ∧ · · · ∧ dxil

+
∑

i1<i2<···<il

n∑
j=1

(∫ 1

0

tlxjDj(ωi1,...,ik)(tx)dt

)
dxi1 ∧ · · · ∧ dxil

=
∑

i1<i2<···<il

(∫ 1

0

tl−1ωi1,...,ik(tx)dt

)
l · dxi1 ∧ dxi2 ∧ · · · ∧ dxil

+
∑

i1<i2<···<il

(∫ 1

0

tl
n∑

j=1

(xjDj(ωi1,...,ik)(tx))dt

)
dxi1 ∧ · · · ∧ dxil

=
∑

i1<i2<···<il

(∫ 1

0

tl−1ωi1,...,ik(tx)dt

)
l · dxi1 ∧ dxi2 ∧ · · · ∧ dxil

+
∑

i1<i2<···<il

(∫ 1

0

tl
d

dt
(ωi1,...,ik(tx))dt

)
dxi1 ∧ · · · ∧ dxil

=
∑

i1<i2<···<il

(∫ 1

0

d

dt
[tlωi1,...,ik(tx)]dt

)
· dxi1 ∧ dxi2 ∧ · · · ∧ dxil

=
∑

i1<i2<···<il

[
1lωi1,...,ik(1 · x)− 0lωi1,...,ik(0 · x)

]
dxi1 ∧ dxi2 ∧ · · · ∧ dxil

=
∑

i1<i2<···<il

ωi1,...,ikdxi1 ∧ dxi2 ∧ · · · ∧ dxil

=ω.

Sea ω una k-forma cerrada, aśı, dω = O, luego, por la igualdad mostrada ante-

riormente,

ω =d(Iω) + I(dω)

=d(I(ω)) + I(O)

=d(I(ω)).

Con esto, ω es una k-forma exacta.



Caṕıtulo 4

Integración de formas sobre

cadenas

En este caṕıtulo se presentan la definición y las propiedades principales de los

m-cubos singulares y las m-cadenas en Rn, con las cuales se podrá demostrar el

Teorema de Stokes.

Para este caṕıtulo, [0, 1]m denotará el m-producto cartesiano de [0, 1] m veces.

Esto es: [0, 1]× · · · × [0, 1].

4.1. M-cubo singular

Definición 4.1. Sean m,n ∈ N, con m ≤ n y A ⊂ Rn. Un m-cubo singular en

A es una función continua c : [0, 1]m → A.

Ejemplo 4.1. La función c : [0, 1] → R definida como sigue,

c(x) = 5,

es un 1-cubo singular. Además, la imagen de c es un punto en R.

Ejemplo 4.2. Sean β, α ∈ R,con β ̸= 0. La función c : [0, 1] → R definida como

sigue,

c(x) = βx+ α.

es un 1-cubo singular. Además, la imagen de c es un segmento de recta en R.

103
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Ejemplo 4.3. Sean β, α ∈ R. La función c : [0, 1]2 → R3 definida como sigue,

c(x1, x2) = (β · x1, α · x2, x2),

es un 2-cubo singular. Además, si β y α son iguales a 0, entonces la imagen de c

es un segmento de recta, mientras que si solo uno de los dos es igual a 0, entonces

la imagen de c seŕıa un plano.

Cuando β = 4 y α = 2 se obtiene la superficie mostrada en la figura 4.1.

0 2 4 0
2
40

0.5

1

x
y

z

Figura 4.1: Superficie generada por c

Ejemplo 4.4. Sean β ∈ R. La función c : [0, 1]3 → R3 definido como:

c(x1, x2, x3) = (sen(x1), β · x2, x3),

es un 3-cubo singular, además, si β es igual a 0, entonces la imagen de c es un

plano. En caso contrario, la imagen de c es un rectángulo.

Ejemplo 4.5. En Rn, para n ≤ 2, las curvas c1 : [0, 1] → Rn son 1-cubos singu-

lares y las superficies c2 : [0, 1]
2 → Rn son 2-cubos singulares.

Dos ejemplos simples, pero particulares de n-cubos singulares en Rn, son el

n-cubo estándar In : [0, 1]n → Rn y el n-cubo nulo o : [0, 1]n → Rn definidos

por

In(x) =x,

o(x) =(0, ..., 0),

para cada x ∈ [0, 1]n, respectivamente.
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4.2. M-cadenas

Definición 4.2. Denotemos por Sm al conjunto de todos los m-cubos singulares

en A ⊂ Rn. Una m-cadena es una función f : Sm → Z, tal que f(c) = 0 para

todo c ∈ Sm a excepción de un conjunto finito {c1, ..., cl} ⊂ Sm, con l ∈ N. Al
conjunto de m-cadenas en A ⊂ Rn se denotará como Cm(A).

Sea f una m-cadena no nula, aśı, existen m-cubos singulares c1, ..., cl tales que,

f(ci) = ai ̸= 0, para todo i ∈ {1, ..., l}, (4.1)

por otro lado, tomando c ∈ Sm, definimos a la función fc : Sm → Z de la siguiente

manera,

fc(c
′) =

 1, si c′ = c

0, si c′ ̸= c,

con esto, se puede representar a f como sigue,

f =
l∑

i=1

aifci .

Proposición 4.1. Sean f y g m-cadenas. Definiendo a f + g y a lf , con l ∈ Z,
de la siguiente manera,

(f + g)(c) = f(c) + g(c),

lf(c) = l · f(c),

se tiene que f + g y lf son m-cadenas.

Demostración: Sean f y g m-cadenas.

Sea c ∈ {c : (f+g)(c) ̸= 0} = {c : f(c)+g(c) ̸= 0}, luego, dado que f(c)+g(c) ̸= 0,

se deduce que o bien f(c) ̸= 0 o g(c) ̸= 0, aśı,

c ∈ {c : f(c) ̸= 0} o c ∈ {c : g(c) ̸= 0},

con esto,

{c : (f + g)(c) ̸= 0} ⊂{c : f(c) ̸= 0} ∪ {c : g(c) ̸= 0},
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debido a que {c : f(c) ̸= 0} y {c : g(c) ̸= 0} son conjuntos finitos, se sigue que,

{c : (f + g)(c) ̸= 0} es un conjunto finito, por ende, f + g es una m-cadena.

Por otro lado, sea c ∈ {c : lf(c) ̸= 0} = {c : l · f(c) ̸= 0}, dado que lf(c) ̸= 0, se

sigue que f(c) ̸= 0, aśı c ∈ {c : f(c) ̸= 0} y por ende,

{c : lf(c) ̸= 0} ⊂ {c : f(c) ̸= 0},

de aqúı se sigue que {c : lf(c) ̸= 0} es un conjunto finito, y por ende, lf es una

m-cadena.

Ejemplo 4.6. Sean Sm el conjunto de los m-cubos singulares y c ∈ Sm arbitrario,

consideremos ahora a la función fc, es claro que el conjunto de m-cubos singulares

donde fc no se anula es {c}, cuya cardinalidad es 1, en otras palabras, es un

conjunto finito, aśı, fc es una m-cadena. Diremos que fc es la función asociada

a c.

4.3. Frontera de una cadena

Para cada m-cadena f en A definiremos una (m − 1)-cadena en A llamada

la frontera de f y denotada como ∂f , para dar la definición de ∂f se requiere

presentar algunos conceptos preliminares.

Definición 4.3. Para todo m ∈ N, definimos dos (m− 1)-cubos singulares

Im(i,0), I
m
(i,1) : [0, 1]

m−1 → Rm,

para todo i ∈ {1, 2, ...,m}, como se explica a continuación. Dado x ∈ [0, 1]m−1,

Im(i,0)(x) = (x1, ..., xi−1, 0, xi, ..., xm−1),

Im(i,1)(x) = (x1, ..., xi−1, 1, xi, ..., xm−1).

Llamaremos a Im(i,0)(x) la (i, 0)-cara de Im y a Im(i,1)(x) la (i, 1)-cara de Im.

Definición 4.4. Definimos a la m− 1-cadena ∂Im : Sm−1 → Z como sigue:

∂Im(Im(i,α)) = (−1)i+α,
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con i ∈ {1, 2, ..., n} y α ∈ {0, 1}, aśı,

∂Im =
m∑
i=1

1∑
α=0

(−1)i+αf(i,α),

donde f(i,α) es la función asociada a Im(i,α).

Ejemplo 4.7. Sea x ∈ R. Las (i, 0)-caras y las (i, 1)-caras de I2, con i ∈ {1, 2},
son,

I2(1,0)(x) =(0, x),

I2(1,1)(x) =(1, x),

I2(2,0)(x) =(x, 0),

I2(2,1)(x) =(x, 1),

luego,

∂I2 =
2∑

i=1

1∑
α=0

(−1)i+αf(i,α)

=
2∑

i=1

(
(−1)if(i,0) + (−1)i+1f(i,1)

)
=(−1)1f(1,0) + (−1)1+1f(1,1) + (−1)2f(2,0) + (−1)2+1f(2,1)

=− f(1,0) + f(1,1) + f(2,0) − f(2,1).

I2(2,0)

I2(2,1)

I2(1,0) I2(1,1)

0 1

1

Figura 4.2: (i, 0)-caras y (i, 1)-caras de I2, i ∈ {1, 2}
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Ejemplo 4.8. Sea x = (x1, x2) ∈ R2. Las (i, 0)-caras y las (i, 1)-caras de I3, con

i ∈ {1, 2, 3}, son,

I3(1,0)(x1, x2) =(0, x1, x2),

I3(1,1)(x1, x2) =(1, x1, x2),

I3(2,0)(x1, x2) =(x1, 0, x2),

I3(2,1)(x1, x2) =(x1, 1, x2),

I3(3,0)(x1, x2) =(x1, x2, 0),

I3(3,1)(x1, x2) =(x1, x2, 1),

luego,

∂I3 =
3∑

i=1

1∑
α=0

(−1)i+αf(i,α)

=
3∑

i=1

(
(−1)if(i,0) + (−1)i+1f(i,1)

)
=(−1)1f(1,0) + (−1)1+1f(1,1) + (−1)2f(2,0)

+ (−1)2+1f(2,1) + (−1)3f(3,0) + (−1)3+1f(3,1)

=− f(1,0) + f(1,1) + f(2,0) − f(2,1) − f(3,0) + f(3,1).

Definición 4.5. Para un m-cubo singular arbitrario c : [0, 1]m → A, definimos la

(i, α)-cara, como siguiente composición,

c(i,α) = c ◦ (Im(i,α)),

con α ∈ {0, 1}, notemos que c(i,α) : [0, 1]
m−1 → A, es decir, c(i,α) es un (m−1)-cubo

singular, luego, la frontera de c está definida de la siguiente manera,

∂c =
m∑
i=1

1∑
α=0

(−1)i+αfc(i,α)
,

con esto, podemos definir la frontera de una m-cadena f =
∑l

i=1 aifci como:

∂f =
l∑

i=1

ai∂ci.

Ejemplo 4.9. Consideremos al 3-cubo singular dado en el Ejemplo 4.4, para
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poder encontrar a ∂c primero debemos encontrar a las (i, α)-caras de c, i ∈ {1, 2, 3}
y α ∈ {0, 1}. Tenemos que,

I3(1,0)(x) =(0, x1, x2),

I3(2,0)(x) =(x1, 0, x2),

I3(2,0)(x) =(x1, x2, 0),

I3(1,1)(x) =(1, x1, x2),

I3(2,1)(x) =(x1, 1, x2),

I3(2,1)(x) =(x1, x2, 1),

con esto, las (i, α)-caras de c son,

c(1,0)(x) =(c ◦ I3(1,0))(x) = (sen(0), β · x1, x2) = (0, β · x1, x2),

c(2,0)(x) =(c ◦ I3(2,0))(x) = (sen(x1), β · 0, x2) = (sen(x1), 0, x2),

c(3,0)(x) =(c ◦ I3(3,0))(x) = (sen(x1), β · x2, 0),

c(1,1)(x) =(c ◦ I3(1,1))(x) = (sen(1), β · x1, x2),

c(2,1)(x) =(c ◦ I3(2,1))(x) = (sen(x1), β · 1, x2) = (sen(x1), β, x2),

c(3,1)(x) =(c ◦ I3(3,1))(x) = (sen(x1), β · x2, 1),

aśı,

∂c =
3∑

i=1

1∑
α=0

(−1)i+αfc(i,α)

=
3∑

i=1

(
(−1)ifc(i,0) + (−1)i+1fc(i,1)

)
=(−1)1fc(1,0) + (−1)1+1fc(1,1)

+ (−1)2fc(2,0) + (−1)2+1fc(2,1)

+ (−1)3fc(3,0) + (−1)3+1fc(3,1)

=− fc(1,0) + fc(1,1) + fc(2,0) − fc(2,1) − fc(3,0) + fc(3,1) .

Teorema 4.1. Si c es una m-cadena en A, entonces ∂(∂c) = 0.

Demostración: Sean c un m-cubo singular y i, j ∈ {1, ...,m}. Sin pérdida de

generalidad supongamos que i ≤ j. Sea x ∈ [0, 1]m−2, luego, la (j, β)-cara de Imi,α,
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con α, β ∈ {0, 1}, es,

(Im(i,α))(j,β)(x) =I
m
(i,α)(I

m−1
(j,β) (x))

=Im(i,α)(x1, ..., xj−1, β, xj, ..., xm−2)

=(x1, ..., xi−1, α, xi, ..., xj−1, β, xj, ..., xm−2),

análogamente, la (i, α)-cara de Imj,β es,

(Im(j+1,β))(i,α)(x) =I
m
(j,β)(I

m−1
(i,α) (x))

=Im(j,β)(x1, ..., xi−1, α, xi, ..., xm−2)

=(x1, ..., xi−1, α, xi, ..., xj, β, xj+1, ..., xm−2),

la última igualdad se debe a que la j+1 entrada de (x1, ..., xi−1, α, xi, ..., xm−2) es

xj, con esto, podemos decir que (Im(i,α))(j,β) = (Im(j+1,β))(i,α), además,

(c(i,α))(j,β) =c(i,α)(I
m−1
(j,β) )

=(c(Im(i,α)))(I
m−1
(j,β) )

=c(Im(i,α)(I
m−1
(j,β) ))

=c((Im(i,α))(j,β))

=c((Im(j+1,β))(i,α))

=c(Im(j+1,β)(I
m−1
(i,α) ))

=(c(Im(j+1,β)))(I
m−1
(i,α) )

=c(j+1,β)(I
m−1
(i,α) )

=(c(j+1,β))(i,α),

con esto,

∂(∂c)) =∂

(
m∑
i=1

1∑
α=0

(−1)i+αfc(i,α)

)

=
m∑
i=1

1∑
α=0

(−1)i+α∂(c(i,α))

=
m∑
i=1

1∑
α=0

(−1)i+α

(
m−1∑
j=1

1∑
β=0

(−1)j+βf(c(i,α))(j,β)

)



4.3. FRONTERA DE UNA CADENA 111

=
m∑
i=1

1∑
α=0

m−1∑
j=1

1∑
β=0

(−1)i+α+j+βf(c(i,α))(j,β)

=
m∑
i=1

m−1∑
j=1

1∑
α=0

1∑
β=0

(−1)i+α+j+βf(c(i,α))(j,β)

=
m∑
i=1

m−1∑
j=1

[
(−1)i+0+j+0f(c(i,0))(j,0) + (−1)i+0+j+1f(c(i,0))(j,1)

+ (−1)i+1+j+0f(c(i,1))(j,0) + (−1)i+1+j+1f(c(i,1))(j,1)

]
=

m∑
i=1

m−1∑
j=1

[
(−1)i+jf(c(i,0))(j,0) + (−1)i+j+1f(c(i,0))(j,1)

+ (−1)i+j+1f(c(i,1))(j,0) + (−1)i+j+2f(c(i,1))(j,1)

]
=

m∑
i=1

m−1∑
j=1

(−1)i+jf(c(i,0))(j,0) +
m∑
i=1

m−1∑
j=1

[
(−1)i+j+1f(c(i,0))(j,1)

+ (−1)i+j+1f(c(i,1))(j,0)

]
+

m∑
i=1

m−1∑
j=1

(−1)i+j+2f(c(i,1))(j,1) .

De la igualdad anterior resultaron tres sumandos, primero se trabajará con el

primer sumando, el cual al tener una forma similar al tercer sumando nos ayudará

a demostrarlo y por último se trabajará con el segundo sumando. Tenemos que,

m∑
i=1

m−1∑
j=1

(−1)i+jf(c(i,0))(j,0) =
m∑
i=1

[
(−1)i+1f(c(i,0))(1,0) + (−1)i+2f(c(i,0))(2,0)

+ · · ·+ (−1)i+m−1f(c(i,0))(−1,0)

]
=

[
(−1)1+1f(c(1,0))(1,0) + (−1)1+2f(c(1,0))(2,0)

+ · · ·+ (−1)1+m−1f(c(1,0))(m−1,0)

]
+

[
(−1)2+1f(c(2,0))(1,0) + (−1)2+2f(c(2,0))(2,0)

+ · · ·+ (−1)2+m−1f(c(2,0))(m−1,0)

]
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+

[
(−1)3+1f(c(3,0))(1,0) + (−1)3+2f(c(3,0))(2,0)

+ · · ·+ (−1)2+m−1f(c(2,0))(m−1,0)

]
+ · · ·+

+

[
(−1)m+1f(c(m,0))(1,0) + (−1)m+2f(c(m,0))(2,0)

+ · · ·+ (−1)m+m−1f(c(m,0))(m−1,0)

]
=

[
f(c(1,0))(1,0) − f(c(1,0))(2,0) + f(c(1,0))(3,0)

+ · · ·+ (−1)mf(c(1,0))(m−1,0)

]
+

[
−f(c(2,0))(1,0) + f(c(2,0))(2,0) − f(c(2,0))(3,0)

+ · · ·+ (−1)m+1f(c(2,0))(m−1,0)

]
+

[
f(c(3,0))(1,0) − f(c(3,0))(2,0) + f(c(3,0))(3,0)

+ · · ·+ (−1)m+2f(c(2,0))(m−1,0)

]
+ · · ·+

+

[
(−1)m+1f(c(m,0))(1,0) + (−1)m+2f(c(m,0))(2,0)

+ · · ·+ (−1)2m−1f(c(m,0))(m−1,0)

]
=

[
f(c(1,0))(1,0) − f(c(2,0))(1,0) − f(c(1,0))(2,0) + f(c(3,0))(1,0)

+ · · ·+ (−1)mf(c(1,0))(m−1,0)
+ (−1)m+1f(c(m,0))(1,0)

]
+

[
f(c(2,0))(2,0) − f(c(3,0))(2,0) − f(c(2,0))(3,0) + f(c(4,0))(2,0)

+ · · ·+ (−1)m+1f(c(2,0))(m−1,0)
+ (−1)m+2f(c(m,0))(2,0)

]
+ · · ·+

[
(−1)2m−1f(c(m,0))m−1,0)

+ (−1)2m−2f(c(m−1,0))(m−1,0)

]
=

[
f(c(1,0))(1,0) − f(c(1,0))(1,0) − f(c(1,0))(2,0) + f(c(1,0))(2,0)

+ · · ·+ (−1)mf(c(1,0))(m−1,0)
− (−1)mf(c(1,0))(m−1,0)

]
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+

[
f(c(2,0))(2,0) − f(c(2,0))(2,0) − f(c(2,0))(3,0) + f(c(2,0))(3,0)

+ · · ·+ (−1)m+1f(c(2,0))(m−1,0)
− (−1)m+1f(c(2,0))(m−1,0)

]
+ · · ·+

[
−(−1)2m−2f(c(m,0))(m−1,0)

+ (−1)2m−2f(c(m−1,0))(m−1,0)

]
=0.

La demostración de que,

m∑
i=1

m−1∑
j=1

(−1)i+j+2f(c(i,1))(j,1) = 0,

es análoga a la demostración realizada anteriormente. Ahora solo resta trabajar

con el segundo sumando, para esto, recordemos que (c(i,α))(j,β) = (c(j+1,β))(i,α),

solo cuando i ≤ j, aśı,

m∑
i=1

m−1∑
j=1

[
(−1)i+j+1f(c(i,0))(j,1) + (−1)i+j+1f(c(i,1))(j,0)

]

=
m∑
i=1

[
(−1)i+1+1f(c(i,0))(1,1) + (−1)i+1+1f(c(i,1))(1,0)

+ (−1)i+2+1f(c(i,0))(2,1) + (−1)i+2+1f(c(i,1))(2,0)

+ (−1)i+3+1f(c(i,0))(3,1) + (−1)i+3+1f(c(i,1))(3,0)

+ · · ·+ (−1)i+m−1+1f(c(i,0))(m−1,1)
+ (−1)i+m−1+1f(c(i,1))(m−1,0)

]
=

[
(−1)1+2f(c(1,0))(1,1) + (−1)1+2f(c(1,1))(1,0)

+ (−1)1+3f(c(1,0))(2,1) + (−1)1+3f(c(1,1))(2,0)

+ (−1)1+4f(c(1,0))(3,1) + (−1)1+4f(c(1,1))(3,0)

+ · · ·+ (−1)m+1f(c(1,0))(m−1,1)
+ (−1)m+1f(c(1,1))(m−1,0)

]
+

[
(−1)2+2f(c(2,0))(1,1) + (−1)2+2f(c(2,1))(1,0)

+ (−1)2+3f(c(2,0))(2,1) + (−1)2+3f(c(2,1))(2,0)

+ (−1)2+4f(c(2,0))(3,1) + (−1)2+4f(c(2,1))(3,0)
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+ · · ·+ (−1)m+2f(c(2,0))(m−1,1)
+ (−1)m+2f(c(2,1))(m−1,0)

]
+

[
(−1)3+2f(c(3,0))(1,1) + (−1)3+2f(c(3,1))(1,0)

+ (−1)3+3f(c(3,0))(2,1) + (−1)3+3f(c(3,1))(2,0)

+ (−1)3+4f(c(3,0))(3,1) + (−1)3+4f(c(3,1))(3,0)

+ · · ·+ (−1)m+3f(c(3,0))(m−1,1)
+ (−1)m+3f(c(3,1))(m−1,0)

]
+ · · ·+

[
(−1)m+2f(c(m,0))(1,1) + (−1)m+2f(c(n,1))(1,0)

+ (−1)m+3f(c(i,0))(2,1) + (−1)m+3f(c(m,1))(2,0)

+ (−1)m+4f(c(m,0))(3,1) + (−1)m+4f(c(m,1))(3,0)

+ · · ·+ (−1)m+mf(c(m,0))(m−1,1)
+ (−1)m+mf(c(m,1))(m−1,0)

]
=

[
−f(c(1,0))(1,1) − f(c(1,1))(1,0) + f(c(1,0))(2,1) + f(c(1,1))(2,0)

− f(c(1,0))(3,1) − f(c(1,1))(3,0) + · · ·+ (−1)m+1f(c(1,0))(m−1,1)

+ (−1)m+1f(c(1,1))(m−1,0)

]
+

[
f(c(2,0))(1,1) + f(c(2,1))(1,0) − f(c(2,0))(2,1) − f(c(2,1))(2,0)

+ f(c(2,0))(3,1) + f(c(2,1))(3,0) + · · ·+ (−1)m+2f(c(2,0))(m−1,1)

+ (−1)m+2f(c(2,1))(m−1,0)

]
+

[
−f(c(3,0))(1,1) − f(c(3,1))(1,0) + f(c(3,0))(2,1) + f(c(3,1))(2,0)

− f(c(3,0))(3,1) − f(c(3,1))(3,0) + · · ·+ (−1)m+3f(c(3,0))(m−1,1)

+ (−1)m+3f(c(3,1))(m−1,0)

]
+ · · ·+

[
(−1)m+2f(c(m,0))(1,1)+

(−1)m+2f(c(m,1))(1,0) + (−1)m+3f(c(m,0))(2,1)

+ (−1)m+3f(c(m,1))(2,0) + (−1)m+4f(c(m,0))(3,1)

+ (−1)m+4f(c(m,1))(3,0) + · · ·+ (−1)2mf(c(m,0))(m−1,1)

+ (−1)2m−1f(c(m,1))(m−1,0)

]
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=− f(c(1,0))(1,1) + f(c(2,1))(1,0) − f(c(1,1))(1,0) + f(c(2,0))(1,1)

+ f(c(1,0))(2,1) − f(c(3,1))(1,0) + f(c(1,1))(2,0) − f(c(3,0))(1,1)

+ · · ·+ (−1)m+1f(c(1,0))(m−1,1)
+ (−1)m+2f(c(m,1))(1,0)

+ (−1)m+1f(c(1,1))(m−1,0)
+ (−1)m+2f(c(m,0))(1,1)

− f(c(2,0))(2,1) + f(c(3,1))(2,0) − f(c(2,1))(2,0) + f(c(3,0))(2,1)

+ · · ·+ (−1)m+2f(c(2,0))(m−1,1)
+ (−1)m+3f(c(m,1))(2,0)

+ (−1)m+2f(c(2,1))(m−1,0)
+ (−1)m+3f(c(m,0))(2,1)

+ · · ·+ (−1)2m−1f(c(m−1,1))(m−1,0)
+ (−1)2mf(c(m,0))(m−1,1)

+ (−1)2m−1f(c(m−1,0))(m−1,1)
+ (−1)2mf(c(m,1))(m−1,0)

=− f(c(2,1))(1,0) + f(c(2,1))(1,0) − f(c(2,0))(1,1) + f(c(2,0))(1,1)

+ f(c(3,1))(1,0) − f(c(3,1))(1,0) + f(c(3,0))(1,1) − f(c(3,0))(1,1)

+ · · ·+ (−1)m+1f(c(m,1))(1,0) − (−1)m+1f(c(m,1))(1,0)

+ (−1)m+1f(c(m,0))(1,1) − (−1)m+1f(c(m,0))(1,1)

− f(c(3,1))(2,0) + f(c(3,1))(2,0) − f(c(3,0))(2,1) + f(c(3,0))(2,1)

+ · · ·+ (−1)m+2f(c(m,1))(2,0) − (−1)m+2f(c(m,1))(2,0)

+ (−1)m+2f(c(m,0))(2,1) − (−1)m+2f(c(m,0))(2,1)

+ · · ·+ (−1)2m−1f(c(m,0))(m−1,1)
− (−1)2m−1f(c(m,0))(m−1,1)

+ (−1)2m−1f(c(m,1))(m−1,0)
− (−1)2m−1f(c(m,1))(m−1,0)

=0.

De aqúı se concluye que ∂(∂c) = 0. Sea una m-cadena f =
∑l

i=1 aifci , luego,

∂(∂f) =∂

( l∑
i=1

ai∂ci

)

=
l∑

i=1

ai∂(∂ci)

=
l∑

i=1

ai · 0

=0.

Por lo tanto, queda demostrado el teorema.
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4.4. Integración sobre cubos singulares

A partir de aqúı solo se trabajará con k-cubos singulares diferenciables. Sea ω

una k-forma en [0, 1]k, con k ∈ N, luego,

ω =
1∑

i1=1

2∑
i2>i1

· · ·
k∑

ik>ik−1

ωi1,i2,...,ikdxi1 ∧ · · · ∧ dxik

=ω1,2,...,kdx1 ∧ · · · ∧ dxk,

para fines prácticos denotaremos a ω1,2,...,k como g.

Definición 4.6. Definimos la integral de una k-forma ω sobre [0, 1]k como sigue,∫
[0,1]k

ω =

∫
[0,1]k

gdx1 ∧ · · · ∧ dxk

=

∫
[0,1]k

g(x1, ..., xk)dx1 · · · dxk.

Ejemplo 4.10. Sea la 3-forma definida como sigue

ω = (2x1 + sen(x2) + ex3)dx1 ∧ dx2 ∧ dx3,

luego, ∫
[0,1]3

ω =

∫
[0,1]

∫
[0,1]

∫
[0,1]

(2x1 + sen(x2) + ex3)dx1 ∧ dx2 ∧ dx3

=

∫ 1

0

∫ 1

0

∫ 1

0

(2x1 + sen(x2) + ex3)dx1dx2dx3

=

∫ 1

0

∫ 1

0

(
2x21
2

+ sen (x2)x1 + ex3x1

)∣∣∣∣1
0

dx2dx3

=

∫ 1

0

∫ 1

0

(
1 + sen(x2) + ex3

)
dx2dx3

=

∫ 1

0

(x2 − cos(x2) + ex3x2)|10 dx3

=

∫ 1

0

(1− cos(1) + cos(0) + ex3)dx3

=

∫ 1

0

(2− cos(1) + ex3)dx3

= [(2− cos(1))x3 + ex3 ]|10
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=2− cos(1) + e1 − e0

=1− cos(1) + e.

Definición 4.7. Si ω es una k-forma sobre A ⊂ Rk y c es un k-cubo singular

sobre A, definimos la integral de ω sobre c como sigue,∫
c

ω =

∫
[0,1]k

c∗ω.

En particular, cuando ω es una 0−forma y c : {0} → A es un 0-cubo singular

la integral de ω sobre c se define de la siguiente manera,∫
c

ω = ω(c(0)).

Otro caso particular ocurre cuando consideramos la integral de una k-forma ω de

Rk sobre el k-cubo estándar Ik : [0, 1]k → Rk, cuyo resultado es el siguiente,∫
Ik
ω =

∫
Ik
gdx1 ∧ · · · ∧ dxk =

∫
[0,1]k

(Ik)∗(gdx1 ∧ · · · ∧ dxk), (4.2)

por Teorema 3.3, tenemos la siguiente igualdad:∫
[0,1]k

(Ik)∗(gdx1 ∧ · · · ∧ dxk) =
∫
[0,1]k

(g ◦ Ik)det((Ik)′)dx1 ∧ · · · ∧ dxk. (4.3)

Primero demostraremos que g ◦ Ik = g y posteriormente encontraremos el valor

de det((Ik)′).

Sea (x1, ..., xk) ∈ [0, 1]k, luego,

(g ◦ Ik)(x1, ..., xk) = g(Ik(x1, ..., xk)) = g(x1, ..., xk), (4.4)

con esto, g ◦ Ik = g. Por otro lado, recordemos que Ik(x1, ..., xk) = (x1, ..., xk), por

ende, Iki = xi, para todo i ∈ {1, ..., k}, aśı,

(Ik)′ =


D1I

k
1 D2I

k
1 · · · DkI

k
1

D1I
k
2 D2I

k
2 · · · DkI

k
2

...
...

...
...

D1I
k
k D2I

k
k · · · DkI

k
k

 =


1 0 · · · 0

0 1 · · · 0
...

...
...

...

0 0 · · · 1

.
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Es fácil ver que det((Ik)′) = 1, de (4.2), (4.3) y (4.4) se concluye que∫
[0,1]k

(Ik)∗(gdx1 ∧ · · · ∧ dxk) =
∫
[0,1]k

gdx1 ∧ · · · ∧ dxk

=

∫
[0,1]k

g(x1, ..., xk)dx1 · · · dxk.

Ejemplo 4.11. Tomemos a la 3-forma dada en el Ejemplo 4.10, y al 3-cubo

singular dado en el Ejemplo 4.4, luego, aplicando Teorema 3.3∫
c

ω =

∫
[0,1]3

c∗ω

=

∫
[0,1]3

c∗
(
gdx1 ∧ dx2 ∧ dx3

)
=

∫
[0,1]3

(g ◦ c)det(c′)dx1 ∧ dx2 ∧ dx3

=

∫
[0,1]

∫
[0,1]

∫
[0,1]

(2sen(x1) + sen(αx2) + ex3)det(c′)dx1dx2dx3,

tenemos que,

c′ =


cos(x1) 0 0

0 α 0

0 0 1

,
aśı, det(c′) = α cos(x1), con esto,∫

[0,1]

∫
[0,1]

∫
[0,1]

(2 sen(x1) + sen(αx2) + ex3)det(c′)dx1dx2dx3

=

∫
[0,1]

∫
[0,1]

∫
[0,1]

(2sen(x1) + sen(αx2) + ex3)α cos(x1)dx1dx2dx3

=α

∫
[0,1]

∫
[0,1]

∫
[0,1]

(2sen(x1) cos(x1) + sen(αx2) cos(x1) + ex3 cos(x1))dx1dx2dx3

=α

∫
[0,1]

∫
[0,1]

∫
[0,1]

(sen(2x1) + sen(αx2) cos(x1) + ex3 cos(x1))dx1dx2dx3

= α

∫
[0,1]

∫
[0,1]

(
−cos(x1)

2
+ sen(αx2)sen(x1) + ex3sen(x1)

)∣∣∣∣1
0

dx2dx3

=α

∫
[0,1]

∫
[0,1]

(
−cos(1)

2
+

1

2
+ sen(αx2)sen(1) + ex3sen(1)

)
dx2dx3

= α

∫
[0,1]

((
−cos(1)

2
+

1

2

)
x2 − cos(αx2)sen(1) + ex3sen(1)x2

)∣∣∣∣1
0

dx3
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=α

∫
[0,1]

(
−cos(1)

2
+

1

2
− cos(α)sen(1) + sen(1) + ex3sen(1)

)
dx3

= α

((
−cos(1)

2
+

1

2
− cos(α)sen(1) + sen(1)

)
x3 + ex3sen(1)

)∣∣∣∣1
0

=α

(
−cos(1)

2
+

1

2
− cos(α)sen(1) + sen(1) + e1sen(1)− sen(1)

)
=α

(
−cos(1)

2
+

1

2
− cos(α)sen(1) + esen(1)

)
.

4.5. Integración sobre cadenas

Definición 4.8. Sea f =
∑l

i=1 aifci una k-cadena. La integral de una k-forma ω

sobre f se define por,

∫
f

ω =
l∑

i=1

ai

∫
ci

ω.

Ejemplo 4.12. Sean la 2-cadena f y la 2-forma ω en [0, 1]2 dadas como sigue,

ω =(x1 − x2)dx1 ∧ dx2,

f =5fc1 + fc2 − 9fc3 ,

donde, g(x1, x2) = x1 − x2 y

c1(x1, x2) =(x1 + x2, x2 − x1),

c2(x1, x2) =(x1x2, x2 − 2),

c3(x1, x2) =(x2, x1).

Aśı, ∫
f

ω =5

∫
c1

ω +

∫
c2

ω − 9

∫
c3

ω

=5

∫
[0,1]2

c∗1ω +

∫
[0,1]2

c∗2ω − 9

∫
[0,1]2

c∗3ω

=5

∫
[0,1]2

(g ◦ c1)det(c′1)dx1 ∧ dx2 +
∫
[0,1]2

(g ◦ c2)det(c′2)dx1 ∧ dx2

− 9

∫
[0,1]2

(g ◦ c3)det(c′3)dx1 ∧ dx2,
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tenemos que,

det(c′1) =

∣∣∣∣∣∣ 1 1

−1 1

∣∣∣∣∣∣ = 2, det(c′2) =

∣∣∣∣∣∣x2 x1

0 1

∣∣∣∣∣∣ = x2, det(c
′
3) =

∣∣∣∣∣∣0 1

1 0

∣∣∣∣∣∣ = −1,

luego, ∫
f

ω =10

∫
[0,1]2

(g ◦ c1)dx1 ∧ dx2 +
∫
[0,1]2

(g ◦ c2)x2dx1 ∧ dx2

+ 9

∫
[0,1]2

(g ◦ c3)dx1 ∧ dx2

=10

∫
[0,1]2

2x1dx1dx2 +

∫
[0,1]2

(x1x2 − x2 + 2)x2dx1dx2

+ 9

∫
[0,1]2

(x2 − x1)dx1dx2

=20

∫
[0,1]

∫
[0,1]

x1dx1dx2 +

∫
[0,1]

∫
[0,1]

(x1x
2
2 − x22 + 2x2)dx1dx2

+ 9

∫
[0,1]

∫
[0,1]

(x2 − x1)dx1dx2

=20

∫
[0,1]

[
x21
2

]∣∣∣∣1
0

dx2 +

∫
[0,1]

(
x22
x21
2

− (x22 + 2x2)x1

)∣∣∣∣1
0

dx2

+ 9

∫
[0,1]

(
x2x1 −

x1
2

)∣∣∣∣1
0

dx2

=20

∫
[0,1]

1

2
dx2 +

∫
[0,1]

(
x22
2

− x22 + 2x2

)
dx2

+ 9

∫
[0,1]

(
x2 −

1

2

)
dx2

= 10x2|10 +
(
−x

3
2

6
+ 2

x22
2

)∣∣∣∣1
0

+ 9

(
x22
2

− 1

2
x2

)∣∣∣∣1
0

=10− 1

6
+ 1 + 9

(
1

2
− 1

2

)
=
65

6
.

Definición 4.9. La integral de una 1-forma en R2 sobre un 1-cubo singular en

R2 de es llamada integral de ĺınea.

Sean c : [0, 1] → R2 un 1-cubo singular dado como sigue, c(t) = (c1(t), c2(t)),

para todo t ∈ [0, 1], y Pdx1 + Qdx2 una 1-forma de R2, donde P,Q : R2 → R,
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entonces, por 2) y 3) del Teorema 3.2,∫
c

[Pdx1 +Qdx2] =

∫ 1

0

c∗[Pdx1 +Qdx2]

=

∫ 1

0

[c∗(Pdx1) + c∗(Qdx2)]

=

∫ 1

0

[(P ◦ c)c∗(dx1) + (Q ◦ c)c∗(dx2)],

notemos que c solo depende de la variable t, aśı, por Teorema 3.2, 1) se cumple

la siguiente igualdad,

c∗(dx1) =
1∑

l=1

∂c1
∂xl

dxl =
dc1
dt
dt,

análogamente,

c∗(dx2) =
dc2
dt
dt,

con esto, ∫
c

[Pdx1 +Qdx2] =

∫ 1

0

[
(P ◦ c)dc1

dt
dt+ (Q ◦ c)dc2

dt
dt

]
=

∫ 1

0

[
(P ◦ c)dc1

dt
+ (Q ◦ c)dc2

dt

]
dt

=

∫ 1

0

[
P (c(t))

dc1(t)

dt
+Q(c(t))

dc2(t)

dt

]
dt

=

∫ 1

0

(P (c(t)), Q(c(t))) ·
(
dc1(t)

dt
,
dc2(t)

dt

)
dt,

considerando al campo vectorial F = (P,Q), se sigue que:∫ 1

0

(P (c(t)), Q(c(t))) ·
(
dc1(t)

dt
,
dc2(t)

dt

)
dt =

∫ 1

0

F (c(t)) · dc
dt
dt.

Con esto, ∫
c

[Pdx1 +Qdx2] =

∫ 1

0

F (c(t)) · dc
dt
dt.

Análogamente a la Definición 4.9, podemos dar la relación entre la integral de
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superficie e integrales sobre formas.

Definición 4.10. A la integral de una 2-forma sobre un 2-cubo en R3 singular es

llamada integral de superficies.

Sean la 2-forma ω = Pdx1 ∧ dx2 +Qdx1 ∧ dx3 +Rdx2 ∧ dx3 de R3 y el 2-cubo

singular c : [0, 1]2 → R3 dado como sigue,

c(u, v) = (c1(u, v), c2(u, v), c3(u, v)),

luego,∫
c

ω =

∫
c

[
Pdx1 ∧ dx2 +Qdx1 ∧ dx3 +Rdx2 ∧ dx3

]
=

∫
[0,1]2

c∗
[
Pdx1 ∧ dx2 +Qdx1 ∧ dx3 +Rdx2 ∧ dx3

]
=

∫
[0,1]2

[
c∗(Pdx1 ∧ dx2) + c∗(Qdx1 ∧ dx3) + c∗(Rdx2 ∧ dx3)

]
=

∫
[0,1]2

[
(P ◦ c)c∗(dx1 ∧ dx2) + (Q ◦ c)c∗(dx1 ∧ dx3) + (R ◦ c)c∗(dx2 ∧ dx3)

]
=

∫
[0,1]2

[
(P ◦ c)c∗(dx1) ∧ c∗(dx2) + (Q ◦ c)c∗(dx1) ∧ c∗(dx3)

+ (R ◦ c)c∗(dx2) ∧ c∗(dx3)
]

=

∫
[0,1]2

[
(P ◦ c)

(
∂c1
∂u
du+ ∂c1

∂v
dv

)
∧
(

∂c2
∂u
du+ ∂c2

∂v
dv

)
+ (Q ◦ c)

(
∂c1
∂u
du+ ∂c1

∂v
dv

)
∧
(

∂c3
∂u
du+ ∂c3

∂v
dv

)
+ (R ◦ c)

(
∂c2
∂u
du+ ∂c2

∂v
dv

)
∧
(

∂c3
∂u
du+ ∂c3

∂v
dv

)]
=

∫
[0,1]2

[
(P ◦ c)

(
∂c1
∂u

∂c2
∂u
du ∧ du+ ∂c1

∂u
∂c2
∂v
du ∧ dv + ∂c1

∂v
∂c2
∂u
dv ∧ du

+ ∂c1
∂v

∂c2
∂v
dv ∧ dv

)
+ (Q ◦ c)

(
∂c1
∂u

∂c3
∂u
du ∧ du+ ∂c1

∂u
∂c3
∂v
du ∧ dv + ∂c1

∂v
∂c3
∂u
dv ∧ du+ ∂c1

∂v
∂c3
∂v
dv ∧ dv

)
+ (R ◦ c)

(
∂c2
∂u

∂c3
∂u
du ∧ du+ ∂c2

∂u
∂c3
∂v
du ∧ dv + ∂c2

∂v
∂c3
∂u
dv ∧ du+ ∂c2

∂v
∂c3
∂v
dv ∧ dv

)]
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=

∫
[0,1]2

[
(P ◦ c)

(
∂c1
∂u

∂c2
∂v
du ∧ dv − ∂c1

∂v
∂c2
∂u
du ∧ dv

)
+ (Q ◦ c)

(
∂c1
∂u

∂c3
∂v
du ∧ dv − ∂c1

∂v
∂c3
∂u
du ∧ dv

)
+ (R ◦ c)

(
∂c2
∂u

∂c3
∂v
du ∧ dv − ∂c2

∂v
∂c3
∂u
du ∧ dv

)]
=

∫
[0,1]2

[
(P ◦ c)

(
∂c1
∂u

∂c2
∂v

− ∂c1
∂v

∂c2
∂u

)
du ∧ dv + (Q ◦ c)

(
∂c1
∂u

∂c3
∂v

− ∂c1
∂v

∂c3
∂u

)
du ∧ dv

+ (R ◦ c)
(

∂c2
∂u

∂c3
∂v

− ∂c2
∂v

∂c3
∂u

)
du ∧ dv

]
=

∫
[0,1]2

[
(R ◦ c)

(
∂c2
∂u

∂c3
∂v

− ∂c2
∂v

∂c3
∂u

)
− (Q ◦ c)

(
−∂c1

∂u
∂c3
∂v

+ ∂c1
∂v

∂c3
∂u

)
+ (P ◦ c)

(
∂c1
∂u

∂c2
∂v

− ∂c1
∂v

∂c2
∂u

)]
du ∧ dv

=

∫
[0,1]2

(R ◦ c,−Q ◦ c, P ◦ c) ·
(

∂c2
∂u

∂c3
∂v

− ∂c2
∂v

∂c3
∂u
, ∂c1

∂v
∂c3
∂u

− ∂c1
∂u

∂c3
∂v
,

∂c1
∂u

∂c2
∂v

− ∂c1
∂v

∂c2
∂u

)
du ∧ dv

=

∫
[0,1]2

(R(c(u, v)),−Q(c(u, v)), P (c(u, v))) ·
(

∂c2
∂u

∂c3
∂v

− ∂c2
∂v

∂c3
∂u
, ∂c1

∂v
∂c3
∂u

− ∂c1
∂u

∂c3
∂v
,

∂c1
∂u

∂c2
∂v

− ∂c1
∂v

∂c2
∂u

)
dudv,

sea el campo vectorial F = (R,−Q,P ), luego,

F (c(u, v)) = (R(c(u, v)),−Q(c(u, v)), P (c(u, v))),

por otro lado, dado que la imagen de c es una superficie, podemos encontrar al

vector normal de dicha superficie como sigue,

∂c

∂u
× ∂σ

∂v
=(∂c1

∂u
, ∂c2
∂u
, ∂c3
∂u

)× (∂c1
∂v
, ∂c2

∂v
, ∂c3

∂v
)

=

∣∣∣∣∣∣∣∣∣
î ĵ k̂

∂c1
∂u

∂c2
∂u

∂c3
∂u

∂c1
∂v

∂c2
∂v

∂c3
∂v

∣∣∣∣∣∣∣∣∣
=î

∣∣∣∣∣∣
∂c2
∂u

∂c3
∂u

∂c2
∂v

∂c3
∂v

∣∣∣∣∣∣− ĵ

∣∣∣∣∣∣
∂c1
∂u

∂c3
∂u

∂c1
∂v

∂c3
∂v

∣∣∣∣∣∣+ k̂

∣∣∣∣∣∣
∂c1
∂u

∂c2
∂u

∂c1
∂v

∂c2
∂v

∣∣∣∣∣∣
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=î(∂c2
∂u

∂c3
∂v

− ∂c2
∂v

∂c3
∂u

)− ĵ(∂c1
∂u

∂c3
∂v

− ∂c1
∂v

∂c3
∂u

) + k̂(∂c1
∂u

∂c2
∂v

− ∂c1
∂v

∂c2
∂u

)

=(∂c2
∂u

∂c3
∂v

− ∂c2
∂v

∂c3
∂u
, ∂c1

∂v
∂c3
∂u

− ∂c1
∂u

∂c3
∂v
, ∂c1
∂u

∂c2
∂v

− ∂c1
∂v

∂c2
∂u

),

aśı, ∫
c

ω =

∫
[0,1]2

F (c(u, v)) · −→n ,

lo cual coincide con la Definición 1.22.

4.6. Teorema de Stokes

Teorema 4.2. (Teorema de Stokes) Si ω es una (k − 1)-forma en un conjunto

abierto A ⊂ Rk y f es una k-cadena en A, entonces:∫
f

dω =

∫
∂f

ω.

Demostración: Sean c = Ik y ω una (k−1)-forma en Rk, podemos ver a ω como

sigue,

ω =
∑

i1<i2<···<ik−1

ωi1,...,ik−1
dxi1 ∧ · · · ∧ dxik−1

=

k−(k−1−1)∑
i1=1

k−(k−1−2)∑
i2>i1

· · ·
k∑

ik−1>ik−2

ωi1,...,ik−1
dxi1 ∧ · · · ∧ dxik−1

=
2∑

i1=1

3∑
i2>i1

· · ·
k∑

ik−1>ik−2

ωi1,...,ik−1
dxi1 ∧ · · · ∧ dxik−1

,

apoyándonos del Ejemplo 3.3, podemos decir que ω es el resultado de sumar

(k − 1)-formas del siguiente tipo:

ω1,...,k−1dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxk,

recordemos que el śımbolo ̂ sobre dxi significa que este último será omitido, para

todo i ∈ {1, ..., k−1}, aśı, es suficiente demostrar el Teorema para cada uno de los

elementos de la suma. Primero encontraremos la integral de un sumando arbitrario

sobre Ik(j,α), con j ∈ {1, ..., k− 1} y α ∈ {0, 1}, para fines prácticos denotaremos a
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ωi1,...,ik−1
como g, con esto,∫

Ik
(j,α)

gdx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxk =
∫
[0,1]k−1

(Ik(j,α))
∗(gdx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxk),

luego, por 3) del Teorema 3.2, se cumple que,∫
[0,1]k−1

(Ik(j,α))
∗(gdx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxk)

=

∫
[0,1]k−1

(g ◦ Ik(j,α))(Ik(j,α))∗(dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxk),

por último, aplicando 4) del Teorema 3.2, se tiene la siguiente igualdad:∫
[0,1]k−1

(g ◦ Ik(j,α))(Ik(j,α))∗(dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxk)

=

∫
[0,1]k−1

(g ◦ Ik(j,α))(Ik(j,α))∗(dx1) ∧ · · · ∧ ̂(Ik(j,α))
∗(dxi) ∧ · · · ∧ (Ik(j,α))

∗(dxk),

para poder trabajar con la integral anterior, encontraremos una igualdad para

(Ik(j,α))
∗(dxm), donde m ∈ {1, ..., k}\{i}, para esto recordaremos que la función

Ik(j,α) está definida de la siguiente manera, dado (x1, ..., xk−1) ∈ [0, 1]k−1,

(Ik(j,α))(x1, ..., xk−1) = (x1, ..., xj−1, α, xj, ..., xk−1).

Si j ̸= i, tenemos que,

(Ik(j,α))
∗(dxj) =

k−1∑
l=1

Dl((I
k
(j,α))j)dxl =

k−1∑
l=1

Dl(α)dxl =
k−1∑
l=i

0 · dxl = O,

recordemos que O denota a la forma diferencial nula, con la igualdad anterior

se sigue que,∫
[0,1]k−1

(g◦Ik(j,α))(Ik(j,α))∗(dx1) ∧ · · · ∧ (Ik(j,α))
∗(dxj) ∧ · · · ∧ ̂(Ik(j,α))

∗(dxi)

∧ · · · ∧ (Ik(j,α))
∗(dxk)

=

∫
[0,1]k−1

(g ◦ Ik(j,α))(Ik(j,α))∗(dx1) ∧ · · · ∧O ∧ · · · ∧ ̂(Ik(j,α))
∗(dxi)

∧ · · · ∧ (Ik(j,α))
∗(dxk)
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=

∫
[0,1]k−1

(g ◦ Ik(j,α))O

=

∫
[0,1]k−1

O

=0.

Si i = j, entonces para todo m ∈ {1, ..., k − 1}\{i}:

(Ik(j,α))
∗(dxm) =

k−1∑
l=i

Dl(I
k
(j,α))mdxl

=0 · dx1 + · · ·+ 1 · dxm + · · · 0 ·+dxk−1

=dxm.

Aśı:∫
[0,1]k−1

(g ◦ Ik(j,α))(Ik(j,α))∗(dx1) ∧ · · · ∧ ̂(Ik(j,α))
∗(dxi) ∧ · · · ∧ (Ik(j,α))

∗(dxk)

=

∫
[0,1]k−1

(g ◦ Ik(j,α))dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxk

=

∫
[0,1]k−1

(g ◦ Ik(j,α))(x1, ..., xk−1)dx1 · · · d̂xi · · · dxk

=

∫
[0,1]k−1

(g(Ik(j,α)(x1, ..., xk−1)dx1 · · · d̂xi · · · dxk

=

∫
[0,1]k−1

g(x1, ..., α, ..., xk−1)dx1 · · · d̂xi · · · dxk.

Por lo tanto,∫
∂Ik

gdx1 ∧ · · · ∧d̂xi ∧ · · · ∧ dxk

=
k∑

k=1

1∑
α=0

(−1)j+α

∫
Ik
(j,α)

gdx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxk

=
k∑

k=1

1∑
α=0

(−1)j+α

∫
[0,1]k−1

(Ik(j,α))
∗(gdx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxk)

=
1∑

α=0

(−1)i+α

∫
[0,1]k−1

g(x1, ..., α, ..., xk−1)dx1 · · · d̂xi · · · dxk
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=(−1)i+1

∫
[0,1]k−1

g(x1, ..., 1, ..., xk−1)dx1 · · · d̂xi · · · dxk

+(−1)i
∫
[0,1]k−1

g(x1, ..., 0, ..., xk−1)dx1 · · · d̂xi · · · dxk.
(4.5)

Debido a que g(x1, ..., 1, ..., xk−1) y g(x1, ..., 0, ..., xk−1) son funciones constantes

respecto a la variable xi se cumple lo siguiente:∫ 1

0

g(x1, ..., 1, ..., xk−1)dxi = g(x1, ..., 1, ..., xk−1)(xi)|10

=g(x1, ..., 1, ..., xk−1)[1− 0]

=g(x1, ..., 1, ..., xk−1),∫ 1

0

g(x1, ..., 0, ..., xk−1)dxi =g(x1, ..., 0, ..., xk−1).

(4.6)

Este razonamiento se usará de nuevo más adelante. Sustituyendo (4.6) en (4.5) y

aplicando el Teorema 1.16,∫
∂Ik

gdx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxk

=(−1)i+1

∫
[0,1]k−1

∫ 1

0

g(x1, ..., 1, ..., xk−1)dxidx1 · · · d̂xi · · · dxk

+(−1)i
∫
[0,1]k−1

∫ 1

0

g(x1, ..., 0, ..., xk−1)dxidx1 · · · d̂xi · · · dxk

=(−1)i+1

∫
[0,1]k

g(x1, ..., 1, ..., xk−1)dx1 · · · dxk

+(−1)i
∫
[0,1]k

g(x1, ..., 0, ..., xk−1)dx1 · · · dxk.

(4.7)

Por otro lado,∫
Ik
dgdx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxk =

∫
[0,1]k

(Ik)∗d(gdx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxk)

=

∫
[0,1]k

dgdx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxk

=

∫
[0,1]k

k−1∑
j=1

Djgdxj ∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxk
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=

∫
[0,1]k

Digdxi ∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxk

=(−1)i−1

∫
[0,1]k

Digdx1 ∧ · · · ∧ dxi ∧ · · · ∧ dxk

=(−1)i−1

∫
[0,1]k

Dig(x1, ..., xk)dx1 · · · dxk.

(4.8)

Por el Teorema 1.16 se cumple que,

(−1)i−1

∫
[0,1]k

Dig(x1, ...,xk)dx1 · · · dxk

=(−1)i−1

∫ 1

0

· · ·
(∫ 1

0

Dig(x1, ..., xk)dxi

)
x1 · · · d̂xi · · · dxk,

(4.9)

luego, por el Teorema 1.17 se tiene la siguiente igualdad,

(−1)i−1

∫ 1

0

· · ·
(∫ 1

0

Dig(x1, ..., xk)dxi

)
x1 · · · d̂xi · · · dxk

=(−1)i−1

∫ 1

0

· · ·
∫ 1

0

[g(x1, ..., 1, ..., xk)

− g(x1, ..., 0, ..., xk)]x1 · · · d̂xi · · · dxk

=(−1)i−1

∫ 1

0

· · ·
∫ 1

0

g(x1, ..., 1, ..., xk)x1 · · · d̂xi · · · dxk

− (−1)i−1

∫ 1

0

· · ·
∫ 1

0

g(x1, ..., 0, ..., xk)x1 · · · d̂xi · · · dxk

=(−1)i−1

∫
[0,1]k−1

g(x1, ..., 1, ..., xk)x1 · · · d̂xi · · · dxk

+ (−1)i
∫
[0,1]k−1

g(x1, ..., 0, ..., xk)x1 · · · d̂xi · · · dxk

=(−1)i−1

∫
[0,1]k

g(x1, ..., 1, ..., xk)x1 · · · dxk

+ (−1)i
∫
[0,1]k

g(x1, ..., 0, ..., xk)x1 · · · dxk.

(4.10)

Notemos que (−1)i−1 = (−1)i+1, aśı, por (4.7), (4.8), (4.9) y (4.10) se tiene que:∫
∂Ik

gdx1 ∧ · · · ∧ dxk =
∫
Ik
dgdx1 ∧ · · · ∧ dxk,
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luego, considerando a la (k − 1)-forma dada al inicio de la demostración, se tiene

que: ∫
∂Ik

ω =

∫
∂Ik

∑
i1<i2<···<ik−1

ωi1,...,ik−1
dxi1 ∧ · · · ∧ dxik−1

=
∑

i1<i2<···<ik−1

∫
∂Ik

ωi1,...,ik−1
dxi1 ∧ · · · ∧ dxik−1

=
∑

i1<i2<···<ik−1

∫
Ik
dωi1,...,ik−1

dxi1 ∧ · · · ∧ dxik−1

=

∫
Ik

∑
i1<i2<···<ik−1

dωi1,...,ik−1
dxi1 ∧ · · · ∧ dxik−1

=

∫
Ik
dω.

(4.11)

La igualdad anterior se cumple cuando tomamos c = Ik, consideramos a c como

un k-cubo singular arbitrario.

Tenemos que: ∫
c

dω =

∫
[0,1]k

c∗(dω)

=

∫
[0,1]k

(Ik)∗(c∗(dω))

=

∫
Ik
c∗(dω).

Por otro lado, usando Teorema 3.2, 5)

∫
∂c

ω =
k∑

i=1

1∑
α=0

(−1)i+α

∫
c(i,α)

ω

=
k∑

i=1

1∑
α=0

(−1)i+α

∫
[0,1]k−1

c∗(i,α)ω

=
k∑

i=1

1∑
α=0

(−1)i+α

∫
[0,1]k−1

(c ◦ Ik(i,α))∗ω

=
k∑

i=1

1∑
α=0

(−1)i+α

∫
[0,1]k−1

(Ik(i,α))
∗(c∗ω)
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=
k∑

i=1

1∑
α=0

(−1)i+α

∫
Ik
(i,α)

c∗ω

=

∫
∂Ik

c∗ω,

(4.12)

luego, por Teorema 3.4, 4), (4.11) y (4.12) se cumple lo siguiente,∫
Ik
c∗(dω) =

∫
Ik
d(c∗ω)

=

∫
∂Ik

c∗ω

=

∫
∂c

ω.

Por último, si tomamos una k-cadena arbitraria f =
∑l

i=1 aifci y una (k−1)-forma

ω, se concluye que,

∫
f

dω =
l∑

i=1

ai

∫
ci

dω

=
l∑

i=1

ai

∫
∂ci

ω

=

∫
∂f

ω.

Por lo tanto, se da por demostrado el teorema.



Caṕıtulo 5

Variedades en Rn

En este caṕıtulo se introducirá el concepto de variedades. La importancia de

este concepto, junto con sus relacionados, radica en las aplicaciones que se mos-

trarán en el último caṕıtulo de esta tesis.

5.1. Variedades

Definición 5.1. Sean U, V conjuntos abiertos de Rn y h : U → V . Diremos que h

es un difeomorfismo si es diferenciable y tiene inversa diferenciable h−1 : V → U .

Definición 5.2. Sean n, k ∈ N y M ⊂ Rn. El subconjunto M es llamado varie-

dad de dimensión k si para cada punto x ∈M se cumple que:

(M) Existen un conjunto abierto U que contiene a x, un conjunto abierto V ⊂ Rn

y un difeomorfismo h : U → V tal que

h(U ∩M) =V ∩ (Rk × {0}n−k)

={y ∈ V : yk+1 = · · · = yn = 0}.

donde {0}n−k denota al conjunto cuyo único elemento es el vector nulo de Rn−k. Si

k = n, se denotará a Rn×{0}0 como Rn. Cuando n = 0, se tendrá que R0 = {0}0.

Ejemplo 5.1. M = {x0} ⊂ Rn es una variedad de dimensión 0 de Rn.

Debido a que x0 ∈ Rn, existe algún abierto U tal que x ∈ U ⊂ Rn. Sea h : U → Rn

dada como sigue,

h(x) = x− x0.

131
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Primero se demostrará que h es continuamente diferenciable en x0 y posterior-

mente se demostrará que es un difeomorfismo.

Tenemos que,

Djhi(x) =

 1, si i = j,

0, si otro caso,

luego, Djhi(x) existe para toda x ∈ U , además, dado que Djhi(x) es constante,

para todo i, j ∈ {1, ..., n}, se sigue que es continua en x0, por Teorema 1.11,

podemos asegurar que h es continuamente diferenciable en x0. Por otro lado,

h(x) = x− x0 = (x1 − (x0)1, ..., xn − (x0)n),

luego,

h′(x0) =


1 0 · · · 0

0 1 · · · 0
...

...
...

...

0 0 · · · 1

 ,

lo que implica que det(h′(x0)) = 1 ̸= 0. Con lo anterior visto y por Teorema 1.12,

existen conjuntos abiertos V,W ⊂ Rn tales que x0 ∈ V , h(x0) ∈ W y h : V → W

tiene inversa continua y diferenciable h−1 : W → V , en otras palabras, h es un

difeomorfismo, aśı,

h(V ∩M) =h(V ∩ {x0})

=h({x0})

={h(x0)}

={0}n ⊂ W,

adicionalmente, {0}n = {0}0×{0}n = R0×{0}n, aśı, h(V ∩M) ⊂ W ∩(R0×{0}n).
Sea z ∈ W ∩ (R0 × {0}n), luego, h−1(z) ∈ V , debido a que h es sobreyectiva y

z = 0, se concluye que h−1(z) = x0, con esto, h−1(z) ∈ V ∩M , lo que implica que

z ∈ h(V ∩M), aśı, W ∩ (R0 × {0}n) ⊂ h(V ∩M). Con esto,

h(V ∩M) = W ∩ (R0 × {0}n).
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Con lo cual, M es una variedad de dimensión 0 en Rn.

Ejemplo 5.2. Todo conjunto abierto de Rn es una variedad de dimensión n en

Rn.

Sean un conjunto abierto A ⊂ Rn y x0 ∈ A, luego, existe algún r > 0 tal que

B(x0, r) ⊂ A. Definamos a h : B(x0, r) → B(0, 1) dada por,

h(x) =
x− x0
r

.

Se demostrará que h es invertible y que es un difeomorfismo. Sean y, z ∈ B(x0, r),

supongamos que h(z) = h(y), es decir,

z − x0
r

=
y − x0
r

,

lo que implica que z − x0 = y − x0, y por ende, z = y, con esto, h es inyectiva.

Sea ahora z ∈ B(0, 1), esto implica que ∥z∥ < 1, aśı,

∥x0 − (rz + x0)∥ =∥x0 − rz − x0∥

=∥ − rz∥

=r∥z∥

<r · 1

=r,

con esto, rz + x0 ∈ B(x0, r), por consiguiente,

h(rz + x0) =
rz + x0 − x0

r

=
rz

r

=z,

con esto se concluye que h es sobreyectiva. Aśı, h es biyectiva, por lo tanto, h es

invertible. Tenemos que, h(x) = (x1−(x0)1
r

, ..., xn−(x0)n
r

), luego

Djhi(x) =

 1
r
, si i = j,

0, si otro caso,

luego, Djhi(x) existe para toda x ∈ B(x0, r), además, dado que Djhi(x) es
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constante, para todo i, j ∈ {1, ..., n}, se sigue que es continua en x′, para to-

do x′ ∈ B(x0, r), por Teorema 1.11, podemos asegurar que h es continuamente

diferenciable, análogamente, h−1(y) = ry + x0 = (ry1 + (x0)1, ..., ryn + (x0)n),

luego,

Dj(h
−1)i(y) =

 r, si i = j,

0, si otro caso,

aśı, existe Dj(h
−1)i(y), para todo y ∈ B(0, 1), además, dado que para todo

i, j ∈ {1, ..., n} se tiene que Dj(h
−1)i(x) es constante, se sigue que es continua

en y′, para todo y′ ∈ B(0, 1), por Teorema 1.11, podemos asegurar que h−1 es

continuamente diferenciable, y por ende, h y h−1 son diferenciables y por ende h

es un difeomorfismo, además,

h(B(x0, r) ∩ A) =h(B(x0, r))

=B(0, 1)

=B(0, 1) ∩ Rn

=B(0, 1) ∩ (Rn × {0}0).

Se concluye que A es una variedad de dimensión n de Rn.

Ejemplo 5.3. M = {(x, x) : x ∈ R} es una variedad de dimensión 1 de R2.

Sea (x, x) ∈ M , luego, existe algún abierto U tal que (x, x) ∈ U ⊂ R2. Sea

h : U → R2 dada como sigue,

h(x, y) = (x, y − x).

Primero se demostrará que h es continuamente diferenciable en (x, x) y posterior-

mente se demostrará que es un difeomorfismo.

Tenemos que,

Djhi(x, y) =


1, si i = j,

−1, si i = 2 y j = 1,

0, si otro caso,

luego, Djhi(x) existe para toda x ∈ U , además, dado que Djhi es constante, para



5.1. VARIEDADES 135

todo i, j ∈ {1, 2}, se sigue que es continua en (x′, y′), para todo (x′, y′) ∈ U , por

Teorema 1.11, podemos asegurar que h es continuamente diferenciable en (x, x).

Por otro lado,

h′(x, x) =

 1 0

−1 1


aśı, det(h′(x, x)) = 1 ̸= 0. Con lo anterior y por Teorema 1.12, existen conjuntos

abiertos V,W ⊂ R2 tales que (x, x) ∈ V , h(x, x) = (x, 0) ∈ W y h : V → W

tiene inversa continua y diferenciable h−1 : W → V , en otras palabras, h es un

difeomorfismo, aśı,

h(V ∩M) =h({(z, z) : z ∈ R ∧ (z, z) ∈ V })

={h(z, z) : z ∈ R ∧ (z, z) ∈ V }

={(z, 0) : (z, 0) ∈ W ∧ z ∈ R}

⊂W ∩ (R× {0}1).

Sea (z, 0) ∈ W ∩ (R× {0}1), luego, h−1(z, 0) ∈ V , debido a que h es sobreyectiva

y z− z = 0, se concluye que h−1(z, 0) = (z, z), con esto, h−1(z, 0) ∈ V ∩M , luego,

(z, 0) ∈ h(V ∩M), aśı,

W ∩ (R× {0}1) ⊂ h(V ∩M).

Con esto,

h(V ∩M) = W ∩ (R× {0}1).

Con lo cual, M es una variedad de dimensión 1 en R2.

Teorema 5.1. Sea A ⊂ Rn un conjunto abierto y sea g : A → Rp una función

diferenciable tal que g′(x) tiene rango p siempre que g(x) = (0, ..., 0), con n, p ∈ N
y p ≤ n, entonces, g−1(0) es una variedad de dimensión (n− p) en Rn.

Demostración: Sean A ⊂ Rn un conjunto abierto y g : A → Rp una función

diferenciable. Sea x ∈ g−1(0), por hipótesis se cumple que g′(x) tiene rango p, aśı,

por el Teorema 1.13, existen conjuntos abiertos U,W ⊂ Rn que contiene a x y

una función diferenciable h : W → U con inversa f diferenciable (es decir, f es
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un difeomorfismo) tal que

(g ◦ h)(y) =(g ◦ h)(y1, ..., yn)

=(yn−p+1, ..., yn),

para todo y ∈ W . Sea z ∈ U ∩ g−1(0), luego, g(z) = 0 y f(z) ∈ W, aśı,

0 = g(z) = g(h(f(z))) = (g ◦ h)(f(z)) =(f(z)n−p+1, ..., f(z)n),

por ende, f(z)i = 0, para todo i ∈ {n− p+ 1, ..., n}. Con esto,

f(z) ∈ W ∩ (Rn−p × {0}p),

lo cual implica la siguiente contención,

f(U ∩ g−1(0)) ⊂ W ∩ (Rn−p × {0}p).

Sea ahora z ∈ W ∩ (Rn−p × {0}p), luego,

h(z) = f−1(z) ∈ U,

por otro lado,

g(f−1(z)) = g(h(z)) = (g ◦ h)(z) =(zn−p+1, ..., zn) = 0,

aśı, f−1(z) ∈ g−1(0), con esto, f−1(z) ∈ U ∩ g−1(0) lo que significa que z es un

elemento de f(U ∩ g−1(0)), aśı, W ∩ (Rn−p × {0}p) ⊂ f(U ∩ g−1(0)), con lo que

implica la siguiente igualdad: f(U ∩ g−1(0)) = W ∩ (Rn−p × {0}p). Con esto, se

concluye que g−1(0) es una variedad de dimensión n− p en Rn.

5.2. Sistema coordenado

Teorema 5.2. Sean n, k ∈ N, con k ≤ n. Un subconjunto M de Rn es una

variedad de dimensión k si y solo si para cada x ∈ M las siguientes condiciones

coordenadas se cumplen:

(C) Existe un conjunto abierto U que contiene a x, un conjunto abierto W ⊂ Rk,

y una función inyectiva y diferenciable f : W → Rn tales que,
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1) f(W ) =M ∩ U .

2) f ′(y) tiene rango k para cada y ∈ W .

3) f−1 : f(W ) → W es continua.

f es llamada sistema coordenado alrededor de x.

Demostración:

Supongamos queM ⊂ Rn es una variedad de dimensión k, luego, para cada x ∈M

existen un conjunto abierto U que contiene a x, un conjunto abierto V ⊂ Rn y un

difeomorfismo h : U → V tal que

h(U ∩M) =V ∩ (Rk × {0}n−k)

={y ∈ V : yk+1 = · · · = yn = 0}.

Sea W = {a ∈ Rk : (a, 0) ∈ h(M)}, notemos que 0 denota al vector nulo de

Rn−k, y definamos f : W → Rn como sigue, f(a) = h−1(a, 0). En este caso 0

denota al vector nulo de Rn−k. Notemos que f−1 = h, dado que h es una función

diferenciable, entonces es continua y por lo tanto, también f−1 lo es, con esto, se

cumple 3). Por otro lado,

f(W ) ={f(a) : a ∈ Rk ∧ (a, 0) ∈ h(M)}

={h−1(a, 0) : (a, 0) ∈ h(M) ⊂ V }

=M ∩ U.

Se cumple 1). Sea H : U → Rk definida como sigue,

H(z) = (h1(z), ..., hk(z)),

dado y ∈ W se cumple que

H(f(y)) =(h1(f(y)), ..., hk(f(y)))

=(h1(h
−1(y, 0)), ..., hk(h

−1(y, 0))

=(y1, ..., yk)

=y,

con esto, (H(f(y)))′ = (y)′, luego, H ′(f(y)) · f ′(y) = I, dado que f ′(y) es una
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matriz invertible, por Teorema 1.5, se concluye que tiene rango k, con esto se

cumple 2) y por ende se cumple (C).

Rećıprocamente, supongamos que para todo x ∈ M ⊂ Rn se cumple (C). Sea

x ∈ M , aśı, existe un conjunto abierto U que contiene a x, un conjunto abierto

W ⊂ Rk, y una función inyectiva y diferenciable f : W → Rn tales que,

1) f(W ) =M ∩ U .

2) f ′(y) tiene rango k, para cada y ∈ W .

3) f−1 : f(W ) → W es continua.

debido a que x ∈ U y x ∈ M , se cumple que x ∈ M ∩ U = f(W ) por 1) de las

hipótesis, aśı, existe algún y ∈ W tal que x = f(y). Supongamos que la matriz

(Djfi(y)), con i, j ∈ {1, ..., k} tiene determinante diferente de cero y definamos

a la función g : W × Rn−k → Rn como sigue, g(a, b) = f(a) + T (b), donde

T (b) = (0, b), a continuación se demostrará que T es diferenciable, tenemos que

para cada(a′, b′) ∈ W × Rn−k,

DjTi(a
′, b′) =

 1, si i = j y i, j > k,

0, otro caso,

luego, DjTi(x) existe para toda (a′, b′) ∈ W × Rn−k, además, dado que DjTi

es constante, para todo i, j ∈ {1, ..., n}, se sigue que es continua en (a′, b′), por

Teorema 1.11, podemos asegurar que f es continuamente diferenciable y por

ende es diferenciable, luego, g también es diferenciable, además,

g′(a, b) = (Djfi(a)) + (0, ..., 0, b1, ..., bn−k)
′,

luego,

det(g′(a, b)) =det(Djfi(a)) + det(0, ..., 0, b1, ..., bn−k)
′

=det(Djfi(a)) + 0

=det(Djfi(a))

̸=0,

por Teorema 1.12, existe un conjunto abierto V ′
1 ∈ Rn que contiene a (y, 0) y
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un conjunto abierto V ′
2 ∈ Rn que contiene a

g(y, 0) =f(y) + (0, 0) = f(y) = x,

tal que g : V ′
1 → V ′

2 tiene inversa diferenciable g−1 : V ′
2 → V ′

1 , con lo cual podemos

decir que g y g−1 son difeomorfismos.

Sea a′ ∈ {a : (a, 0) ∈ V ′
1} ⊂ Rk, luego (a′, 0) ∈ V ′

1 dado que V ′
1 es abierto existe

un rectángulo abierto R tal que a′ ∈ R ⊂ V ′
1 , notemos que a R lo podemos

ver como el producto cartesiano de un rectángulo R1 ⊂ Rk con un rectángulo

R2 ⊂ Rn−k, luego, por Teorema 1.6, R1 es abierto, además, a′ ∈ R1, por otro

lado, dado r ∈ R1 se sigue que (r, 0) ∈ V ′
1 , aśı, r ∈ {a : (a, 0) ∈ V ′

1} y por ende

R1 ⊂ {a : (a, 0) ∈ V ′
1}, es decir, {a : (a, 0) ∈ V ′

1} es un conjunto abierto, con esto,

y debido a que f−1 : f(W ) → W ⊂ Rk es continua, por Teorema 1.7, se cumple

que:

(f−1)−1({a : (a, 0) ∈ V ′
1}) ={f(a) : (a, 0) ∈ V ′

1}

=V ∩ f(W ),
(5.1)

para algún conjunto abierto V ⊂ Rn.

Como (y, 0) ∈ V ′
1 se sigue que x = f(y) ∈ {f(a) : (a, 0) ∈ V ′

1} y por ende x ∈ V .

Sean V2 = V ′
2∩V ∩U y V1 = g−1(V2), debido a que V

′
2 , V y U son conjuntos abiertos

que además contienen a x, V2 es un conjunto abierto que contiene a x. Además,

dado que V2 = V ′
2 ∩ V ∩ U , se sigue que V2 ⊂ V ′

2 , con esto, g−1(V2) ⊂ g−1(V ′
2), en

otras palabras, V1 ⊂ V ′
1 , con esto, y aplicando (5.1) y 1) se tiene que:

V2 ∩M =V ′
2 ∩ V ∩ U ∩M

=V ′
2 ∩ V ∩ U ∩ V ∩ U ∩M

=(V ′
2 ∩ V ∩ U) ∩ V ∩ (U ∩M)

=(V ′
2 ∩ V ∩ U) ∩ V ∩ f(W )

=(V ′
2 ∩ V ∩ U) ∩ {f(a) : (a, 0) ∈ V ′

1}

=(V ′
2 ∩ V ∩ U) ∩ {g(a, 0) : (a, 0) ∈ V ′

1}

={g(a, 0) ∈ V ′
2 ∩ V ∩ U : (a, 0) ∈ V ′

1}

={g(a, 0) : (a, 0) ∈ V ′
1 ∩ g−1(V ′

2 ∩ V ∩ U)}

={g(a, 0) : (a, 0) ∈ V ′
1 ∩ g−1(V2)}
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={g(a, 0) : (a, 0) ∈ V ′
1 ∩ V1}

={g(a, 0) : (a, 0) ∈ V1}

=g({(a, 0) ∈ V1}).

De donde, g−1(V2 ∩M) = {(a, 0) ∈ V1} = V1 ∩ (Rk × {0}n−k). Debido a que V1

y V2 son conjuntos abiertos y g−1 es un difeomorfismo, se concluye que M es una

variedad de dimensión k de Rn.

5.3. Variedades con frontera

Definición 5.3. El semiespacio Hk ⊂ Rk, con k ∈ N, se define como

{x ∈ Rk : xk ≥ 0}.

Definición 5.4. Sean n, k ∈ N con k ≤ n. Un subconjunto M de Rn es una

variedad con frontera de dimensión k si para todo x ∈ M se cumple la

condición (M) o si se cumple la siguiente condición:

(M ′) Existe un conjunto abierto U que contiene a x, un subconjunto abierto V

de Rn, y un difeomorfismo h : U → V tal que

h(U ∩M) =V ∩ (Hk × {0}n−k)

={y ∈ V : yk ≥ 0 ∧ yk+1 = · · · = yn = 0},

y la k-ésima componente de h(x) es igual a 0.

Ejemplo 5.4. M = Hk ×{0}n−k es una variedad con frontera de dimensión k en

Rn.

Sea x ∈M , luego, existe algún conjunto abierto U que contiene a x, y consideremos

a I : U → U como la función identidad, claramente I es un difeomorfismo, luego,

I(U ∩M) =U ∩M

={y ∈ U : yk ≥ 0 ∧ yk+1 = · · · = yn = 0},

si I(x)k = xk > 0, entonces se cumple la condición (M) para x, en caso contrario

se estaŕıa cumpliendo la condición (M ′), aśı, M es una variedad con frontera de

dimensión k en Rn.
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Ejemplo 5.5. Sean a, b ∈ R con 0 ≤ a < b. M = {(x, y) : x ∈ [a, b] y y ∈ R} es

una variedad con frontera de dimensión 2 en R2.

Sea (x0, y0) ∈ R2 y f : R2 → R2 dada por f(x, y) = (y, α(x − β)), con α, β ∈ R,
α ̸= 0. Dado que (x0, y0) ∈ R2, existe algún abierto U ⊂ R2 tal que (x0, y0) ∈ U ,

a continuación se demostrará que f es un difeomorfismo.

Tenemos que,

Djfi(x) =


0, si i = j,

α, si i = 2, j = 1,

1, otro caso,

luego, Djfi(x) existe para toda (x, y) ∈ U , además, dado que Djfi(x) es cons-

tante, para todo i, j ∈ {1, 2}, se sigue que es continua en (x0, y0), por Teorema

1.11, podemos asegurar que f es continuamente diferenciable en (x0, y0), aśı, f

es diferenciable. Sean (x1, y1), (x2, y2) ∈ R2 tales que f(x1, y1) = f(x2, y2), luego,

(y1, α(x1 − β)) = (y2, α(x2 − β)), lo que implica que y1 = y2 y x1 = x2, es decir,

f es una función inyectiva. Por otro lado, tomando (x3, y3) ∈ R2, se sigue que
y3
α
+ β ∈ R y por ende (y3

α
+ β, x3) ∈ R2, con esto, f(y3

α
+ β, x3) = (x3, y3), lo que

implica que f es sobreyectiva y además es invertible. Tenemos que f−1 : R2 → R2

está dada como sigue,

f−1(x, y) =

(
y

α
+ β, x

)
.

Dado (x0, y0) ∈ R2, se tiene que existe algún abierto U ⊂ R2 tal que (x0, y0) ∈ U ,

a continuación se demostrará que f−1 es diferenciable.

Tenemos que,

Dj(f
−1)i(x) =


0, si i = j,

1
α
, si i = 1, j = 2,

1, otro caso,

luego, Dj(f
−1)i(x) existe para toda (x, y) ∈ U , además, dado que Dj(f

−1)i(x)

es constante, para todo i, j ∈ {1, 2}, se sigue que es continua en (x0, y0), por

Teorema 1.11, podemos asegurar que f−1 es continuamente diferenciable en

(x0, y0), aśı, f
−1 es diferenciable. Debido a que tanto f como f−1 son diferenciables
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se tiene que f es un difeomorfismo. Sea (x′, y′) ∈M.

Caso 1. x′ ∈ (a, b). Tomemos α = 1 y β = 0, luego, f(x, y) = (y, x). Sea

R = (x
′+a
2
, b+x′

2
)× (y′ − 1, y′ + 1), notemos que (x′, y′) ∈ R ⊂M , además,

f(R) = (y′ − 1, y′ + 1)× (
x′ + a

2
,
b+ x′

2
),

notemos que f(R) es un rectángulo abierto, aunado a lo anterior, se tiene

que

f(R ∩M) = f(R) = f(R) ∩ R2 = f(R) ∩ (R2 × {0}0).

Se cumple la condición M para (x′, y′).

Caso 2. x′ = a. Tomemos α = 1 y β = a, luego, f(x, y) = (y, x − a). Sea

R = (x
′

2
, b+x′

2
)× (y′ − 1, y′ + 1), notemos que (x′, y′) ∈ R ⊂M , además,

f(R) = (y′ − 1, y′ + 1)× (
x′

2
− a,

b+ x′

2
− a),

notemos que f(R) es un rectángulo abierto. Sea (x0, y0) ∈ R ∩M , luego,

f(x0, y0) ∈ f(R), además, como x0 ≥ a, se sigue que x0 − a ≥ 0, aśı,

f(x0, y0) = (y0, x0 − a) ∈ H2, con esto,

f(R ∩M) ⊂f(R) ∩H2.

Sea ahora (x0, y0) ∈ f(R) ∩ H2, luego, f−1(x0, y0) ∈ R, aunado a esto,

0 ≤ y0 ≤ b− a, aśı, a ≤ y0 + a ≤ b, con esto, f−1(x0, y0) = (y0 + a, x0) ∈M ,

aśı, f−1(x0, y0) ∈ R ∩M , y por ende, (x0, y0) ∈ f(R ∩M), con lo cual se

concluye que f(R) ∩H2 ⊂ f(R ∩M).

Aśı, f(R ∩M) = f(R) ∩H2 = f(R) ∩ (H2 × {0}0).
Por otro lado, f(x′, y′) = (y′, x′ − a) = (y′, a − a) = (y′, 0), se cumple la

condición M ′ para (x′, y′).

Caso 3. x′ = b. Este caso es análogo al caso 2, solo basta tomar α = −1 y

β = b.

Por lo tanto, se concluye que M es una variedad con frontera de dimensión 2 de

R2.



5.3. VARIEDADES CON FRONTERA 143

Proposición 5.1. Sean A ⊂ Rn y una función f : A→ Rn. Si A es abierto y f es

continuamente diferenciable, inyectiva y cumple que f ′(x) ̸= 0, para todo x ∈ A,

entonces, f(A) es un conjunto abierto y que f−1 : f(A) → A es diferenciable.

Además, si B ⊂ A es abierto, entonces f(B) también es abierto.

Demostración: Notemos que se cumplen todas la hipótesis del Teorema 1.12.

Sea y ∈ f(A), aśı, existe algún x ∈ A tal que f(x) = y, luego, por el Teorema

1.12 y debido a que el dominio de f es A, existen abiertos V,W tales que:

y ∈ W ⊂ f(A) y x ∈ V ⊂ A,

además, f tiene inversa (f−1)|W : W → V que es continua y diferenciable. Por

otro lado, dado que f es inyectiva, f−1 : f(A) → A existe, y por ende

f−1(z) = (f−1)|W (z), para todo z ∈ W,

en especial cuando z = y se sigue que f−1 es continua y diferencia en y, y debido

a que y es arbitrario, se concluye que f−1 es diferenciable en f(A). Además, ya

que W es abierto, existe algún rectángulo abierto R tal que y ∈ R ⊂ W ⊂ f(A),

y como y es un elemento arbitrario se concluye que f(A) es un conjunto abierto.

La demostración de que f(B) es abierto es análoga.

Proposición 5.2. Sea M ⊂ Rn una variedad. Dado x ∈M , las condiciones (M)

y (M ′) no se pueden cumplir a la vez para x.

Demostración: Supongamos que (M) y (M ′) se cumplen a la vez para x. Luego,

existen U1, U2, V1, V2 ⊂ Rn abiertos y difeomorfismos h1 : U1 → V1, h2 : U2 → V2

tales que

h1(U1 ∩M) =V1 ∩ (Rk × {0}n−k),

h2(U2 ∩M) =V2 ∩ (Hk × {0}n−k).

Dado que h2 y h1 son difeomorfismo, se sigue que h−1
1 existe y también es un

difeomorfismo, con esto, h2 ◦ h−1
1 : V1 → V2 existe y también es un difeomorfismo.

Por otro lado, notemos que h1(x) ∈ V1, luego,

(h2 ◦ h−1
1 (h1(x)))i =h2(x)i = 0,
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para todo i ∈ {k, ..., n}, además, debido a que U1 y U2 son conjuntos abiertos,

entonces U1∩U2 también es abierto, aśı, como x ∈ U1∩U2, existe algún rectángulo

abierto R tal que x ∈ R ⊂ U1 ∩ U2.

A continuación se demostrará que h(R ∩M) = h(R) ∩ (Rk × {0}n−k).

Sea z ∈ R ∩M ⊂ U1 ∩M , esto implica que h1(z) ∈ V1 ∩ (Rk × {0}), aśı,

h1(z)l = 0, para todo l ∈ {k + 1, ..., n},

además, h1(z) ∈ h1(R), aśı, h1(z) ∈ h1(R) ∩ (Rk × {0}n−k),lo que significa que

h1(R ∩M) ∈ h1(R) ∩ (Rk × {0}n−k).

Sea ahora y ∈ h1(R) ∩ (Rk × {0}n−k), luego, y ∈ V1 ∩ (Rk × {0}n−k), con esto,

h−1
1 (y) ∈ U1 ∩ M , aunado a lo anterior, debido a que y ∈ h1(R) se sigue que

h−1
1 (y) ∈ R, con lo cual, h−1

1 (y) ∈ R ∩ U1 ∩M = R ∩M , aśı y ∈ h(R ∩M), de

aqúı se concluye que,

h1(R) ∩ (Rk × {0}n−k) ⊂ h1(R ∩M).

Con lo cual se concluye que h1(R ∩M) = h1(R) ∩ (Rk × {0}n−k).

Definamos ahora al conjunto V ′ como sigue, V ′ = {v ∈ Rk : (v, 0) ∈ h1(R)}, en
este caso 0 denota al vector nulo de Rn−k, debido a que h1(R) es abierto, podemos

afirmar por la demostración delTeorema 5.2, que V ′ también es abierto. Notemos

que h1(x) ∈ h1(R) ∩ (Rk × {0}n−k), luego,

x′ = (h1(x)1, ..., h1(x)k) ∈ V ′,

además, dado (v, 0) ∈ Rk × {0}n−k, se sigue que,

h−1
1 (v, 0) ⊂ R ∩M ⊂ U1 ∩ U2 ∩M ⊂ U2 ∩M,

lo que implica que:

h2 ◦ h−1
1 (v, 0) = h2(h

−1
1 (v, 0)) ∈h2(U2 ∩M) = V2 ∩ (Hk × {0}n−k).

Sea f : V ′ → Rk definida por f(v) = v′, donde h2(h
−1
1 (v, 0)) = (v′, 0), dado que

(v′, 0) ∈ Hk×{0}n−k, se sigue que v
′ ∈ Hk, en otras palabras, f(V ′) ⊂ Hk. Debido

a que h2 ◦ h−1
1 es un difeomorfismo se cumple lo siguiente,

1) h2 ◦ h−1
1 es diferenciable y por ende es continuamente diferenciable.
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2) (h2 ◦ h−1
1 )−1 existe y es diferenciable en h2 ◦ h−1

1 (z), para todo z ∈ V1.

Tomando 1) se sigue que las funciones Dj(h2 ◦ h−1
1 )i existen y son continuas en

z, para todo z ∈ V1, para todo j, i ∈ {1, ..., n}, aśı, como Djfi = Dj(h2 ◦ h−1
1 )i,

para todo j, i ∈ {1, ..., k}, se tiene que f es continuamente diferenciable. Por 2)

tenemos que h2 ◦ h−1
1 es inyectiva, luego, cada función (h2 ◦ h−1

1 )i también es

inyectiva para todo i ∈ {1, ..., n}, de aqúı se sigue que f es inyectiva. Con esto se

tiene que también es invertible. Por último, como (h2 ◦ h−1
1 )−1 es diferenciable, es

continuamente diferenciable y por ende f−1 también lo es, aśı, f−1 es diferenciable.

Dado que f cumple las hipótesis del Corolario 1.2, se sigue que det(f ′(a)) ̸= 0,

para todo a ∈ V ′, con esto, f cumple las hipótesis de la Proposición 5.1, aśı,

como V ′ es abierto, se concluye que f(V ′) es abierto.

Recordemos que x′ ∈ V ′, luego,

f(x′) =((h2 ◦ h−1
1 (h1(x))1, ..., (h2 ◦ h−1

1 (h1(x))k)

=(h2(x)1, ..., h2(x)k)

=(h2(x)1, ..., h2(x)k−1, 0),

además, como f(x′) ∈ f(V ′) y este último es un conjunto abierto, existe algún

rectángulo abierto R′ tal que f(x′) ∈ R′ ⊂ f(V ′), donde a R′ lo podemos ver de

la siguiente manera,

R′ = (a1, b1)× · · · × (ak, bk),

luego, debido a que h2(x)k = 0, se sigue que ak < 0, aśı, sea y ∈ R′ tal que

yk =
ak
2
< 0, con esto, y /∈ Hk, pero, y ∈ f(V ′) ⊂ Hk, lo cual es una contradicción.

Por lo tanto, las condicionesM yM ′ no se pueden cumplir a la vez para un mismo

x.

5.4. Frontera de una variedad

Definición 5.5. Sea M una variedad. El conjunto de todos los puntos x ∈ M

para los cuales se cumple la condición (M ′) se llama frontera de M y se denota

como ∂M .

Proposición 5.3. Si M es una variedad de dimensión k con frontera, entonces

∂M es una variedad de dimensión k − 1.





Caṕıtulo 6

Formas diferenciales sobre

variedades

En este caṕıtulo se retomarán definiciones presentadas anteriormente, ahora

reformuladas en el contexto de las variedades. Asimismo, se presentará también

una versión del Teorema de Stokes en este contexto.

6.1. Espacio tangente de una variedad

Definición 6.1. Sean V , W espacios vectoriales sobre un campo F y T : V → W

una transformación lineal. Si T es sobreyectiva e inyectiva, diremos que T es un

isomorfismo (Hoffman & Kunze, 1971).

Sean M una variedad de dimensión k en Rn, x ∈ M y f : W ⊂ Rk → Rn un

sistema coordenado alrededor de x = f(a), con a ∈ W . Dado que f ′(a) tiene rango

k, la transformación lineal f∗ : Rk
a → Rn

x es inyectiva, con esto, f−1
∗ : f∗(Rk

a) → Rk
a,

existe y es inyectiva, cabe recalcar que f−1
∗ no es la inversa de f∗, además, f∗(Rk

a)

es un subespacio de dimensión k de Rn
x. Sea g : V → Rn otro sistema coordenado

con x = g(b), luego, f−1
∗ ◦ g∗ : Rk

b → Rk
a es una transformación lineal inyectiva, en

otras palabras, f−1
∗ ◦ g∗ es un isomorfismo, aśı,

g∗(Rk
b ) =f∗(f

−1
∗ (g∗(Rk

b )))

=f∗((f
−1
∗ ◦ g∗)(Rk

b ))

=f∗(Rk
a).

147
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Con esto, el subespacio f∗(Rk
a) no depende del sistema coordenado f , además,

tiene dimensión k.

Definición 6.2. SeanM una variedad de dimensión k, x ∈M y f el sistema coor-

denado alrededor de x. El subespacio f∗(Rk
a) es denotado como Mx y es llamado

espacio tangente de M en x.

Ejemplo 6.1. Consideremos a la variedad M de dimensión 1 y al difeomorfis-

mo h dados en el Ejemplo 5.3. Luego, dado (x, x) ∈ M y basándonos por la

demostración del Teorema 5.2, sabemos que f : W ⊂ R → R2 dada por

f(z) = h−1(z, 0) = (z, z),

es un sistema coordenado alrededor de (x, x), dondeW = {z ∈ R : (z, 0) ∈ h(M)}.
Notemos que f es una transformación lineal, con esto, Df(z) = f . Además,

h(x, x) = (x, x− x) = (x, 0) ∈ h(M),

es decir, x ∈ W . Consideremos ahora al espacio tangente R en x y a vx ∈ Rx,

luego,

f∗(vx) =(Df(x)(v))f(x)

=f(v)(x,x)

=(v, v)(x,x).

Ejemplo 6.2. Consideremos a la circunferencia S = {(x1, x2) : x21 + x22 = 1}.
Primero demostraremos que S es una variedad de dimensión 1 y posteriormente

encontraremos al espacio tangente de S dado algún x. Sean x ∈ S\{(1, 0)} y

f : (0, 2π) → R2 definida como f(t) = (cos(t), sen(t)), aśı, existe algún t ∈ (0, 2π)

tal que f(t) = x, para poder demostrar que S es una variedad se demostrará que

f es un sistema coordenado alrededor de x.

Inyectividad y diferenciabilidad de f .

Supongamos que existen a, b ∈ (0, 2π) tales que f(a) = f(b), aśı,

cos(a) = cos(b) y sen(a) = sen(b),
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luego,

cos(a− b) = cos(a) cos(b) + sen(a) sen(b)

= cos2(a) + sen2(a)

=1,

con lo cual se tiene que a − b = arc cos(1) = 2kπ, donde k ∈ Z, dado que

0 < a, b < 2π, se sigue que −2π < −a < 0, aśı, −2π < b − a < 2π, lo que

implica que el único valor posible para k es 0 y por ende a− b = 0, de donde

se concluye que a = b.

Aśı, f es una función inyectiva en el intervalo (0, 2π) y por ende en cualquier

subintervalo. Por otro lado, sea c ∈ (0, 2π), con esto,

D1f1(c) = − sen(c), D1f2(c) = cos(c),

con lo cual, las derivadas parciales de f existen en (0, 2π) y son continuas

en c, aśı, f es continuamente diferenciable y por ende es diferenciable.

Sea (x1, x2) ∈ S\{(1, 0)} = f(0, 2π), luego, existe algún t ∈ (0, 2π) tal

que x = f(t), tomemos a d = min{t, 2π − t}, con esto, podemos definir al

conjunto abierto U = (t − d
2
, t + d

2
) ⊂ R que contiene a t pero no a 0 o

2π. Sean ahora (x′1, x
′
2) = f(t + d

2
) y d′ =

√
(x1 − x′1)

2 + (x2 − x′2)
2, con

esto, B((x1, x2), d
′) es un conjunto abierto en R2 que contiene a x, además,

f(U) = S ∩B(x, d′).

Tenemos que,

f ′(y) =

− sen(y)

cos(y)

,
debido a que no existe y ∈ R tal que cos(y) = sen(y) = 0, se concluye que

f ′(y) tiene rango 1.

Sea (x1, x2) ∈ S\(1, 0). Luego, existe t ∈ (0, 2π) tal que cos(t) = x1 y

sen(t) = x2. Para poder encontrar el valor exacto de t podemos apoyarnos

de la función arctan tal como se explica a continuación,

x2
x1

=
sen(t)

cos(t)
= tan(t),
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lo que implica que

t = arctan

(
x2
x1

)
.

Debido a que arctan(x2

x1
) = arctan(−x2

−x1
), arctan(−x2

x1
) = arctan( x2

−x1
), se to-

mará el valor de t de acuerdo al cuadrante al que pertenezcan x1 y x2.

1. x1, x2 > 0, en este caso, arctan(x2

x1
) ∈ (0, π

2
), luego, como necesitamos

que cos(t), sen(t) > 0, basta tomar t = arctan(x2

x1
).

2. x1 < 0, x2 > 0, en este caso, arctan(x2

x1
) ∈ (−π

2
, 0), luego, como necesi-

tamos que cos(t) < 0, sen(t) > 0, basta tomar t = arctan(x2

x1
) + π.

3. x1, x2 < 0, en este caso, arctan(x2

x1
) ∈ (0, π

2
), luego, como necesitamos

que cos(t), sen(t) < 0, basta tomar t = arctan(x2

x1
) + π.

4. x1 > 0, x2 < 0, en este caso, arctan(x2

x1
) ∈ (−π

2
, 0), luego, como necesi-

tamos que cos(t) > 0, sen(t) < 0, basta tomar t = arctan(x2

x1
) + 2π.

En el caso x1 = 0 tenemos que cos(t) = 0, esto implica que t = π
2
o t = 3π

2
,

con lo cual sen(π
2
) = 1 y sen(3π

2
) = −1. Otro caso particular es cuando

x2 = 0, en este caso se cumple que sen(t) = 0, debido a que t ∈ (0, 2π), se

tiene que t = π. Con esto, sea h : S\{(1, 0)} → (0, 2π), definida como sigue,

h(x1, x2) =



arctan
(

x2

x1

)
, si x1, x2 > 0,

π
2
, si x1 = 0, x2 = 1,

arctan
(

x2

x1

)
+ π, si x1 < 0, x2 > 0,

π, si x1 = −1, x2 = 0,

arctan
(

x2

x1

)
+ π, si x1, x2 < 0,

3π
2
, si x1 = 0, x2 = −1,

arctan
(

x2

x1

)
+ 2π, si x1 > 0, x2 < 0.

A continuación se comprobará que h = f−1. Primero se demostrará que

f ◦ h = i. Sea (x1, x2) ∈ S\{(1, 0)}, recordemos que
√
x22 + x21 = 1. Para

este propósito, se hará uso de las distintas propiedades trigonométricas que

se muestran en la Sección 1.9.
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• Caso x1, x2 > 0.

f(h(x1, x2)) =f(arctan(
x2

x1
))

=(cos(arctan(x2

x1
)), sen(arctan(x2

x1
)))

=

(
|x1|√
x22 + x21

,
|x1|x2

x1
√
x22 + x21

)
=

(
x1√
x22 + x21

,
x1x2

x1
√
x22 + x21

)
=(x1, x2).

• Caso x1 = 0, x2 = 1.

f(h(x1, x2)) =f(
π
2
)

=(cos(π
2
), sen(π

2
))

=(0, 1)

=(x1, x2).

• Caso x1 < 0, x2 > 0.

f(h(x1, x2)) =f(arctan(
x2

x1
) + π)

=(cos(arctan(x2

x1
) + π), sen(arctan(x2

x1
) + π))

=(− cos(arctan(x2

x1
)),− sen(arctan(x2

x1
)))

=

(
− |x1|√

x22 + x21
,

−|x1|x2
x1
√
x22 + x21

)
=

(
x1√
x22 + x21

,
x1x2

x1
√
x22 + x21

)
=(x1, x2).

• Caso x1 = −1, x2 = 0.

f(h(x1, x2)) =f(π)

=(cos(π)), sen(arctan(π))

=(−1, 0)

=(x1, x2).
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• Caso x1, x2 < 0. Es análogo al caso x1 < 0, x2 > 0.

• Caso x1 = 0, x2 = −1.

f(h(x1, x2)) =f(
3π
2
)

=(cos(3π
2
), sen(3π

2
))

=(0,−1)

=(x1, x2).

• Caso x1 > 0, x2 < 0.

f(h(x1, x2)) =f(arctan(
x2

x1
) + 2π)

=(cos(arctan(x2

x1
) + 2π), sen(arctan(x2

x1
) + 2π))

=(cos(arctan(x2

x1
)), sen(arctan(x2

x1
)))

=

(
|x1|√
x22 + x21

,
|x1|x2

x1
√
x22 + x21

)
=

(
x1√
x22 + x21

,
x1x2

x1
√
x22 + x21

)
=(x1, x2).

Ahora se demostrará que h ◦ f = i. Sea t ∈ (0, 2π).

• Caso t ∈ (0, π
2
). Notemos que cos(t), sen(t) > 0, aśı,

h(f(t)) =h(cos(t), sen(t))

= arctan( cos(t)
sen(t)

)

= arctan(tan(t))

=t.

• Caso t = π
2
. Notemos que cos(t) = 0, sen(t) = 1, aśı,

h(f(t)) = h(cos(t), sen(t)) = h(0, 1) = t.

• Caso t ∈ (π
2
, π). Notemos que cos(t) < 0, sen(t) > 0, además, existe

t′ ∈ (−π
2
, 0) tal que t = t′ + π, aśı, tan(t) = tan(t′ + π) = tan(t′), con
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esto,

h(f(t)) =h(cos(t), sen(t))

= arctan( cos(t)
sen(t)

) + π

=arctan(tan(t)) + π

=arctan(tan(t′)) + π

=t′ + π

=t.

• Los casos t = 3π
2
y t = π son análogos al caso t = π

2
, de igual manera, los

casos cuando t ∈ (π, 3π
2
) y t ∈ (3π

2
, 2π) son análogos al caso t ∈ (π

2
, π).

Aśı, h = f−1. Por último, se comprobará que h es una función continua, para

esto, se comprobará que h es continua en aquellos puntos donde ocurren

saltos.

• x = (0, 1).

ĺım
(x1,x2)→(0,1)

arctan(x2

x1
) =π

2
, cuando x1, x2 > 0,

ĺım
(x1,x2)→(0,1)

(arctan(x2

x1
) + π) = −π

2
+ π =π

2
, cuando x1 < 0, x2 > 0,

dado que h(0, 1) = π
2
se sigue que h es continua en x.

• x = (−1, 0).

ĺım
(x1,x2)→(−1,0)

(arctan(x2

x1
) + π) = 0 + π = π, cuando x1 < 0, x2 > 0,

ĺım
(x1,x2)→(−1,0)

(arctan(x2

x1
) + π) = 0 + π =π, cuando x1, x2 < 0,

dado que h(−1, 0) = π se sigue que h es continua en x.

• x = (0, 1).

ĺım
(x1,x2)→(0,1)

(arctan(x2

x1
) + π) = π

2
+ π =3π

2
, cuando x1, x2 < 0,

ĺım
(x1,x2)→(0,1)

(arctan(x2

x1
) + 2π) = −π

2
+ 2π =3π

2
, cuando x1 > 0, x2 < 0,

dado que h(0,−1) = 3π
2

se sigue que h es continua en x, con cual se
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tiene que h = f−1 es continua en S\{(1, 0)}, más aún, es continua en

f(U), donde U ya se hab́ıa definido previamente, y por ende se concluye

que f es un sistema coordenado.

En el caso x = (1, 0), podemos considerar a g : (0, 2π) → R2 dada como

g(t) = (− cos(t),− sen(t)),

cuya demostración de que es un sistema coordenado para todo x ∈ S\{(−1, 0)}
es análoga a la demostración de f .

Por otro lado, sea x ∈ S\{(1, 0)}, aśı, existe t ∈ (0, 2π) tal que x = f(t) y

consideremos al espacio tangente R en t y a vt ∈ Rt, luego,

f∗(vt) =(Df(t)(v))f(t)

=(Df1(t)(v), Df2(t)(v))x

=(− sen(t) · v, cos(t) · v)x
=v(− sen(t), cos(t))x.

Si x = (1, 0), entonces, g∗(vt) = v(− cos(t),− sen(t))x.

Ejemplo 6.3. Consideremos ahora a la esfera S2.

Sean x ∈ S2\{(x1, 0, x3) : x21 + x23 = 1 y x1 ≥ 0} = S2
2 y f : (0, 2π)× (0, π) → R3

definida como

f(u, v) = (cos(u) sen(v), sen(u) sen(v), cos(v)),

aśı, existe algún (u, v) ∈ (0, 2π)× (0, π) tal que f(u, v) = x, para poder demostrar

que S es una variedad se demostrará que f es un sistema coordenado alrededor

de x.

Inyectividad y diferenciabilidad de f .

Supongamos que existen a = (u1, v1), b = (u2, v2) ∈ (0, 2π)×(0, π) tales que,

f(a) = f(b), aśı,

1) cos(u1) sen(v1) = cos(u2) sen(v2).

2) sen(u1), sen(v1) = sen(u2) sen(v2).

3) cos(v1) = cos(v2).
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De 3) se sigue que v1 = v2+2kπ, para algún k ∈ Z. Dado que v1, v2 ∈ (0, π)

se sigue que k = 0, de aqúı, se sigue que v1 = v2, luego, sen(v1) = sen(v2),

con lo cual podemos ver a 1) y 2) como sigue,

1) cos(u1) = cos(u2).

2) sen(u1) = sen(u2).

Por lo visto en el Ejemplo 6.2, podemos asegurar que u1 = u2. Aśı, f es

inyectiva en (0, 2π) × (0, π). Por otro lado, sea (c, d) ∈ (0, 2π) × (0, π), con

esto, las derivadas parciales de f1(u, v) = cos(u) sen(v) son:

D1f1(c) =− sen(c) sen(d), D2f1(c) = cos(c) cos(d),

las derivadas parciales de f2(u, v) = sen(u) sen(v) son:

D1f2(c) = cos(c) sen(d), D2f2(c) = sen(c) cos(d),

y las derivadas parciales de f3(u, v) = cos(v) son:

D1f3(c) =0, D2f3(c) = − cos(d),

con lo cual, las derivadas parciales de f existen en (0, 2π) × (0, π) y son

continuas en (c, d), aśı, f es continuamente diferenciable y por ende es dife-

renciable.

Sea x ∈ S2
2 tal que x1, x2, x3 > 0, aśı, existen algunos u0, v0 ∈ (0, π

2
) tales

que x = f(u0, v0), sean d1 = min{u0, π2 −u0} y d2 = min{v0, , π2 −v0}, luego,
los conjuntos I = (u0 − d1

2
, u0 +

d1
2
) y J = (v0 − d2

2
, v0 +

d2
2
) son abiertos en

R, con esto, W = I × J es un conjunto abierto que contiene a x, definamos

ahora el siguiente conjunto

U = {(ρ cos(u) sen(v), ρ sen(u) sen(v), ρ cos(v)) : u ∈ I, v ∈ J, ρ > 0}.

Tenemos que

f(x) =(cos(u0) sen(v0), sen(u0) sen(v0), cos(v0))

=(1 · cos(u0) sen(v0), 1 · sen(u0) sen(v0), 1 · cos(v0)),
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notemos que ρ = 1 > 0, asimismo, por la construcción de I y de J , se sigue

que u0 ∈ I y de v0 ∈ J , con esto, f(x) ∈ U , lo que induce a la siguiente

igualdad:

f(W ) = S2\{(x1, 0, x3) : x21 + x23 = 1 y x1 ≥ 0} ∩ U.

Si se toma a x en cualquier otro cuadrante de R3 se sigue un proceso análogo

para encontrar a los abiertos U yW , si x3 = 0 se puede tomar a J = (π
4
, 3π

4
),

por otro lado, si x1 = 0, se puede tomar a I = (π
4
, 3π

4
) cuando x2 > 0 y

I = (5π
4
, 7π

4
) en caso contrario, por último, si x2 = 0 se toma I = (3π

4
, 5π

4
).

Tenemos que,

f ′(y, z) =


− sen(y) sen(z) cos(y) cos(z)

cos(y) sen(z) sen(y) cos(z)

0 − cos(z)

 ,

supongamos que existe k ∈ R\{0} tal que

− sen(y) sen(z) · k = cos(y) sen(z),

cos(y) cos(z) · k = sen(y) cos(z),

luego,

− sen(y) · k = cos(y),

cos(y) · k = sen(y),

con lo cual se tiene que − sen(y) · k · k = sen(y), aśı, k2 = −1, lo cual es una

contradicción, aśı, las filas 1 y 2 de f ′(y, z) son linealmente independientes,

aśı, f ′(y, z) tiene rango 2.

Sea (x1, x2, x3) ∈ S2
2 . Luego, existe (u, v) ∈ (0, 2π)× (0, π) tal que,

(x1, x2, x3) = (cos(u) sen(v), sen(u) sen(v), cos(v)),

de aqúı, se tiene que v = arc cos(x3). Sea

h : S2\{(x1, 0, x3) : x21 + x23 = 1 y x1 ≥ 0} → (0, 2π)× (0, π),
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definida como sigue,

h(x1, x2, x3) =



(
arctan

(
x2

x1

)
, arc cos(x3)

)
, si x1, x2 > 0,(

π
2
, arc cos(x3)

)
, si x1 = 0, x2 > 0,(

arctan
(

x2

x1

)
+ π, arc cos(x3)

)
, si x1 < 0, x2 > 0,

(π, arc cos(x3)) , si x1 < 0, x2 = 0,(
arctan

(
x2

x1

)
+ π, arc cos(x3)

)
, si x1, x2 < 0,(

3π
2
, arc cos(x3)

)
, si x1 = 0, x2 < 0,(

arctan
(

x2

x1

)
+ 2π, arc cos(x3)

)
, si x1 > 0, x2 < 0.

A continuación se comprobará que h = f−1. Primero se demostrará que f ◦h = i.

Sea (x1, x2, x3) ∈ S2
2 .

Caso x1, x2 > 0.

f(h(x1, x2, x3)) =f(arctan(
x2

x1
), arc cos(x3))

=(cos(arctan(x2

x1
)) sen(arc cos(x3)),

sen(arctan(x2

x1
)) sen(arc cos(x3)), cos(arc cos(x3)))

=

(
|x1|√
x22 + x21

√
1− x23,

|x1|x2
x1
√
x22 + x21

√
1− x23, x3

)
=

(
x1√
x22 + x21

√
x22 + x21,

x1x2

x1
√
x22 + x21

√
x22 + x21, x3

)
=(x1, x2, x3).

Caso x1 = 0, x2 > 0.

f(h(x1, x2, x3)) =f(
π
2
, arc cos(x3))

=(cos(π
2
) sen(arc cos(x3)), sen(

π
2
) sen(arc cos(x3)),

cos(arc cos(x3)))

=

(
0 · sen(arc cos(x3)), 1 ·

√
1− x23, x3

)
=

(
0,
√
x22 + x21, x3

)
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=

(
0,
√
x22, x3

)
=(0, |x2|, x3)

=(x1, x2, x3).

Caso x1 < 0, x2 > 0.

f(h(x1, x2, x3)) =f(arctan(
x2

x1
) + π, arc cos(x3))

=(cos(arctan(x2

x1
) + π) sen(arc cos(x3)),

sen(arctan(x2

x1
) + π) sen(arc cos(x3)), cos(arc cos(x3)))

=(− cos(arctan(x2

x1
)) sen(arc cos(x3)),

− sen(arctan(x2

x1
)) sen(arc cos(x3)), cos(arc cos(x3)))

=

(
− |x1|√

x22 + x21

√
1− x23,

−|x1|x2
x1
√
x22 + x21

√
1− x23, x3

)
=

(
x1√
x22 + x21

√
x22 + x21,

x1x2

x1
√
x22 + x21

√
x22 + x21, x3

)
=(x1, x2, x3).

Caso x1 < 0, x2 = 0.

f(h(x1, x2, x3)) =f(π, arc cos(x3))

=(cos(π) sen(arc cos(x3)), sen(arctan(π)) sen(arc cos(x3)),

cos(arc cos(x3)))

=(− sen(arc cos(x3)), 0 · sen(arc cos(x3)), x3)

=

(
−
√

1− x23, 0, x3

)
=

(
−
√
x22 + x21, 0, x3

)
=

(
−
√
x21, 0, x3

)
=(−|x1|, 0, x3)

=(x1, x2, x3).

Caso x1, x2 < 0. Es análogo al caso x1 < 0, x2 > 0.



6.1. ESPACIO TANGENTE DE UNA VARIEDAD 159

Caso x1 = 0, x2 < 0.

f(h(x1, x2, x3)) =f(
3π
2
, arc cos(x3))

=(cos(3π
2
) sen(arc cos(x3)), sen(

3π
2
) sen(arc cos(x3)),

cos(arc cos(x3)))

=

(
0 · sen(arc cos(x3)),−1 ·

√
1− x23, x3

)
=

(
0,−

√
x22 + x21, x3

)
=

(
0,−

√
x22, x3

)
=(0,−|x2|, x3)

=(x1, x2, x3).

Caso x1 > 0, x2 < 0.

f(h(x1, x2, x3)) =f(arctan(
x2

x1
) + 2π, arc cos(x3))

=(cos(arctan(x2

x1
) + 2π) sen(arc cos(x3)),

sen(arctan(x2

x1
) + 2π) sen(arc cos(x3)), cos(arc cos(x3)))

=(cos(arctan(x2

x1
)) sen(arc cos(x3)),

sen(arctan(x2

x1
)) sen(arc cos(x3)), cos(arc cos(x3)))

=

(
|x1|√
x22 + x21

√
1− x23,

|x1|x2
x1
√
x22 + x21

√
1− x23, x3

)
=

(
x1√
x22 + x21

√
x22 + x21,

x1x2

x1
√
x22 + x21

√
x22 + x21, x3

)
=(x1, x2, x3).

Ahora se demostrará que h ◦ f = i. Sea (u, v) ∈ (0, 2π)× (0, π).

• Caso u ∈ (0, π
2
). Notemos que cos(u), sen(u) > 0, aśı,

h(f(u, v)) =h(cos(u) sen(v), sen(u) sen(v), cos(v))

=(arctan( cos(u) sen(v)
sen(u) sen(v)

), arc cos(cos(v)))

=(arctan( cos(u)
sen(u)

), v)
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=(arctan(tan(u)), v)

=(u, v).

• Caso u = π
2
. Notemos que cos(u) = 0, sen(u) = 1 > 0, aśı,

h(f(u, v)) =h(cos(u) sen(v), sen(u) sen(v), cos(v))

=h(0, sen(u) sen(v), cos(v))

=(π
2
, arc cos(v))

=(u, v).

• Caso u ∈ (π
2
, π). Notemos que cos(u) < 0, sen(u) > 0, además, existe

u′ ∈ (−π
2
, 0) tal que u = u′ + π, aśı, tan(u) = tan(u′ + π) = tan(u′),

con esto,

h(f(u, v)) =h(cos(u) sen(v), sen(u) sen(v), cos(v))

=(arctan( cos(u) sen(v)
sen(u) sen(v)

) + π, arc cos(cos(v)))

=(arctan( cos(u)
sen(u)

) + π, v)

=(arctan(tan(u)) + π, v)

=(arctan(tan(u′)) + π, v)

=(u′ + π, v)

=(u, v).

• Los casos u = 3π
2

y u = π son análogos al caso u = π
2
, de igual

manera, los casos cuando u ∈ (π, 3π
2
) y u ∈ (3π

2
, 2π) son análogos al

caso u ∈ (π
2
, π).

Aśı, h = f−1. La demostración de que h es una función continua en el

conjunto S2\{(x1, 0, x3) : x21+x23 = 1 y x1 ≥ 0} es análoga a la demostración

hecha en el Ejemplo 6.2, esto debido a que h solo presenta saltos respecto

a las variables x1 y x2 en los mismos valores que la función h definida

en el ejemplo ya mencionado. Con esto se concluye que f es un sistema

coordenado.

Cuando x ∈ {(x1, x2, x3) : x21+x23 = 1 y x1 ≤ 0}, podemos considerar a la función
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g : (0, 2π)× (0, π) → R3 dada como sigue,

g(u, v) = (− cos(u) sen(v),− sen(u) sen(v), cos(v)),

debido a que (0, 0, 1), (0, 0,−1) no pertenecen a los conjuntos

S2\{(x1, 0, x3) : x21 + x23 = 1 y x1 ≥ 0},

S2\{(x1, 0, x3) : x21 + x23 = 1 y x1 ≤ 0},

debemos considerar a una tercera función j : (−π, π)× (0, π) → R3 definida como

sigue,

j(u, v) = (cos(u) sen(v), cos(v), sen(u) sen(v)),

las demostraciones de que las funciones g y j son sistemas coordenados son análo-

gas a la demostración de f .

Por otro lado, sea x ∈ S2\{(x1, 0, x3) : x21 + x23 = 1 y x1 ≥ 0}, aśı, existen

u ∈ (0, 2π) y v ∈ (0, π) tales que x = f(u, v), y consideremos al espacio tangente

R2 en (u, v) y a w(u,v) ∈ R2
(u,v), luego,

f∗(w(u,v)) =(Df(u, v)(w))f(u,v)

=(Df1(u, v)(w), Df2(u, v)(w), Df3(u, v)(w))x,

tenemos que,

Df1(u, v)(w) =(− sen(u) sen(v), cos(u) cos(v))

w1

w2


=− sen(u) sen(v)w1 + cos(u) cos(v)w2,

Df2(u, v)(w) =(cos(u) sen(v), sen(u) cos(v))

w1

w2


=cos(u) sen(v)w1 + sen(u) cos(v)w2,

Df3(u, v)(w) =(0,− sen(v))

w1

w2


=− sen(v)w2,
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aśı,

f∗(w(u,v)) =(− sen(u) sen(v)w1 + cos(u) cos(v)w2,

cos(u) sen(v)w1 + sen(u) cos(v)w2,− sen(v)w2)x,

Si x ∈ {(x1, x2, x3) : x21 + x23 = 1 y x1 > 0}, entonces,

g∗(w(u,v)) =(sen(u) sen(v)w1 − cos(u) cos(v)w2,

− cos(u) sen(v)w1 − sen(u) cos(v)w2,− sen(v)w2)x,

en el caso de que x = (0, 0, 1) o x = (0, 0,−1), se sigue que,

j∗(w(u,v)) =(− sen(u) sen(v)w1 + cos(u) cos(v)w2,

− sen(v)w2, cos(u) sen(v)w1 + sen(u) cos(v)w2)x.

6.2. Campos vectoriales sobre variedades

Definición 6.3. SeaM una variedad. Un campo vectorial enM es una función

F :M →
⋃
z∈M

Mz,

tal que F (x) ∈ Mx, para todo x ∈ M . Para cada x existen F1(x), ..., Fn(x) ∈ R
tales que:

F (x) = (x, (F1(x), ..., Fn(x))) = F1(x)(e1)x + · · ·+ Fn(x)(en)x.

Esto define n funciones F1, ..., Fn : Rn → R llamadas funciones componente de

F .

Ejemplo 6.4. Continuemos con el espacio tangente M(x,x) dado en el Ejemplo

6.1. Sean las funciones componente Fi : M → R, para todo i ∈ {1, 2} definidas

como sigue,

F1(x1, x2) = F2(x1, x2) = x1 + x2.

Con las funciones componente anteriores podemos definir un campo vectorial,

F :M →
⋃

(z,z)∈M

M(z,z),
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dado por,

F (x, x) = F1(x, x)(e1)(x,x) + F2(x, x)(e2)(x,x).

A continuación se encontrará a F (x, x), para algunos (x, x) ∈M .

1. Para (x, x) = (3, 3),

F (3, 3) = F1(3, 3)(e1)(3,3) + F2(3, 3)(e2)(3,3)

= 6(e1)(3,3) + 6(e2)(3,3).

2. Para (x, x) = (1, 1),

F (1, 1) = F1(1, 1)(e1)(1,1) + F2(1, 1)(e2)(1,1)

= 2(e1)(1,1) + 2(e2)(1,1).

En general, basta que F1 = F2 para que F sea un campo vectorial.

6.3. P -formas sobre variedades

Definición 6.4. Sea M una variedad de dimensión k. Diremos que una función

ω :M → ∪z∈MΛp(Mz) con ω(x) ∈ Λp(Mx), es una p-forma o simplemente forma

diferencial en Rn.

Una p-forma en M puede ser escrita como

ω =
∑

i1<i2<···<ip

ωi1,...,ip · dxi1 ∧ · · · ∧ dxip .

En esta definición, las funciones ωi1,...,ip están definidas sobre M .

Teorema 6.1. Existe una única (p+1)-forma dω enM tal que para cada sistema

coordenado f : W → Rn tenemos

f ∗(dω) = d(f ∗ω).

Ejemplo 6.5. Sean la variedad M ⊂ R2 y el difeomorfismo f : R2 → R2 dados

en el Ejemplo 5.5, apoyándonos de la demostración del Teorema 5.2, sabemos
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que

h(x1, x2) = f−1(x1, x2) =

(
x2
α

+ β, x1

)
,

con α, β ∈ R\{0}, es un sistema coordenado. Definamos ahora a la 1-forma dife-

rencial ω = g(x1, x2)dx1 = x1dx1, luego, por Teorema 3.3:

h∗(ω) = h∗(x1dx1) =

(
x2
α

+ β

)
det(h′)dx1,

donde,

h′ =

0 1
α

1 0

 ,

aśı, det(h′) = − 1
α

h∗(ω) =−
(
x2
α

+ β

)
1

α
dx1,

dado que x2

α
+β es una función definida en un conjunto abierto, es posible encontrar

a d(h∗(ω)),

d(h∗(ω)) =d

(
−
(
x2
α

+ β

)
1
α
dx1

)
=−

2∑
j=1

Dj

(
x2
α2

+
β

α

)
dxj ∧ dx1

=−
(
0dx1 ∧ dx1 +

1

α2
dx2 ∧ dx1

)
=− 1

α2
dx2 ∧ dx1

=
1

α2
dx1 ∧ dx2,

definamos ahora a la 2-forma dω = − 1
α
dx1 ∧ dx2, luego,

h∗(dω) =
1

α
h∗(dx1) ∧ h∗(dx2)

=− 1

α

( 2∑
j=1

∂f1
∂xj

dxj

)
∧
( 2∑

j=1

∂f2
∂xj

dxj

)
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=− 1
α

(
0dx1 +

1
α
dx2

)
∧
(
1dx1 + 0dx2

)
=− 1

α
1
α
dx2 ∧ dx1

=− 1
α2dx2 ∧ dx1

= 1
α2dx1 ∧ dx2

=d(h∗(ω)).

6.4. Orientaciones de una variedad

Definición 6.5. Una orientación de una variedad M de dimensión k, es una

función µ que a cada elemento x de M le asigna una orientación del espacio

tangente Mx, esta función está dada de la siguiente manera,

µ(x) = [(v1)x, ..., (vk)x],

donde ((v1)x, ..., (vk)x) es una base orientada arbitraria de Mx. A µ(x) lo denota-

remos como µx.

Definición 6.6. SeanM una variedad de dimensión k, x ∈M y µ una orientación

deM . A la función µ la llamaremos consistente si para todo sistema coordenado

f : W → Rn alrededor de y a, b ∈ W la relación

[f∗((e1)a), ..., f∗((ek)a)] = µf(a),

se cumple si y solo si

[f∗((e1)b), ..., f∗((ek)b)] = µf(b).

Definición 6.7. Sean M una variedad, x ∈ M , µ una orientación consistente de

M y f : W → Rn un sistema coordenado alrededor de x. Si se cumple que

[f∗((e1)a), ..., f∗((ek)a)] = µf(a),

para todo a ∈ W y por consiguiente para todo elemento de W , entonces se dice

que f preserva la orientación.

Proposición 6.1. Sean M una variedad de dimensión k, x ∈ M y f y g dos
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orientaciones preservadoras alrededor de x. Si se cumple que x = f(a) = g(b), con

x ∈M , entonces, det((g−1 ◦ f)′(a)) > 0.

Demostración: Tenemos que,

[f∗((e1)a), ..., f∗((ek)a)] = µf(a) = µx, [g∗((e1)b), ..., g∗((ek)b)] = µg(b) = µx,

aśı, [f∗((e1)a), ..., f∗((ek)a)] = [g∗((e1)b), ..., g∗((ek)b)], sabemos que {(e1)a, ..., (ek)a}
y {(e1)b, ..., (ek)b} son bases de Rk

a y Rk
b respectivamente, luego, dado que f∗ y g∗

son transformaciones inyectivas, se sigue que tanto {f∗((e1)a), ..., f∗((ek)a)} como

{g∗((e1)b), ..., g∗((ek)b)} son bases de Mx, aśı, por la Definición 2.8, la matriz

A = (cij), donde:

f∗((ei)a) =
n∑

j=i

cijg∗((ej)b), para todo i ∈ {1, ..., k},

tiene determinante positivo. Por otro lado, recordemos que f∗(Rk
a) = g∗(Rk

b ) =Mx,

luego, como g∗ es un isomorfismo, es posible aplicar g−1
∗ a los vectores f∗((ei)a),

para todo i ∈ {1, ..., k}, con lo cual:

{g−1
∗ (f∗((e1)a)), ..., g

−1
∗ (f∗((ek)a))} = {(g−1 ◦ f)∗(((e1)a)), ..., (g−1 ◦ f)∗(((ek)a))},

es una base de Rk
b . Aunado a esto:

g−1
∗ (f∗((ei)a)) =g

−1
∗

( n∑
j=i

cijg∗((ej)b)

)

=
n∑

j=i

g−1
∗ (cijg∗((ej)b))

=
n∑

j=i

cijg
−1
∗ (g∗((ej)b))

=
n∑

j=i

cij(ej)b,

para todo i ∈ {1, ..., k}. Notemos que A también es la matriz de cambio de base

entre {(e1)b), ..., (ek)b)} y {g−1
∗ (f∗((e1)a)), ..., g

−1
∗ (f∗((ek)a))}, lo cual implica que:

[(e1)b), ..., (ek)b)] = [g−1
∗ (f∗((e1)a)), ..., g

−1
∗ (f∗((ek)a))].
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Por otro lado, para todo i ∈ {1, ..., k}, se cumplen las siguientes igualdades:

g−1
∗ (f∗((ei)a)) =(g−1 ◦ f)∗(((ei)a))

=(D(g−1 ◦ f)(a)(ei))g−1◦f(a)

=(D(g−1 ◦ f)(a)(ei))b,

g−1
∗ (f∗((ei)a)) =

n∑
j=i

cij(ej)b

=

( n∑
j=i

cijej

)
b

,

(6.1)

lo que implica que (D(g−1 ◦f)(a)(ei))b =
(∑n

j=i cijej

)
b

, dado que ambos vectores

son igual al estar trasladados en b, entonces D(g−1 ◦ f)(a)(ei) =
∑n

j=i cijej. Por

Teorema 1.10, se sigue que:

D(g−1 ◦ f)(a)(ei) =(D(g−1 ◦ f)1(a)(ei), ..., D(g−1 ◦ f)k(a)(ei))

=((g−1 ◦ f)′1(a) · (ei)t, ..., (g−1 ◦ f)′k(a) · (ei)t)

=(Di(g
−1 ◦ f)1(a), ..., Di(g

−1 ◦ f)k(a))

=
n∑

j=i

Di(g
−1 ◦ f)j(a)ej,

(6.2)

de (6.1) y (6.2) resulta que cij = Di(g
−1 ◦ f)j(a). Aśı, A = (g−1 ◦ f)′(a), con lo

cual, se concluye que det((g−1 ◦ f)′(a)) > 0.

Definición 6.8. Una variedad M de dimensión k cuyas orientaciones µx pueden

ser escogidas consistentemente es llamada orientable y una elección particular

de µx es llamada orientación µ de M . Una variedad junto a una orientación µ

es llamada una variedad orientada.

Si M es una variedad de dimensión k con frontera y x ∈ ∂M , entonces por

Proposición 5.3, se sigue que (∂M)x es un subespacio de dimensión (k − 1) del

espacio vectorial Mx de dimensión k. Luego, el complemento ortogonal de (∂M)x

tiene dimensión 1, es decir, (∂M)⊥x es una recta, y dado que toda recta tiene dos

direcciones se puede asegurar que existen exactamente dos vectores unitarios en

Mx que son perpendiculares a (∂M)x, cada vector unitario corresponde a cada las

direcciones ya mencionadas.
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Definición 6.9. Sea f : W → Rn un sistema coordenado con W ⊂ Hk, donde

Hk es el semiespacio explicado en la Definición 5.3, y f(0) = x. Uno de los dos

vectores unitarios mencionados anteriormente es f∗(v0) ∈Mx, para algún v0 cuya

k-ésima entrada es negativa. Este vector unitario es llamado vector unitario

normal exterior y denotado por n(x).

Proposición 6.2. Sea µx una orientación de una variedad con frontera M de

dimensión k. Dado x ∈ ∂M podemos escoger a una base {v1, ..., vk−1} de (∂M)x

tal que

[n(x), v1, ..., vk−1] = µx,

si se cumple que

[n(x), w1, ..., wk−1] = µx,

donde {w1, ..., wk−1} es otra base de (∂M)x, entonces, tanto [v1, ..., vk−1] como

[w1, ..., wk−1] son la misma orientación para (∂M)x. Esta orientación es denotada

como (∂µ)x.

Demostración: Sea x ∈ ∂M y {v1, ..., vk−1}, {w1, ..., wk−1} dos bases de (∂M)x,

dado que n(x) es un vector normal a (∂M)x, se sigue que es ortogonal a ambas

bases ya mencionadas, aśı, {n(x), v1, ..., vk−1} y {n(x), w1, ..., wk−1} son bases de

Mx, supongamos que,

[n(x), v1, ..., vk−1] = µx = [n(x), w1, ..., wk−1],

aśı, debido a que n(x) = 1 · n(x) y a que v1, ..., vk−1, w1, ..., wk−1 son elementos

de (∂M)x y por ende no pueden ser escritos como combinación lineal de n(x), se

sigue que la matriz de cambio entre ambas bases de Mx es,

A =


1 0 0 · · · 0

0 a11 a12 · · · a1(k−1)

...
...

... · · · ...

0 a(k−1)1 a(k−1)2 · · · a(k−1)(k−1)

 ,

sea ahora la matriz A′ = (aij), aśı, det(A) = 1 · det(A′) = det(A′), luego, dado

que A tiene determinante positivo, se sigue que A′ también tiene determinante
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positivo, además, como A′ es la matriz de cambio de las bases de (∂M)x dadas

previamente, se concluye que [v1, ..., vk−1] y [w1, ..., wk−1] son la misma orientación

para (∂M)x.

Proposición 6.3. Las orientaciones (∂µ)x, para todo x ∈ ∂M son consistentes

en ∂M .

Con esto, dada M una variedad, si M es orientable, entonces ∂M también

es orientable, y una orientación µ para M determina una orientación ∂(µ)x para

∂M .

Definición 6.10. (∂µ)x es llamada la orientación inducida.

Proposición 6.4. Consideremos a la variedad M = Hk con la orientación usual,

la orientación inducida en ∂Hk = Rk−1 = {x ∈ Hk : xk = 0} es (−1)k veces la

orientación usual.

Si M es una variedad de dimensión n− 1 es posible definir un vector unitario

normal exterior sin la necesidad de que M sea la frontera de una variedad de

dimensión n.

Definición 6.11. SeanM una variedad de dimensión n−1, x ∈M y una orienta-

ción µx. Si [v1, ..., vn−1] = µx, entonces, escogemos a un vector unitario n(x) ∈ Rn
x

que sea perpendicular a Mx tal que [n(x), v1, ..., vn−1] es la orientación usual de

Rn
x. A n(x) se le llama vector unitario normal exterior a M . Esta definición

es válida incluso si M no es la frontera de alguna variedad de dimensión n.

Definición 6.12. Sean p, n ∈ N, con p ≤ n y M ⊂ Rn una variedad. Un p-cubo

singular sobre la variedad M es una función continua c : [0, 1]p →M.

Si ω es una p-forma en una variedad M con frontera de dimensión k y c es un

p-cubo singular en M , entonces:∫
c

ω =

∫
[0,1]p

c∗ω.

Cuando tomamos a un k-cubo singular c sobre una variedad M con frontera de

dimensión k, existen un conjunto abierto W que contiene a [0, 1]k y un sistema

coordenado f : W → Rn tal que c(x) = f(x), para todo x ∈ [0, 1]k.

Definición 6.13. Sea M una variedad con frontera de dimensión k y un k-cubo

c sobre M . Si M es orientada, entonces c preserva la orientación si f lo hace.
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Teorema 6.2. Sean c1, c2 : [0, 1]
k →M dos k-cubos singulares y M una variedad

orientada de dimensión k. Si c1 y c2 preservan la orientación en M y ω es una

k-forma en M tal que ω = 0 fuera de c1([0, 1]
k) ∩ c2([0, 1]k), entonces:∫

c1

ω =

∫
c2

ω.

Sea ω una k-forma en una variedad orientada M de dimensión k, si existe un

k-cubo singular c que preserva la orientación tal que w = 0 fuera de c([0, 1]k) se

define a la integral de ω sobre M como:∫
M

ω =

∫
c

ω.

Por Teorema 6.2, es fácil ver que la integral de ω sobre M no depende de c. Por

otro lado, dada una k-forma en una variedad M , se sigue que existe una cubierta

abierta O de M tal que para cada U ∈ O existe un k-cubo singular c que preserva

la orientación, tal que U ∈ c([0, 1]k). Sea Φ la partición de la unidad para M

subordinada a la cubierta O, aśı, la integral de ω sobre M se define como:∫
M

ω =
∑
ϕ∈Φ

∫
M

ϕ · ω.

Todas las definiciones pueden ser dadas para una variedad M de dimensión k que

posea frontera y una orientación µx. Sean ∂M la frontera deM , ∂µ su orientación

inducida y c un k-cubo singular que preserva la orientación en M tal que c(k,0)

yace sobre ∂M y es la única cara que tiene puntos interiores en ∂M . Recordemos

que c(k,0) preserva la orientación si k es par, pero no si k es impar, luego, si ω es

una (k − 1)-forma en M tal que ω = 0 fuera de c([0, 1]k), tenemos∫
c(k,0)

ω = (−1)k
∫
∂M

ω.

Por otro lado, c(k,0) aparece con coeficiente (−1)k en ∂c, aśı,∫
∂c

ω =

∫
(−1)kc(k,0)

ω

= (−1)k
∫
c(k,0)

ω
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= (−1)2k
∫
∂M

ω

=

∫
∂M

ω.

(6.3)

6.5. Teorema de Stokes

Teorema 6.3. (Teorema de Stokes) Sea M una variedad orientada con frontera

de dimensión k. Si M es compacta y ω es una (k − 1)-forma en M , entonces:∫
M

dω =

∫
∂M

ω.

Demostración: Sean M una variedad orientada con frontera de dimensión k y

ω una (k − 1)-forma en M . Supongamos que existe un k-cubo c que preserva la

orientación en M\∂M , tal que ω = 0 fuera de c([0, 1]k), por continuidad de ω, se

cumple que ω es 0 en ∂c. Por la definición de dω, (4.11) y (4.12) tenemos que∫
c

dω =

∫
[0,1]k

c∗(dω)

=

∫
[0,1]k

d(c∗(ω))

=

∫
[0,1]k

I∗(d(c∗(ω)))

=

∫
Ik
d(c∗(ω))

=

∫
∂Ik

c∗(ω)

=

∫
∂c

ω.

Luego, ∫
M

dω =

∫
c

dω =

∫
∂c

ω = 0,

ya que ω es 0 en ∂c, por otro lado,
∫
∂M

ω = 0 ya que c está contenida en M\∂M
y por ende ω = 0 en ∂M . Supongamos ahora que existe un k-cubo singular c que

preserva la orientación tal que c(k,0) es la única cara de c que permanece en ∂M y
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ω = 0 fuera c([0, 1]k), entonces, por (6.3) se sigue que∫
M

dω =

∫
c

dω =

∫
∂c

ω.

Si consideramos ahora el caso general, existe una cubierta abierta O de M y una

partición de la unidad Φ para M subordinada a O tal que para cada ϕ ∈ Φ la

forma ϕ·ω pertenece a alguno de los dos tipos de formas considerados previamente,

tenemos que,

0 = d(1) = d

(∑
ϕ∈Φ

ϕ

)
=
∑
ϕ∈Φ

d(ϕ),

lo que implica que:

0 =

(∑
ϕ∈Φ

d(ϕ)

)
∧ ω =

∑
ϕ∈Φ

(d(ϕ) ∧ ω).

Dado que M es compacto, la suma es finita, aśı,

0 =

∫
M

0

=

∫
M

∑
ϕ∈Φ

(d(ϕ) ∧ ω)

=
∑
ϕ∈Φ

∫
M

(d(ϕ) ∧ ω),

con esto, y aplicando Teorema 3.4, 2) se tiene que,∫
M

dω =
∑
ϕ∈Φ

∫
M

ϕ · dω

=0 +
∑
ϕ∈Φ

∫
M

ϕ · dω

=
∑
ϕ∈Φ

∫
M

(d(ϕ) ∧ ω) +
∑
ϕ∈Φ

∫
M

ϕ · dω

=
∑
ϕ∈Φ

∫
M

(d(ϕ) ∧ ω + ϕ · dω)

=
∑
ϕ∈Φ

∫
M

(d(ϕ) ∧ ω + (−1)0ϕ ∧ dω)
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=
∑
ϕ∈Φ

∫
M

d(ϕ ∧ ω)

=
∑
ϕ∈Φ

∫
M

d(ϕ · ω)

=
∑
ϕ∈Φ

∫
∂M

ϕ · ω

=

∫
∂M

ω.

Con lo cual, se da por demostrado el teorema.





Caṕıtulo 7

Aplicaciones de las formas

diferenciales

Teorema 7.1. Sean R ∈ R+ y n ∈ N. Dada la función cR,n : [0, 1] → R2\{(0, 0)}
definida como sigue,

cR,n(t) = (R cos(2πnt), R sen(2πnt)),

con R > 0 y n ∈ N, se cumple la siguiente igualdad,∫
cR,n

dθ = 2πn,

donde dθ es la 1-forma encontrada en el Ejemplo 3.9, además, fcR,n
̸= ∂c para

cualquier 2-cadena en R2\{(0, 0)}.

Demostración: Aplicando la definición de integral sobre cubos singulares y el

Teorema 3.2, 2) y 3), se sigue que:∫
cR,n

dθ =

∫
cR,n

(
−x2

x21 + x22
dx1 +

x1
x21 + x22

dx2

)
=

∫
[0,1]

c∗R,n

(
−x2

x21 + x22
dx1 +

x1
x21 + x22

dx2

)
=

∫
[0,1]

(
−R sen(2πnt)

(R cos(2πnt))2 + (R sen(2πnt))2
c∗R,n(dx1)

+
R cos(2πnt)

(R cos(2πnt))2 + (R sen(2πnt))2
c∗R,n(dx2)

)

175
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=

∫
[0,1]

(
−R sen(2πnt)

R2(cos2(2πnt) + sen2(2πnt))
c∗R,n(dx1)

+
R cos(2πnt)

R2(cos2(2πnt) + sen2(2πnt))
c∗R,n(dx2)

)
=

∫
[0,1]

(
− sen(2πnt)

R(1)
c∗R,n(dx1) +

cos(2πnt)

R(1)
c∗R,n(dx2)

)
=

∫
[0,1]

1
R
(− sen(2πnt)c∗R,n(dx1) + cos(2πnt)c∗R,n(dx2)),

por otro lado, por Teorema 3.2, 1) tenemos que:

c∗R,n(dx1) =−R2πn sen(2πnt)dt,

c∗R,n(dx2) =R2πn cos(2πnt)dt,

aśı,∫
[0,1]

1
R
(− sen(2πnt)c∗R,n(dx1) + cos(2πnt)c∗R,n(dx2))

=

∫
[0,1]

1
R
(− sen(2πnt)(−R2πn sen(2πnt)dt) + cos(2πnt)R2πn cos(2πnt)dt)

=

∫
[0,1]

R
R
2πn(sen2(2πnt) + cos2(2πnt))dt

=2πn

∫
[0,1]

1dt

=2πnt|10
=2πn(1− 0)

=2πn.

Supongamos ahora que existe alguna 2-cadena c tal que fcR,n
= ∂c, aśı, por el

Teorema 4.2 se tiene que:∫
fcR,n

dθ =

∫
∂c

dθ =

∫
c

d(dθ) =

∫
c

O = 0.

Por otro lado, ∫
fcR,n

dθ =

∫
cR,n

dθ = 2πn,
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aśı, 2πn = 0, lo cual es una contradicción, y por ende no existe alguna 2-cadena

c tal que fcR,n
= ∂c.

Teorema 7.2. (Independencia de parametrización) Sea c un k-cubo singular

de Rk y p : [0, 1]k → [0, 1]k una función inyectiva tal que p([0, 1]k) = [0, 1]k y

det(p′(x)) > 0, para todo x ∈ [0, 1]k. Si ω es una k-forma de Rk, entonces:∫
c

ω =

∫
c◦p
ω.

Demostración: Sean c un k-cubo singular y ω una k-forma en Rk, luego, se

cumple la siguiente igualdad ω = ω1,...,kdx1 ∧ · · · ∧ dxk, denotemos a ω1,...,k como

f , luego, por Teorema 3.3,

c∗(ω) = (f ◦ c)det(c′)dx1 ∧ · · · ∧ dxk,

tomemos a g = (f ◦ c)det(c′), aśı, c∗(ω) = gdx1∧ · · · ∧dxk, por otro lado, notemos

que (c ◦ p) : [0, 1]k → [0, 1]k, además, denotemos a la frontera de [0, 1]k como

∂[0, 1]k, aśı, [0, 1]k = (0, 1)k ∪ ∂[0, 1]k, con esto y aplicando el Teorema 3.2, 5) y

el Teorema 3.3, se obtiene lo siguiente:∫
c◦p
ω =

∫
[0,1]k

(c ◦ p)∗ω

=

∫
[0,1]k

p∗(c∗ω)

=

∫
[0,1]k

p∗(gdx1 ∧ · · · ∧ dxk)

=

∫
[0,1]k

(g ◦ p)det(p′)dx1 ∧ · · · ∧ dxk

=

∫
(0,1)k∪∂[0,1]k

(g ◦ p)det(p′)dx1 ∧ · · · ∧ dxk

=

∫
(0,1)k

(g ◦ p)det(p′)dx1 ∧ · · · ∧ dxk +
∫
∂[0,1]k

(g ◦ p))det(p′)dx1 ∧ · · · ∧ dxk,

debido a que se cumplen todas las hipótesis del Teorema 1.14, la primera integral

de la suma cumple la siguiente igualdad:∫
(0,1)k

(g ◦ p)det(p′)dx1 ∧ · · · ∧ dxk =
∫
p((0,1)k)

gdx1 ∧ · · · ∧ dxk,
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respecto a la segunda integral de la suma, recordemos que ∂[0, 1]k tiene medida

cero, y por Teorema 1.19 esta integral es igual a cero. Por otro lado, por Teo-

rema 1.18 se tiene que p(∂[0, 1]k) tiene medida cero. Luego, por Teorema 1.19,

se sigue que: ∫
p(∂[0,1]k)

gdx1 ∧ · · · ∧ dxk = 0,

con esto, ∫
p((0,1)k)

gdx1 ∧ · · · ∧ dxk =
∫
p((0,1)k)

gdx1 ∧ · · · ∧ dxk + 0

=

∫
p((0,1)k)

gdx1 ∧ · · · ∧ dxk

+

∫
p(∂[0,1]k)

gdx1 ∧ · · · ∧ dxk

=

∫
p((0,1)k)∪p(∂[0,1]k)

gdx1 ∧ · · · ∧ dxk

=

∫
p((0,1)k∪∂[0,1]k)

gdx1 ∧ · · · ∧ dxk

=

∫
p([0,1]k)

gdx1 ∧ · · · ∧ dxk

=

∫
[0,1]k

gdx1 ∧ · · · ∧ dxk,

con lo cual se concluye que∫
c◦p
ω =

∫
[0,1]k

gdx1 ∧ · · · ∧ dxk =
∫
c

ω.

Por lo tanto, se da por demostrado el teorema.

Teorema 7.3. Si c es un 1-cubo singular en R2\{(0, 0)} con c(0) = c(1), entonces

existe un único n tal que fc− fc1,n = ∂c2, para alguna 2-cadena c2 de R2\{(0, 0)}.

Demostración: Supongamos ahora que existen n,m ∈ N para los cuales se cum-

plen las siguientes igualdades,

fc − fc1,n =∂c21,

fc − fc1,m =∂c22,
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donde c21 y c22 son 2-cadenas de R2\{(0, 0)}. Sea ahora f = fc22 − fc21 , luego,

∂f =∂fc22 − ∂fc21

=fc − fc1,m − fc + fc1,n

=fc1,n − fc1,m ,

luego, aplicando el Teorema 4.2, se tiene que:∫
fc1,n−fc1,m

dθ =

∫
∂f

dθ =

∫
f

d(dθ) =

∫
f

O = 0.

Por otro lado, ∫
fc1,n−fc1,m

dθ =

∫
fc1,n

dθ −
∫
fc1,m

dθ

=2πn− 2πm

=2π(n−m).

Aśı, 2π(n−m) = 0, lo que implica que n = m y por ende se concluye que el entero

que cumple la igualdad es único.

Para el siguiente teorema, veremos a C de la siguiente manera,

C = {(a, b) : a, b ∈ R},

con las operaciones:

(a, b) + (c, d) =(a+ c, b+ d),

(a, b) · (c, d) =(ac− bd, ad+ bc).

Teorema 7.4. Sean a1, ..., an ∈ C y definamos a la función g : C → C dada como:

g(z) = zn + a1z
n−1 + · · ·+ an.

Definamos ahora al 1-cubo singular cR,g : [0, 1] → C\{0+0i} como cR,g = g ◦ cR,1,

con R > 0 y al 2-cubo singular c como c(s, t) = t · cR,n(s) + (1− t)cR,g(s).

a) Se cumple que ∂c = fcR,g
− fcR,n

, además, c([0, 1]× [0, 1]) ⊂ C\{0+ 0i} si R

es muy grande.
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b) Todo polinomio zn + a1z
n−1 + · · ·+ an, con ai ∈ C para todo i ∈ {1, ..., n},

tiene una ráız en C.

Demostración:

a) Tenemos que,

c(2,0)(s, t) =(c ◦ I2(2,0))(s, t) = c(s, 0) = cR,g(s),

c(2,1)(s, t) =(c ◦ I2(2,1))(s, t) = c(s, 1) = cR,n(s),

c(1,0)(s, t) =(c ◦ I2(1,0))(s, t)

=c(0, t)

=tcR,n(0) + (1− t)cR,g(0)

=t(R cos(2πn · 0), R sen(2πn · 0)) + (1− t)g(cR,1(0))

=t(R, 0) + (1− t)g(R cos(2π · 0), R sen(2π · 0))

=t(R, 0) + (1− t)g(R, 0),

c(1,1)(s, t) =(c ◦ I2(1,1))(s, t)

=c(1, t)

=tcR,n(1) + (1− t)cR,g(1)

=t(R cos(2πn · 1), R sen(2πn · 1)) + (1− t)g(cR,1(1))

=t(R, 0) + (1− t)g(R cos(2π · 1), R sen(2π · 1))

=t(R, 0) + (1− t)g(R, 0),

notemos que c(1,0) = c(1,1), aśı,

∂c =
2∑

i=1

1∑
α=0

(−1)i+αfci,α

=− fc(1,0) + fc(1,1) + fc(2,0) − fc(2,1)

=− fc(1,0) + fc(1,0) + fcR,g
− fc(R,n)

=fcR,g
− fcR,n

.

Por otro lado, tenemos que

g(z) =zn + a1z
n−1 + · · ·+ an

=zn
(
1 +

a1
z

+ · · ·+ an
zn

)
,
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además, si z = R cos(2πs) +R sen(2πs)i, entonces:

zn =(R cos(2πs) +R sen(2πs)i)n

=(R cos(2πs), R sen(2πs))n

=Rn(cos(2πns), sen(2πns)),

para todo n ∈ N, aśı,

g(z) =g(R cos(2πs), R sen(2πs))

=Rn(cos(2πns), sen(2πns))

(
1 +

a1
R(cos(2πs), sen(2πs))

+ · · ·+ an
Rn(cos(2πns), sen(2πns))

)
=g(cR,1(s)).

Luego, si R es muy grande, se sigue que

g(cR,1(s)) ≈ Rn(cos(2πns), sen(2πns)) = Rn−1cR,n(s),

supongamos ahora que existe t0 ∈ [0, 1] tal que

c(s, t0) ≈ t0cR,n(s) + (1− t0)R
n−1cR,n(s) = (0, 0),

en otras palabras,

((t0 + (1− t0)R
n−1) cos(2πns), (t0 + (1− t0)R

n−1) sen(2πns)) = (0, 0),

dado que no existe valor para s tal que cos(2πns) y sen(2πns) sean iguales

a 0, se sigue que t0 + (1− t0)R
n−1 = 0, con lo cual, Rn−1 = −t0

1−t0
, dado que

t0 ∈ [0, 1], se sigue que Rn−1 es negativo, lo cual es una contradicción, y por

ende se concluye que (0, 0) /∈ c([0, 1]× [0, 1]).

b) Supongamos que g no tiene ráıces en C. De a) del teorema 7.4, tenemos

que fcR,g
= ∂c + fcR,n

, aśı, apoyándonos del Ejemplo 3.9, de la Teorema

7.1 y del Teorema 4.2 se tiene que,∫
fcR,g

dθ =

∫
∂c+fcR,n

dθ
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=

∫
∂c

dθ +

∫
fcR,n

dθ

=

∫
c

d(dθ) +

∫
cR,n

dθ

=

∫
c

O + 2πn

=0 + 2πn

=2πn.

(7.1)

Por otro lado, sea el 2-cubo singular c′ de R2 dado como sigue,

c′(s, t) =ctR,f (s) = g(tR cos(2πs), tR sen(2πs)).

Luego, apoyándonos de teorema 7.4, a), se sigue que,

c′(1,0)(s, t) =c
′(0, t)

=g(tR, 0),

c′(1,1)(s, t) =c
′(1, t)

=g(tR, 0),

c′(2,0)(s, t) =c
′(s, 0)

=g(0, 0)

=0n + a10
n−1 + · · ·+ an

=an,

c′(2,1)(s, t) =c
′(s, 1)

=g(R cos(2πs), R sen(2πs))

=cR,f (s),

notemos que an ̸= 0 + i0 ya que g no tiene ráıces, y debido a que an es un

valor fijo, c′(2,0) es una 2-cadena constante, además, c′(1,0) = c′(1,1), aśı,

∂c′ =− fc′
(1,0)

+ fc′
(1,1)

+ fc′
(2,0)

− fc′
(2,1)

=− fc′
(1,0)

+ fc′
(1,0)

+ fc′
(2,0)

− fcR,g

=fc′
(2,0)

− fcR,g
,
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aśı, y guiándonos por lo visto en (7.1)∫
c′
(2,0)

dθ =

∫
fc′

(2,0)

dθ

=

∫
∂c′+fcR,g

dθ

=

∫
∂c′
dθ +

∫
fcR,g

dθ

=2π,

pero, por otro lado, se tiene que,∫
c′
(2,0)

dθ =

∫
c′
(2,0)

(
−x2

x21 + x22
dx1 +

x1
x21 + x22

dx2

)
=

∫
[0,1]2

(
−an,2

a2n,1 + a2n,2
det(a′n)dx1 +

an,1
a2n,1 + a2n,2

det(a′n)dx2

)
=

∫
[0,1]2

(0dx1 + 0dx2)

=0,

que el resultado anterior sea igual a cero, se debe a que al ser c′(2,0) = an constante

se sigue que det(a′n) = 0, y por ende se llega a una contradicción, ya que 2π ̸= 0,

con lo cual se concluye que g tiene alguna ráız en C.

Teorema 7.5. Sean R ⊂ R3 tal que R = T × [0, b], con T ⊂ R2 y u : R3 → R2

una solución de la ecuación parabólica:

∂2u

∂x2
+
∂2u

∂y2
=
∂u

∂t
.

Si se cumple que u = 0 en T × {0} y en (∂T ) × [0, b], entonces u = 0 en todo R

(Flandres, 1989).

Demostración: Consideremos a la ecuación parabólica siguiente,

∂2u

∂x21
+
∂2u

∂x22
=

∂u

∂x3
,

y supongamos que u es una solución de la ecuación previa, la cual es válida en

una región en R3 que contiene a los conjuntos R y ∂R. Supongamos que existe
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3-cubo singular c : [0, 1]3 → R3 tal que c([0, 1]3) = R. Sea la 2-forma siguiente,

β = 2uD1udx2 ∧ dx3 − 2uD2udx1 ∧ dx3 − u2dx1 ∧ dx2,

luego,

dβ =d(2uD1udx2 ∧ dx3 − 2uD2udx1 ∧ dx3 − u2dx1 ∧ dx2)

=d(2uD1udx2 ∧ dx3)− d(2uD2udx1 ∧ dx3)− d(u2dx1 ∧ dx2)

=(2D1uD1u+ 2uD1(D1u))dx1 ∧ dx2 ∧ dx3
− (2D2uD2u+ 2uD2(D2u))dx2 ∧ dx1 ∧ dx3
− 2uD3udx3 ∧ dx1 ∧ dx2

=

(
2

(
∂u

∂x1

)2

+ 2u
∂2u

∂x21

)
dx1 ∧ dx2 ∧ dx3

− (−1)1·1
(
2

(
∂u

∂x2

)2

+ 2u
∂2u

∂x22

)
dx1 ∧ dx2 ∧ dx3

− (−1)1·22u
∂u

∂x3
dx1 ∧ dx2 ∧ dx3

=

(
2

(
∂u

∂x1

)2

+ 2u
∂2u

∂x21
+ 2

(
∂u

∂x2

)2

+ 2u
∂2u

∂x22
− 2u

∂u

∂x3

)
dx1 ∧ dx2 ∧ dx3

=

(
2

(
∂u

∂x1

)2

+ 2

(
∂u

∂x2

)2

+ 2u
∂u

∂x3
− 2u

∂u

∂x3

)
dx1 ∧ dx2 ∧ dx3

=

(
2

(
∂u

∂x1

)2

+ 2

(
∂u

∂x2

)2)
dx1 ∧ dx2 ∧ dx3,

con esto, y aplicando el Teorema 4.2, se tiene que:∫
∂c

β =

∫
c

(
2

(
∂u

∂x1

)2

+ 2

(
∂u

∂x2

)2)
dx1 ∧ dx2 ∧ dx3

=

∫
c

(
2

(
∂u

∂x1

)2

+ 2

(
∂u

∂x2

)2)
dx1dx2dx3.

(7.2)

Debido a que a R lo podemos ver como el producto cartesiano de conjunto T de

R2 con [0, b], existen c1, c2, c3 : R3 → R3 cubos singulares tales que,

c1([0, 1]
3) =(∂T )× [0, b],

c2([0, 1]
3) =T × {b},

c3([0, 1]
3) =T × {0},
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aśı, ∂c = fc1 + fc2 − fc3 , luego,∫
∂c

β =

∫
fc1+fc2−fc3

β

=

∫
fc1

β +

∫
fc2

β −
∫
fc3

β

=

∫
c1

β +

∫
c2

β −
∫
c3

β

=

∫
(∂T )×[0,b]

β +

∫
T×{0}

β −
∫
T×{b}

β,

dado que u es igual a 0 en T × {0} y en (∂T )× [0, b] se sigue que,∫
(∂T )×[0,b]

β =

∫
T×{0}

β = 0,

por otro lado,∫
T×{b}

β =

∫
T×{b}

[2uD1udx2 ∧ dx3 − 2uD2udx1 ∧ dx3 − u2dx1 ∧ dx2]

=

∫
T×{b}

2uD1udx2 ∧ dx3 −
∫
T×{b}

2uD2udx1 ∧ dx3 −
∫
T×{b}

u2dx1 ∧ dx2

=

∫
T

∫
b

2uD1udx2dx3 −
∫
T

∫
b

2uD2udx1dx3 −
∫
T×{b}

u2dx1dx2

=−
∫
T×{b}

u2dx1dx2,

las primeras dos integrales desaparecen debido a que la integral respecto a la

variable x3 es sobre un punto, de aqúı, y retomando a la igualdad dada en (7.2),

se tiene que,

−
∫
T×{b}

u2dx1dx2 =

∫
c

(
2

(
∂u

∂x1

)2

+ 2

(
∂u

∂x2

)2)
dx1dx2dx3,

visto de otra forma,∫
T×{b}

u2dx1dx2+

∫
c

(
2

(
∂u

∂x1

)2

+ 2

(
∂u

∂x2

)2)
dx1dx2dx3 = 0,

notemos que las integrales son con funciones positivas, luego, u2 = 0 en T × {b}
y ∂u

∂x1
= ∂u

∂x2
= 0 en R, debido a que las derivadas de u respecto a las variables x1
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y x2 son iguales a 0 se tiene que u es una función que depende exclusivamente de

la variable x3, aśı, podemos decir que u(x1, x2, x3) = v(x3), para alguna función v

que dependa solo de x3.

Aunado a lo anterior, también tenemos que u = 0 en T × {b}, aśı, v(b) = 0, por

otro lado, dado que u es una solución a la ecuación de calor, se cumple que,

dv

dx3
=
∂u

∂x3

=
∂2u

∂x21
+
∂2u

∂x22

=0 + 0

=0,

con lo cual v es una función contante en R, aśı, como v(b) = 0, luego v(t) = 0,

para todo t ∈ [0, b], con lo cual se concluye que u = 0 en R.



Conclusiones

Originalmente, este trabajo de tesis iba dirigido a estudiantes de Matemáticas

Aplicadas, no obstante, durante la redacción de los últimos caṕıtulos se decidió por

ampliar este enfoque, y actualmente, alumnos de F́ısica Aplicada también pueden

hacer uso de este trabajo. Aunque otro de los objetivos de redactar este escrito era

el que los lectores no tuvieran gran dificultad para entender y utilizar conceptos,

teoremas o proposiciones referentes a las formas diferenciales, es necesario que

estos lectores posean conocimientos en distintas áreas de las matemáticas, siendo

las más importantes: Cálculo Diferencial e Integral en Varias Variables y Álgebra

lineal.

Por otro parte, la mayoŕıa de las demostraciones aqúı presentadas ya exist́ıan en

libros, aunque no eran mostradas por completo, por lo que una de las aportaciones

de esta tesis es justamente dar explicaciones detalladas de dichas demostraciones.

Algunos de los teoremas cuyas demostraciones han sido explicadas minuciosamen-

te son: Lema de Poincaré, Teorema de Stokes (tanto la versión para variedades

como la versión para cadenas singulares), etc. Asimismo, todas las explicaciones

de los ejemplos mostrados son completamente de mi autoŕıa.

De igual manera, yo realicé la mayoŕıa de las explicaciones y comentarios sobre

las principales definiciones como: tensores, orientación, formas diferenciales, cubos

singulares, variedades, entre otros.

Si bien las aplicaciones de las formas diferenciales son muchas tanto en el área de

las matemáticas como en el área de la f́ısica, no fue posible agregar más de las

aqúı mostradas debido a limitaciones de tiempo, a que muchas de ellas ya fueron

descritas en otros trabajos de tesis y a que este escrito ya es muy extenso, sin

embargo, algunas ramas donde podemos aplicar a las formas diferenciales son:

Electromagnetismo (Ecuaciones de Maxwell), Análisis Complejo, Álgebra lineal,

Geometŕıa diferencial, entre otras.
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