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Resumen

El estudio de los sistemas que presentan interaccién radiacién-materia es fundamental para el
area de Optica cuantica, dado que permite comprender diferentes fenémenos, calcular propie-
dades y fungir como base para la computacion cuantica. Un modelo ampliamente utilizado
es el de Jaynes-Cummings, que considera a un atomo de dos niveles en interaccién con un
campo electromagnético cuantizado.

En este trabajo, se estudia el sistema formado por dos atomos de dos niveles en interaccién
con un campo eléctrico cuantizado, con el objetivo de obtener la expresion para el Hamil-
toniano de interaccion en el limite dispersivo. Para lograrlo, se propusieron y aplicaron dos
transformaciones unitarias, tomando como referencia las transformaciones unitarias para el
caso de un solo atomo que permiten simplificar el modelo y alcanzar el resultado buscado.
Como resultado principal, se obtuvo la expresiéon del Hamiltoniano buscado para el sistema
de estudio. Ademas, se generaliza el calculo para un sistema de k dtomos de dos niveles, del
cual se recuperan como casos particulares los correspondientes a uno y dos atomos.
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Abstract

The study of systems exhibiting radiation—matter interaction is fundamental in the field of
quantum optics, as it allows one to understand different phenomena, calculate properties, and
serve as a basis for quantum computation. A widely used model is the Jaynes—Cummings
model, which describes a two-level atom interacting with a quantized electromagnetic field.

In this work, we study the system formed by two two-level atoms interacting with a quantized
electric field, with the objective of obtaining the expression for the interaction Hamiltonian in
the dispersive limit. To this end, we propose and apply two unitary transformations, taking
as reference those used in the single-atom case, which allow us to simplify the model and
obtain the desired result.

As the main result, we obtain the expression for the interaction Hamiltonian in the dispersive
limit for the studied system. Furthermore, we generalize the calculation to a system of k two-
level atoms, from which the cases of one and two atoms are recovered as particular instances.
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Capitulo 1

Introduccion

La fisica pasdé por dos grandes revoluciones cientificas en la primera mitad del siglo XX,
siendo estas la mecanica cuantica y la teoria de la relatividad. Ambas teorias surgieron por
la incapacidad de la mecanica newtoniana para explicar diferentes fenémenos fisicos. Una de
las fallas de la teoria clasica se presenté al buscar estudiar el cuerpo negro, lo que conllevé a
la catastrofe ultravioleta. Fue gracias a Max Planck y a la idea que éste tuvo, la introduccion
del cuanto de energia, que se consiguié obtener una descripcion tedrica que concordaba con
los resultados experimentales [1]; otros ejemplos de fallos clasicos son el efecto fotoeléctrico
y el calor especifico en los sélidos. La cuantizacién de la energia representé un cambio de
paradigma en la fisica, el de considerar que las cantidades fisicas son todas continuas; de
tal manera que ahora un sistema no podia poseer valores continuos sino discretos, siendo
multiplos de la constante de Planck (h).

La cuantizacion no se limito a la energia, sino que esto se daria con otras cantidades fisicas
como el momento angular; se hallarian otras nuevas cantidades siendo inherentemente discre-
tas, como el espin [2]. También, este proceso continué hacia otros aspectos de la fisica, como
la cuantizacién del campo electromagnético [3] y cuyos cuantos reciben el nombre de fotones
debido a Gilbert N. Lewis [1]. La formalizacion de la mecénica cudntica se consiguié con la
mecanica ondulatoria de Schrodinger y la mecanica matricial de Heisenberg, las cuales son
equivalentes entre si.

El estudio de los sistemas cuanticos eventualmente llegd a la interaccion radiacion-materia,
la cual se identific6 como una interaccion de especial interés para diferentes areas de la fisica.
Ademas de la cuantizacién del campo electromagnético, se requiere de una descripcién cuan-
tica de los atomos, ya que los niveles energéticos en los atomos son discretos; una primera
aproximacion para la descripcién fisica se alcanza al considerar que un atomo posee solo dos
estados posibles, el estado base y el estado excitado, siendo entonces un atomo de dos niveles.

La descripcion de la interaccion radiacién-materia se consolida con el trabajo publicado por
Edwin Jaynes y Frederick Cummings, modelo que lleva su nombre, en donde no solamen-
te se describe al sistema fisico formado por un atomo de dos niveles en interaccién con un
campo electromagnético cuantizado, sino que se proporciona la solucién analitica [4]. Pese a
la simplicidad del modelo, éste permite comprender qué sucede en los fenémenos de inter-



accion entre radiacion y materia; ademas, permite calcular propiedades de interés del sistema.

La importancia del modelo de Jaynes-Cummings no es sélo historica para la fisica, sino que
actualmente sigue siendo un punto de partida para los estudios que se realizan [5-15]. Sin
embargo, el modelo posee una limitacién crucial, considera un solo atomo de dos niveles,
mientras que en la naturaleza los sistemas se componen de una cantidad mucho mayor de
elementos. Debido a lo anterior, el siguiente paso para el estudio de la interacciéon radiacion-
materia debe considerar un segundo atomo de dos niveles como paso intermedio para alcanzar
el modelo general para una cantidad k de &tomos de dos niveles, siendo esto ultimo una des-
cripcién mas certera de la realidad fisica. Si bien existen modelos que consideran una cantidad
arbitraria de atomos como el de Tavis-Cummings [16], estos no toman en cuenta el limite
dispersivo, el cual se describe en el siguiente parrafo.

El Hamiltoniano del modelo de Jaynes-Cummings se halla constituido por tres términos, el
Hamiltoniano del atomo de dos niveles que contiene la frecuencia de transicién atémica, el
Hamiltoniano del campo electromagnético que incluye la frecuencia de éste y un término de
interaccién de tipo dipolar. A partir de lo anterior, se puede suponer que la dinamica del
sistema existe si las frecuencias del campo y del &tomo son similares, fenémeno de resonancia;
no obstante, la dinamica existe todo el tiempo, aunque no es tan significativa como cuando
las frecuencias son muy similares. A la dinamica existente entre atomo y campo fuera de
resonancia se le conoce como limite dispersivo y permite la simplificaciéon del Hamiltoniano
que describe al sistema.

Por lo tanto, el presente trabajo busca hallar la expresion para el Hamiltoniano de interaccion
en el limite dispersivo para el sistema formado por dos atomos de dos niveles en interaccion
con un campo eléctrico cuantizado. Para alcanzar el objetivo se ha de establecer en primera
instancia el Hamiltoniano del sistema sin tomar en cuenta ain el limite dispersivo, esto se
consigue al sélo considerar la interacciéon atomo-campo y no la posible interaccién atomo-
atomo, puesto que tal interaccion complica la descripcion fisica incluso para un sistema tan
pequeno como el que se busca estudiar. Una vez obtenido el Hamiltoniano base, se requiere
hacer uso de las transformaciones unitarias para hallar el Hamiltoniano de interaccion del
sistema, donde una transformacién unitaria permite una descripcién equivalente del sistema
fisico y que preserva ciertos aspectos de interés fisico como la preservacion del producto in-
terno y la norma entre vectores [17]. Sin embargo, la eleccién de la transformacion unitaria
no es trivial, pues no se cuenta con una metodologia universal para hallarlas, lo cual repre-
senta un reto metodolégico. Una vez se alcanza el Hamiltoniano de interaccion, se aplica una
segunda transformacién unitaria que, bajo una cierta consideracion, permite llegar al caso
del limite dispersivo, concretando asi el objetivo de la tesis.

La tesis se conforma por tres capitulos posteriores al presente, estructurados en la siguiente
forma: el capitulo 2 comprende el marco tedrico en que se sustenta el trabajo, por lo cual en
2.1 se mencionan los aspectos mas fundamentales de la mecénica cudntica. En 2.2 se muestra
el procedimiento seguido para realizar la cuantizaciéon del campo electromagnético y obtener
asi su Hamiltoniano; mientras que en 2.3 se describen las consideraciones necesarias para
establecer el Hamiltoniano del &tomo de dos niveles. Es en 2.4 donde se establece finalmente



el modelo de Jaynes-Cummings y en 2.5 se muestra el procedimiento necesario para alcanzar
el limite dispersivo para el caso de un atomo de dos niveles. En el capitulo 3 se desarrolla
el trabajo, donde se mencionan las consideraciones fisicas tomadas y se divide conforme a
cada una de las transformaciones unitarias aplicadas. El capitulo 4 engloba los resultados y
conclusiones de la tesis. Finalmente, se incluye un apéndice que amplia el trabajo realizado,
en el cual se desarrolla con detalle el caso general para k atomos de dos niveles en interaccion
con el campo eléctrico, calculando la expresion para el Hamiltoniano en el limite dispersivo.
El resultado obtenido permite recuperar, como casos particulares, los Hamiltonianos para
uno y dos atomos de dos niveles.

1.1. Planteamiento del problema

El desarrollo de la fisica como ciencia requiere de una continua investigaciéon tanto en la
parte tedrica como en el area de la experimentacion, buscando describir y explicar diferentes
fendomenos fisicos. En particular, el estudio de la interaccion radiacion-materia, asi como de
los diferentes sistemas fisicos en que esta puede presentarse, es de especial interés para areas
como lo son la 6ptica cuantica, la fisica del estado sélido y la fisica atomica.

Un modelo de referencia para la interacciéon radiacion-materia es el modelo de Jaynes-
Cummings [4], propuesto en 1963, que describe a un sistema de un tnico dtomo de dos
niveles que interactia con un campo electromagnético y el cual posee solucién analitica.
Dicho trabajo es de relevancia, puesto que a partir de este se han podido estudiar otras fe-
nomenologias [5,6], calcular propiedades de interés del sistema de estudio [7—10] e inclusive
proponer algunos métodos para la computacion cuantica [11].

Sin embargo, numerosos trabajos consideran la interaccion radiacién-materia con un solo
atomo [12-15], al igual que en el modelo de Jaynes-Cummings; el problema radica entonces
en que los sistemas fisicos en la naturaleza no se hallan compuestos por un tinico atomo o
elemento material, sino que se componen de una cantidad mayor de cuerpos, que para siste-
mas macroscopicos puede ser del orden del niimero de Avogadro.

Por lo anterior, el estudio de los sistemas en que se ve involucrado més de un atomo es de
interés, siendo el siguiente paso un sistema formado por dos atomos de dos niveles que inter-
accionan con un campo eléctrico cuantizado. Aunque el sistema de estudio no considera la
interaccién atomo-atomo, pues esta interaccién puede ser de diferentes tipos, ni se considera
que los atomos sean de especies quimicas distintas, ya que esto complica el problema a estu-
diar. Ademas, se busca trabajar dentro del limite dispersivo, el cual se refiere a la existencia
de dinamica en el sistema de estudio incluso cuando este se halla fuera de resonancia, es de-
cir, la frecuencia de transicion atémica difiere significativamente de la frecuencia del campo
eléctrico, lo que se conoce como gran desintonfa [18].

El trabajo pretende entonces hallar el Hamiltoniano de interaccién en el limite dispersivo
para el sistema de dos atomos de dos niveles en interaccion con un campo eléctrico cuantiza-
do. Para alcanzar este objetivo, se debe hacer uso de transformaciones unitarias, pero no se



cuenta con una metodologia que garantice hallar la transformacion unitaria apropiada para
todo tipo de problema, lo cual constituye uno de los retos de la tesis.

1.2. Justificacion

El estudio de los sistemas con interaccion radiacion-materia es de gran relevancia, ya que
permite una mejor comprension de este tipo de interacciéon, lo que a su vez facilita que el
conocimiento obtenido pueda ser usado como base para investigaciones tanto en ciencia ba-
sica como en aplicaciones practicas. Por ello, el presente trabajo busca aportar al area de la
Optica cuantica, asi como a campos relacionados, donde también se aborda el estudio de la
interaccion radiacidon—materia.

Por otra parte, los estudios previos en el area se han basado mayormente en el modelo de Jay-
nes—Cummings, que describe un sistema formado por un atomo de dos niveles interactuando
con un campo electromagnético cuantizado. No obstante, la mayoria de los sistemas fisicos
de interés contienen mas de un atomo, por lo que, aunque el modelo de Jaynes-Cummings
proporciona una amplia informacién sobre la interacciéon radiacién—materia, presenta una
gran limitacion al considerar sélo un atomo. Es asi que este trabajo busca avanzar hacia un
modelo mas general al incorporar un segundo atomo de dos niveles en el sistema de estudio
dentro del limite dispersivo, lo que servira como base para futuras investigaciones orientadas
a modelar sistemas con un nimero mayor de atomos, donde el caso general deberd incluir
una cantidad k£ de atomos.

Finalmente, al ser una investigaciéon de caracter tedrico, no se requieren instalaciones de
laboratorio ni equipo especializado, lo que permite realizar el trabajo de manera eficiente en
la Universidad Tecnolégica de la Mixteca, utilizando tinicamente como recurso electrénico
una computadora portatil para la consulta de bibliografia y articulos que fundamentaran el
desarrollo de la investigacion.

1.3. Hipobtesis

Es posible hallar un conjunto de transformaciones sobre el Hamiltoniano de Interaccién de
dos atomos de dos niveles interactuando con un campo eléctrico cuantizado en el limite
dispersivo que permita simplificar la expresion.

1.4. Objetivos

1.4.1. Objetivo general

Obtener la expresiéon para el Hamiltoniano de interaccién en el limite dispersivo en una
cavidad cuantica en la que se tiene la interaccion de un campo eléctrico cuantizado con dos
atomos de dos niveles.



1.4.2. Objetivos especificos

» Hallar las transformaciones necesarias para la obtencién del Hamiltoniano de interac-
cion en el limite dispersivo para un campo eléctrico cuantizado con dos atomos de dos
niveles.

= Obtener el Hamiltoniano de interacciéon como un aporte al area de la Optica cuantica.

1.5. Metas

= Estudiar los conceptos y principios de la mecanica cuantica necesarios para la descrip-
cion del sistema de interés.

= Realizar el analisis del campo electromagnético dentro del marco de la mecénica cuan-
tica.

» Estudiar el atomo de dos niveles y obtener su Hamiltoniano.

» Realizar un analisis del modelo de Jaynes-Cummings que describe a un sistema formado
por un atomo de dos niveles interactuante con un campo cuantizado.

= Hallar la expresion para el Hamiltoniano de interaccién en el limite dispersivo para un
sistema de dos atomos de dos niveles en interaccién con un campo eléctrico cuantizado.



Capitulo

Marco Teédrico

2.1. Fundamentos de la mecanica cuantica

Para la descripcion de los sistemas a escalas ain mas pequenas que las micrométricas, como
lo son las escalas atémicas y nucleares, es necesario abandonar la mecanica desarrollada por
Newton y hacer uso de las herramientas que brinda la mecanica cuantica. Tales conceptos
basicos se describen en la presente seccién.

2.1.1. Conceptos fundamentales de la mecanica cuantica

La mecanica cuantica se consolida como una teoria fisica a partir de un conjunto de postulados
que se toman como verdaderos y que parten de las observaciones experimentales; asi como
de una ecuacion diferencial, la ecuacion de Schrodinger, que da paso a la descripcion de
numerosos sistemas.

Postulados de la mecanica cuantica

Los postulados forman el marco de trabajo de la mecanica cuantica, los cuales son los si-
guientes [19,20]:

= Postulado 1. El estado de un sistema
El estado de cualquier sistema fisico esté especificado, para cada tiempo ¢, por un vector
de estado | (t)) dentro de un espacio de Hilbert H; [¢(t)) contiene toda la informacién
necesaria acerca del sistema. Cualquier superposicion de vectores de estado es también
un vector de estado.

= Postulado 2. Observables y operadores
A cada cantidad fisica medible A, llamada observable, le corresponde un operador lineal
Hermitiano A cuyos eigenvectores forman una base completa.

= Postulado 3. Mediciones y eigenvalores de operadores
La medicion de un observable A puede ser representada por la accion de A sobre
un vector de estado [¢(¢)). El tnico posible resultado de tal mediciéon es uno de los
eigenvalores a,, del operador A. Si el resultado de la medicién de A sobre un estado



|t(t)) es an, entonces el estado del sistema, inmediatamente luego de la medicién,
cambia a |v,), es decir,

Alg(t)) = anlton), (2.1)
donde a, = (u[1h(t)).

= Postulado 4. Resultado probabilistico de las mediciones
Si se cuenta con un caso discreto o uno continuo se tiene lo siguiente:

o Espectro discreto
Cuando se mide un observable A de un sistema en un estado |¢), la probabilidad
de obtener uno de sus eigenvalores no degenerados (se dice que un eigenvalor es
degenerado si diferentes eigenvectores poseen el mismo eigenvalor), estd dado por

[(Wul)® _ lanl?
P,(a,) = = ) 2.2
)= ") ) 22
Si el eigenvalor es m-degenerado (m eigenvectores poseen el mismo eigenvalor),
entonces ) ) 32
m J m j
Pn<an) _ Z:]=1 ‘<wn|w>‘ _ 7j=1 ’an ’ ) (23)
(¥[¥) (¢[¥)

o Espectro continuo
Para determinar la densidad de probabilidad de que una medicion de A conduzca
a un valor entre a y a+da para un sistema originalmente en el estado |¢)) se cuenta
con la relacién dada por

dP(a) _ [e(@P _ (@)
da Wy 23 [W(a)]da
» Postulado 5. La evoluciéon temporal de un sistema
La evolucion temporal de un vector de estado |V(t)) de un sistema estd gobernado por
la ecuacién de Schrodinger dependiente del tiempo
O1¥(t))
ot

(2.4)

1h

= H[V(t)), (2.5)
donde H es el operador Hamiltoniano correspondiente a la energia total del sistema.

Ecuacién de Schrodinger

La ecuacién que describe a los sistemas cudnticos cerrados, es la ecuacion de Schrodinger [1],
introducida por primera vez por Erwin Schrédinger en 1926, esta dada por

2m
72

la cual en forma mas general, al considerar la dependencia temporal, puede ser escrita como

V2 + (B —V)ih =0, (2.6)

HI9(1)) = i (1) (2.7

7



2.1.2. Imagenes de Schrodinger, Heisenberg y de interaccion

Para el estudio de la evolucién temporal del sistema se cuenta con diferentes perspectivas,
conocidas como imégenes, que abordan tal cuestion. Estas imagenes son equivalentes entre
si debido a que se hallan relacionados por transformaciones unitarias [2,19].

» Imagen de Schrodinger
En la imagen de Schrodinger, los vectores de estado muestran dependencia del tiempo,
sin embargo los operadores no lo hacen, tal que

L d A
ih () = HI0(0), (23)

en particular esta imagen tiene utilidad cuando el operador Hamiltoniano no muestra
dependencia del tiempo [1].

Se encuentra que la evoluciéon temporal de un estado esta dada por

[ (1)) = U(t,to) 9 (o)),

donde U (t,to) es el operador de evolucién temporal, dado por

U(t, to) = e "t/

= Imagen de Heisenberg
En la imagen de Heisenberg, la dependencia temporal recae en los operadores [19]. La
dependencia temporal de un operador A en este esquema queda definido como

AH(t) _ ez’tﬁ/h‘/[le—itﬁ/h'

Asi que la evolucion temporal queda expresada en la ecuaciéon de movimiento de Hei-
senberg, dada por

A 1~ 4
%f:mpmﬂ. (2.9)
= Imagen de Interaccion
En la imagen de interaccion, tanto los operadores como los vectores de estado evolu-
cionan en el tiempo [19]. De lo anterior, surge la necesidad de tener una ecuacién de
movimiento para los vectores de estado y otra para los operadores.
La ecuacion para los vectores de estado es

o)y

= Vi), (2.10)

donde V' es un operador de interés y en la imagen de interacciéon queda definido como



‘7[ _ eitﬁo/ﬁ‘/)’e—itﬁo/ﬁ‘ (211)

Por su parte, la ecuacién de movimiento para los operadores es

df;ft(t) _ ;1 [Art), 11 (2.12)

donde A () se halla usando la ecuacién (2.11).

2.1.3. Matriz densidad

A diferencia de los sistemas de estudio mas simples donde es posible tener un estado del
sistema bien definido, en la realidad no es frecuente conocer con exactitud el estado de un
sistema fisico [20]. No obstante, el problema anterior se ve resuelto con la introduccién del
operador o matriz densidad p, el cual queda definido como

b= nli)il,

donde |j) refiere a alguna base que cumpla la propiedad de ser ortogonal y que no necesaria-
mente es aquella formada por los eigenestados del sistema de estudio.
La ecuaciéon que describe la evolucién temporal de p se muestra a continuacion
ap N
th— = |H, pl, 2.13
=17 (213)

la cual es conocida como la ecuacién de von Neumann [1].

2.2. El campo electromagnético

Para un adecuado estudio del sistema de interés, es necesario conocer cémo es que el campo
electromagnético se expresa dentro del marco de la mecanica cuantica. En primera instancia,
se ha de tratar el campo electromagnético descrito con las ecuaciones de Maxwell, para luego
hallar el Hamiltoniano del campo electromagnético cuantizado.

2.2.1. Descripcion clasica del campo electromagnético

Las ecuaciones de Maxwell, en su forma diferencial, se hallan dadas por las siguientes expre-
siones [21,22]:

— — — _5
VXH:J‘i‘at,
S L OB
B =
V X 5

N}



V-D=p,

V-B=0,
donde H es el vector de campo magnético, J es la densidad de corriente, D es el vector
de desplazamiento eléctrico, E es el vector de campo eléctrico, B es el vector de induccién
magnética y p es la densidad de carga. Es a partir de estas ecuaciones que se consigue una
descripcion completa del campo electromagnético de forma clasica, en particular si estas ecua-
ciones son usadas en ausencia de cargas o corrientes, estas pueden reducirse a las ecuaciones
de Maxwell en el vacio [23]:

_  10E
B=-=—
VX c ot’
. 10B
VxE:—a—B,
c Ot
V-E=0,
V-B=0.

2.2.2. Cuantizacion del campo electromagnético

Para realizar la cuantizacion del campo electromagnético se sigue el procedimiento de la
cuantizacién monomodal descrito por [24,25], entonces se toma una cavidad de volumen V'
encerrado por espejos perfectamente reflejantes. En este espacio se cumplen las ecuaciones
de Maxwell para el vacio listadas previamente y para un campo electromagnético monomodo
y monocroméatico (i.e. una tnica frecuencia), el campo eléctrico y magnético pueden ser

expresados en la forma
- .| 2w® .
E(z,t) = &\ —q(t) sin(kz), (2.14)
GOV

7 2w
2k e V!
donde w es la frecuencia de oscilacion del campo, k es el nimero de onda, €y es la permitividad
eléctrica del vacio y ¢(t) estd dado como

B(z,t) = G(t) cos(kz), (2.15)

con Ej la amplitud del campo eléctrico.
Se cuenta ademas, con las siguientes relaciones,
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By = —,
C
1
A= e
€oto
w
k=—,
c

donde g es la permeabilidad magnética del vacio.

Este campo se propaga en la direccion z del sistema de referencia que se establece adecuada-
mente, ademas de que se trata de un campo polarizado, por lo cual E y B se hallan en una
tnica direccién. Por otra parte, de la descripcion clésica [26], se conoce que las densidades de
energia de campo eléctrico y magnético (ug y up respectivamente) estan dadas en la forma

1

Up = §€0E2,
1 B?

ug = ——.
) Ho

Entonces, la densidad de energia del campo electromagnético es

1 B2
UZUE+UB:2<€0E2+M>.
0

Si la expresion anterior es integrada sobre todo el volumen, es posible expresar el Hamilto-
niano clasico del campo electromagnético como sigue

1 B
Hp = 7/ dv <60E2 n ) . (2.16)
2Jv Ho

En este Hamiltoniano se sustituyen las expresiones (2.14) y (2.15). Luego de realizar la
integral correspondiente se consigue reducir al Hamiltoniano a

Hp = <w2q2 +p2) , (2.17)

N | —

donde se usé la relacién
b=4q.

Operadores de creacién, aniquilacién y de nimero

Se definen a continuacion los operadores de creacién, aniquilacién y de ntimero, los cuales
actian sobre estados dados en la base de niimero [2] o también conocidos como estados de
Fock.
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= Operador de creacién
Se denota por &' y actiia en la forma

a'ln) = vn + 1n + 1).

= Operador de aniquilaciéon
Es denotado como a y cumple con

aln) = v/njn — 1).
= Operador de niimero
Se define como N = a'a, de forma que
N|n) = n|n).

Es 1til mencionar que los operadores de creacién y aniquilacién cumplen la siguiente relacion
de conmutacion, siempre que sean aplicados a bosones
[a,a'] = 1.

Retornando a la cuantizacion del campo electromagnético, se promueve a H, p y ¢ en la
ecuacion (2.17) a operadores

Hp = ; (w?@® +p%), (2.18)

y se encuentra que la relacién entre los operadores ¢ y p con @y a' es la siguiente:

VI

2hw
5= Y20 ),
]

tal que luego de introducir las expresiones, la ecuacién obtenida es esencialmente la ecuacion
para el oscilador arménico [27], la cual puede entonces expresarse en la forma

N 1 o1

HF:M(&T&+2) =M<N+2);
donde se hizo uso de la definiciéon para el operador de niimero y de la relaciéon de conmutacion
de los operadores de creacion y de aniquilacion.

Asi pues, los eigenestados del campo electromagnético cuantizado estan dados en la base de
niumero (estados de Fock), tal que

fr|n) = hu <fv + ;) In). (2.19)

Dado que se trata de una ecuacion de eigenvalores, la ecuacion previa puede ser expresada
como

12



Hpln) = hw (n + ;) n). (2.20)

2.3. El atomo de dos niveles

La importancia del estudio del atomo de dos niveles esta justificado por la amplia variedad
de fenémenos que pueden comprenderse al considerar la interaccion de un campo quasi-
monocromatico y un atomo de dos niveles, de ahi que definir el Hamiltoniano que describe
al sistema se vuelve crucial. Se entiende por atomo de dos niveles a aquel en que el atomo
puede hallarse en uno de dos estados, en el estado base, que en adelante serd denotado como
|g) (debido a la palabra en inglés ground), o en el estado excitado, en adelante denotado por
le) (de la palabra en inglés excited).

Hamiltoniano del atomo de dos niveles
Del esquema que se muestra en la figura 2.1, se observa que al estado |e) le corresponde una

energia Ta (w, es la frecuencia de transicién entre los estados |g) v |e)), v al estado |g) le

. hw, , iy )
corresponde una energia ———, de acuerdo a cémo se definié el 0 de la energia, de lo cual es

sencillo verificar que la diferencia energética entre ambos niveles es simplemente

0 fiw
E.—E, = ”“—(— “)zhwa.

2 2

De acuerdo al formalismo de la mecanica cuantica, un operador A puede ser escrito en la
siguiente forma:

A

A=) ala){al,

a

con a el eigenvalor del operador en el estado |a) v |a)(a| el operador de proyeccién [2].
Asi, para un atomo de dos niveles aislado, es decir sin interaccién, su Hamiltoniano puede
ser escrito en la forma

hw,, hew

A= "2 e)el = “21g) (o] (221)

Matrices de Pauli y operadores de subida y bajada atémicos

A continuacion se definen las matrices de Pauli [2], las cuales serdn utilizadas para el Hamil-
toniano del atomo de dos niveles:

. (01N . (o =i\ . (10
9%2=\1 00 %= \i o) 27 \o -1/

Por su parte, los operadores de subida y bajada atémicos estan expresados en términos de
las matrices de Pauli y se definen como
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Figura 2.1: Esquema de un atomo de dos niveles, mostrando los estados con su energia
correspondiente.

b, = 5(&;,; +16,); G- = (6, — i6y).

Ahora, se hace uso de la representacién matricial que tienen los estados |e) y |g), tal que

-0 ()

Se recurre a la definicion dada para la matriz de Pauli &, de forma que el Hamiltoniano del
atomo de dos niveles sin interaccion se reduce a

A

1
Ha = Shwid.. (2.22)

2.4. Modelo con interaccion atomo-campo

El estudio de los sistemas en donde la luz y la materia interaccionan es amplio; no obstante,
un primer acercamiento se consigue al estudiar la interaccion entre un campo electromagné-
tico cuantizado y un sistema atémico, particularmente un dtomo de dos niveles. Pese a la
simplicidad del modelo, resulta interesante y esclarecedor el modelo propuesto originalmente
por Edwin Thompson Jaynes y Fred Cummings en 1963 [28], de ahi que se haga énfasis en
dicho modelo; de hecho, este modelo cuenta con solucién analitica y existen diferentes formas
de resolverlo [29].

14



Modelo de Jaynes-Cummings

El modelo de Jaynes-Cummings propone un Hamiltoniano para la interaccién entre un campo
electromagnético cuantizado y un atomo de dos niveles en la forma

H=Hp+ H,+ H, (2.23)

donde Hp es el Hamiltoniano para el campo electromagnético cuantizado desarrollado en la
seccion 2.2.2, H, es el Hamiltoniano para el atomo de dos niveles sin interaccion y Hi es el
término que indica la interaccion existente entre atomo y campo, tal interaccién se debe al
dipolo eléctrico del d4tomo [4]. De forma que el Hamiltoniano resultante esta dado por

| 1
H = Jhwb: + hw(a'a + 5) T 00+ até_), (2.24)
donde
dey .
Q= eogvsm(lqz), (2.25)

es la frecuencia de Rabi para el modo del campo de la cavidad. V es el volumen de la cavidad
usada para la cuantizacién del campo electromagnético, d es la matriz de dipolo eléctrico y
£, €s la magnitud del campo eléctrico.

En la ecuacion (2.24), el dltimo término correspondiente a la interaccién representa los dos
procesos que pueden llevarse a cabo, 6.a puede ser entendido como el proceso en que un
foton es aniquilado y el atomo sube un nivel de energia, o de forma equivalente, la absorcion
de un fotéon del campo electromagnético por el &tomo implica la excitacion de éste tltimo tal
que pasa del estado base |g) al estado excitado |e). Por su parte, el término a'6_ indica lo
opuesto, es decir, el decaimiento del atomo al estado base y la emision de un fotén.

2.5. Transformaciones para alcanzar el limite disper-
sivo

La presente secciéon busca mostrar el proceso establecido para obtener el Hamiltoniano de

interaccion en el limite dispersivo para un sistema formado por un atomo de dos niveles en

interaccién con un campo eléctrico cuantizado, lo cual se consigue a través de la aplicacion
de dos transformaciones unitarias.

2.5.1. Primera transformacion

En la seccién del modelo de Jaynes-Cummings, se establecié que el Hamiltoniano que describe
a un atomo de dos niveles interactuante con un campo eléctrico cuantizado, se halla descrito
por la siguiente expresion:

. hw, .
H= 76Z+MN+A(A&++&T6_), (2.26)

donde se define A = A2 para simplificar la notacion.
Por otro lado, la evolucién temporal del sistema se encuentra descrita por la expresion
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dp i i A 0o
—=——|H,p|=—-pH — -Hp.. 2.27
o = Al = ppH — S Hp (2.27)
Para continuar, se define la transformacién unitaria
0, = ¢t(V+30:) (2.28)
y su adjunto Hermitiano dado por
U = et (N+39:), (2:29)
Ahora, se define un nuevo operador p; expresado por
b= ﬁlﬁﬁf _ 6iwt(N+%6z)ﬁe—iwt(N+%6z)7 (2.30)

donde a p; se le calculara su evolucion temporal de forma andloga a la ecuacion (2.27), tal
que se busca llegar a una expresion como la siguiente:

dpr o

— =——|H ) D )

di R

en donde H; es el Hamiltoniano de interaccién del sistema.
Para esto, se desarrolla la derivada temporal como sigue:

dﬁ[ d iwt(N+16,)
—_ — 277
At dt (¢

A —jwt 1\7—&-162
pe N Tar))

dp d [ ii(N4les.
%Z%(e tN+2 ))

—iwt(N+362) + eiwt(N+%&z)@efiwt(N+%&z)

pe dt

i <e—iwt(]\7+%6z)) :

dt i
+€iwt(N+%5z)ﬁe_th(N+%&z) <—Z(,d (N + ;5—z)> :

Se hace uso de la definicién dada por la ecuacién (2.30) y se ordenan los términos, tal que

dpr _ i (N n 1(32) (N +502) poit(NH462) o 6iwt(]\7+%6z)@e—iwt(l\7+%6z)

dt dt
Se introduce la ecuacién (2.27) en la expresién previa,

dp ~ 1 ~ 1 1A ADoK 1
ﬂ = jw (N + 25-2) ﬁ] _ iwﬁ[ (N + 25.2) + ezwt(N-l—%az)ie—zwt(N—i-%az)‘

dp ~ 1 ~ 1 S A ) A e
D~ i (N 4 2@) pr — iwpr (N 4 2@) + gtV +362) (;ﬁH - ;Hﬁ) g itN+552).
Se distribuyen los términos y se introduce el operador identidad I como se muestra,

dp ~ 1 ~ 1 AN A e
% =W (N + 2@) pr — wpr (N + 2?72) + %eMt(N*%"Z)ﬁ[He’“"t(N%"z)
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_Eeiwt(]\?—l-%&z)ﬁfﬁe—iwt(N—&—%&z)'

h
Se elige al operador identidad en la forma

f — e—iwt(N—F%&z)eiwt(N—F%(}z)‘ (231)
Se sustituyen y agrupan los primeros términos en forma de un conmutador,

dCZI i [N—i— ;6,3,/31] " ;eiwt(N+;&z)ﬁe—iwt(N+;&z)ez’wt(NJr;&Z)]:_,e—z’wt(NJrg&z)

7: . Gl oA A~ . Gl oa . Gl oA . ol A
_ﬁezwt(NJriaz)Hefzwt(N+§oZ)ezwt(NJrioz)ﬁefzwt(NJrioz)'

Se hace uso nuevamente de la definiciéon dada por (2.30),

U = i [ S ] + e e Vi) (Vi) it (K00

Es posible simplificar la expresion anterior en la forma de un segundo conmutador,

dp L1 '
I _ [N+az,pf] _ !

dt 2 hi [GM(N+%&Z)ﬁ et +30:), ,51} : (2.32)

Entonces se busca calcular la transformacién sobre el Hamiltoniano H identificada en adelante
por H',

At awt(N+16,) 77 —iwt(N+i6
A7 = t(N+562) f—ist(N+562),

donde H es el Hamiltoniano del modelo de J aynes-Cummings denotado por la ecuacién (2.26),
es decir,

. e (B, " e 1
' = wtN+302) (2@ + hwN + Aad, + a*a)) e N+ 502) (2.33)

Es conveniente realizar la transformacién término a término, pero primero se estableceran
las relaciones de conmutacién entre los operadores involucrados.

» [N,a] = —a:

- [V,af] =af;

» [0.,64] =264;

" [6,,6_]=—-26_;
w» [6,,6_]=20,
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Cualquier otra relacién de conmutacién posible entre los operadores involucrados da como
resultado que dichos operadores conmutan entre si.

Se procede a mostrar el calculo de la transformacién sobre el primer término de H , dado
que el procedimiento es andlogo para los demas términos y sélo se mostrara el resultado de
estos.

Para el primer término identificado como H 1s

]f\{{ _ hwa eiwt(N—i—%&z)&ze—iwt(]v—l-%é’z)’
2

se hace uso de la formula de Baker-Campbell-Hausdorff [30],

. e A . 7 N A ]_ ]_ A ]. g ].
ezwt(NJr%az)a.zefzwt(NJr%Uz) — a.z+2'wt |:N + a.z,a,zj| +§(Zwt)2 |:N + 76_“ [N + a'za&z:|:| 4. .,

2 2 2

pero

[N,6.] = 0;

6.,6.]=0
Por lo que

6iwt(]\7+%6'2)&Zefiwt(N+%&z) _ 6’2,

y por consiguiente

N hw,

H = 0.

2

Luego

ﬁé — hwewtW+362) Ny p—iwt(N+562) _ f N

Se ha de notar que para realizar la transformacién en los casos donde aparecen a6, y a'é_
es necesario introducir al operador identidad en el medio de estos, tal como se expresa en
(2.31). Entonces se obtiene como resultado:

2 i V416 A n  —i V+L1s
Hé _ )\ezwt(N+20Z)aO_+e iwt(N+356

lle1 _ Aei”t(N+%6z)&T&_e_i“t(N+5&Z) _ /\&Ta__
Se introducen estos resultados en (2.33),

. hw, .
H = — 0=+ hwN + Aacy + até), (2.34)

donde se aprecia que (2.26) y (2.34) son idénticas. Se introduce a (2.34) en (2.32),

dp L1
I _ {N+6z,,ﬁ1] _

o : & |50+ hoN + Nady +a'6_), pr

1 | hw,
2
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Se une a los conmutadores y se agrupan términos comunes,

dp | hlwa —
% _ _% <“2“)&Z + Naoy +a'é_), pr

De la ecuacién previa se puede identificar al Hamiltoniano de interaccién dado por

o B(w, —
i = (”2”)5—2 + Mag, +al6). (2.35)
Se define
A=w, —w,
tal que
N hA
H[: 7AZ+A(&&++€LT5‘_>, (236)

es entonces la expresion para el Hamiltoniano de interaccion del sistema de un atomo de dos
niveles en interacciéon con un campo eléctrico cuantizado.

2.5.2. Segunda transformacion

La segunda transformacion unitaria es aquella que permite obtener al Hamiltoniano del
sistema en el limite dispersivo. Se propone al siguiente operador unitario:

Uy = 00+ —a10-) (2.37)
y su adjunto Hermitiano
U} = entase—alo-), (2.38)

donde n debe determinarse.
A continuacién, se define el Hamiltoniano efectivo o de interaccién en el limite dispersivo
dado por

ﬁeff = UQF[]UQT = en(aa‘-kfdfé'—)[’i\[[e*??(&ﬁ'_kffﬂa-_).
Se sustituye en la expresién previa el resultado hallado en la ecuacién (2.36)

2 s —ats ) [ RO o
Heff = en(ao.;.*a’fg—) {26'2 + )\(&6’+ 4 &Tﬁ)} efn(ag_kfafg_).

De manera analoga a la secciéon anterior, se desarrolla la transformacién unitaria, pero bajo
la condicién de que

n <1,

por lo que se despreciaran los términos con n? y potencias mayores en 7, tal que
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A hA
Hepp = (A — hAn) (&6+ + a*&_) + <2 + An> &, +2Xna'aé, + . (2.39)

Ahora, si se cumple la condicién dada por

()\—hAn):(J(:)n:L

hA’
entonces la ecuacién (2.39) se reduce a
Hepf = (FLQA + 2;) &+ 222&*&62 + hAZ‘ (2.40)
Se define lo siguiente:
hA )2
Ap = o5 TIA
2\
X = N
Por lo que
. 22
H.pp = Apé. + xa'as. + A
A N 22
Heyy :AD&Z—l—XN&Z—l—E. (2.41)

Donde (2.41) es el Hamiltoniano de interaccion en el limite dispersivo para un dtomo de dos
niveles interactuando con un campo eléctrico cuantizado.
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Capitulo 3

Transformaciones para alcanzar el
limite dispersivo para el caso de dos
atomos

3.1. Sistema de dos atomos de dos niveles en interac-
cién con un campo eléctrico cuantizado

Para llevar a cabo el trabajo de la presente tesis, se establece en primera instancia el sistema
a estudiar. Se considera que el sistema involucra a dos atomos de dos niveles, por lo que
los Hamiltonianos de los atomos seran idénticos, salvo por una etiqueta que identifica a los
operadores de cada uno; cada atomo posee interacciéon con el campo eléctrico cuantizado,
pero no se considera que exista interaccion del tipo dtomo-atomo. La justificacién fisica
de no tomar en cuenta la interacciéon atomo-atomo es que estos se hallan a una distancia
suficientemente lejana entre si como para que ningun atomo “note” la presencia del otro.
A partir de lo anterior, el Hamiltoniano que describe al sistema estd dado por la siguiente
expresion:

N ~ 1 1 1
Hy, = hw (N + 2) + Hhwad ™ + Shw,s® + Ao +ate™) + A@s? +ale®),  (3.1)

en donde los superindices usados en los operadores permiten identificar si un operador se
corresponde con uno u otro de los dos atomos involucrados. En las subsecciones siguientes se
mostrard el desarrollo para obtener el Hamiltoniano en el limite dispersivo para este sistema.
Se ha de notar que ambos atomos poseen la misma frecuencia de transicion w,, dado que se
trata de la misma especie quimica; ademaés, lo anterior conlleva a que la interaccién atomo-
campo sea del mismo tipo y se denote tinicamente por A.

Antes de desarrollar las transformaciones, es necesario notar que las reglas de conmutacién
establecidas para el caso de un atomo se siguen manteniendo para el caso presente. Para los
operadores del campo:
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Figura 3.1: Sistema de estudio: dos d4tomos de dos niveles dentro de una cavidad donde existe
un campo eléctrico cuantizado.

- (60, 69] = 2517;

(600,69 = —259

- (61, 69) =60,
donde i =1, 2.

Por su parte, los operadores del atomo 1 conmutan con los operadores del atomo 2 puesto que
realizar una medicion sobre el &tomo 1 y luego sobre el &tomo 2 es completamente equivalente
a realizar primero la mediciéon sobre el dtomo 2 y luego sobre el atomo 1. Esto tultimo es
analogo a lo que sucede en el caso de un atomo, donde los operadores del campo y del atomo
conmutan entre si, dado que los eigenvectores de estos operadores corresponden a espacios
vectoriales diferentes; lo cual se sustenta en el uso del producto directo de vectores [30].
Entonces, todos los conmutadores no mostrados explicitamente, dan como resultado cero.

3.1.1. Primera transformacion

De igual manera al caso de un atomo, se ha de proponer la transformacion unitaria, la cual
se halla expresada de la siguiente forma:

0, = ez’wt(N+%&§”+%&§2>)7 (3.2)
y su adjunto Hermitiano dado por
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0 = eiwt(§+3o+50)

(3.3)
Se recuerda que el operador densidad contiene toda la informacion del sistema, para el sistema
de dos atomos serd denotado por ps y su evolucion temporal expresada como

dﬁg 1 1 ~
—= = —poHy — —Hyps. 3.4
di h/)2 27y 202 (3.4)
Se sigue el procedimiento para el caso de un atomo, por lo que se aplica la transformaciéon a
P2, es decir,

)52,] == U3ﬁ2[7?]:7

(3.5)
donde los subindices en ps ; refieren a que se trata de la matriz de densidad para dos dtomos
de dos niveles y que dicho operador se halla descrito en la imagen de interaccion. Luego, se
calcula su evolucion temporal

dﬁg[ dUg N + ~ ﬁz T 2 N dU?JI
— = Us +U. Us + U.
I a P 3+ 37 3 + Usp2 d
dp ~ 1 1 Do ~
P2y, (N + 260 4 59)) Ol + 0 2L27
dt 2 2
t(_; Loy, Lo
+U3poUs | —iw ( N + 50 + 30z .
Se usan las relaciones dadas por las ecuaciones (3.4) y (3.5),
dpor . ( -1 1 N2 i .
L (N4 260 A<2>) 0 ( i —HA>UT
gt 1w + 57> + 50% ) P2r 3\ P22 = Hapa | Us

Se simplifica la expresion anterior y se introduce el operador identidad [

dpa,1 { ( 1
Pl N _ ()
dt too

1 R [ PSESENUSEIN PN
5 g )) ,P2,I] + *U302[H2U§ — —UsHy1pUs
2 h h
Se elige que el operador identidad tome la siguiente forma I = U3Us,
dpa.1 Loy Lo Lty s S D — L B D)
= [ <N+ o, + 50, >7P2,I} + T UspoUsUs HoUs — —Us HaUUs paUs
dt 2 2 h h
Se usa nuevamente la relacién dada por (3.5) y se simplifica la expresion

dpor _ 1 v lsmy L) 5 AN
dt = _ﬁ |:—h,OJ (N + 50'2 + 5 > > ,p27[:| - ﬁ {UgHQUg,ng} . (36)
Ahora, se busca calcular la transformacion U3H2U3, tal que
PPN N ~ 1 1 1
U, 8,08 = U, (hw (N + 2) + G hwad D + S hwad® + Aaol) +afe™)
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a6\ + af! )) Ul

Se distribuye la transformacion entre los términos del Hamiltoniano,
PPN PERINDA hw 1 ~ A 1 - N
Us Hy Ul = hwUs NUT + -+ ihwaUgc%gl)Ug + §MQU3&§2>U§
+AU3a6 05 + Usat6 V08 + MU5a6' 205 + Usats®0)). (3.7)
Se aplica la transformacién término a término:

= Para el primer término,
UgNUT _ ezwt N+ U§1)+1 (2))N€71wt(N+lo'§1)+1 <2>).
Se utiliza la férmula de Baker-Campbell-Haussdorft,

&)+ ;&9, N|+

= Posteriormente,

= De forma similar al término previo,

= Para los términos que 1nv01ucran a dos operadores, se introduce el operador identidad
entre estos en la forma [ = U3 Us,

Usa6V0f = Usal6\V 0 = Usa03 056003

Por propiedades de los operadores, se puede calcular la transformacién sobre a y la

transformacién para 6&1 ) por separado y luego conjuntar los resultados, por lo que
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A

(j _ zwt(N—i—lagl)—i- (2))

e zwt(N—i—lagl)-i- ( ))

A 1 1
Usa i+ iwt {N+26§)+26§2),&] ...,
oAt — o it IR Al L1 a1 1 Lia® 4
UsaU3 = a + iwt [N,a]+§[az ,a]+§[az ,al e+
Se usan las relaciones de conmutacién, obteniendo

NPT A ) e (—iwt)?
UsaUg = a +iwt{—a+0+0} +--- =a+ (—iwt)a +

2

UsalUl = ae ™"

A A —ijwt)?
Osa §:a<1+(—z’wt)+< iwt) +>

A

o Mientras que

36'5_1) Ag _ ezwt(N+10§1)+l (2)) (1) 7lwt(N+% (1)+1 (2>)

o A R
0,600 = 60+ iwt [N +

A N N 1
U5680§ = 61" + icot {[N )+ 5o, 6!

Se utilizan las relaciones de conmutacion, tal que

. 1
U,6007 = 0+)~|—zwt{0 +5 (261 +0}+- ..

21 7
. . , iwt)?
U,6 008 = 6 <1+(zwt)+( 2,) +>
036_(,,_1) Ag _ &S})ezwt
Entonces,

Usaale VU] = ate,
n
s0070f = a6'?;
n



Se introducen estos resultados en (3.7),

N A A ~ 1 1
U3H2U§:hw<N+2)+ “hiw, oM + ﬁwa V+ Masl +afe™) + A@asl? + afe™®).

De igual manera que en el caso de un atomo, la transformacién unitaria aplicada al Hamil-
toniano del sistema lo deja inalterado, tal que

Us HyUL = Hy.
Se sustituyen estos resultados en (3.6),

dp ' c hw  Tw .
2l [—th = 60 = 26 4 Hy. |

dt 2

Se simplifica y reescribe la ultima expresion,

dﬁQJ _ i l(wa B (.d) ha_(l) 4 (wa — CU) 6'(2)

dt  h
_3’ hw |
h 270271 .

Se observa que el segundo conmutador debe ser cero, ya que es el conmutador de una constante
y un operador. Ademas, segin la definicién dada en el capitulo anterior, se tiene A = w, — w,
de modo que

dp A A
e Z 55 +)\(a0+ +a'é )+)\(a0+)+&T ()) P21 -

B VSNEIN
dt AELE

Asi, se identifica al Hamiltoniano de interaccién [A{27 7 Como
A A
Hyr = 58 + 2 ho? + Aaal +afe™) + M@ +ate™?). (3.8)

3.1.2. Segunda transformacion

Para hallar el Hamiltoniano en el limite dispersivo, se requiere de una segunda transformacion
unitaria, la cual se propone en la forma

A a6()—ate™ yas? —ate®

U, = enas, —ate_ a6, ~a16 %) (3.9)
y su adjunto Hermitiano

O = e —atel+asl?—ate®) (3.10)

Se define ﬁg’e = U4ﬁ2(71 como el Hamiltoniano en el limite dispersivo para el sistema de
dos atomos de dos niveles. Para aplicar la transformacion, se toma en cuenta la condicién
n < 1, por lo que se desprecian términos de orden cuadréatico y superiores para 7.
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Entonces,

N ~ (A A
Hyerp=U, (27’1&9) EA(Q) + Aao UNRPAR ) + )\(a0+) +a's )) Uj.
Se distribuye la transformacion entre los términos del Hamiltoniano,

Ah AR A o5 .
Hyepp = = Ui W0] + 0P 0] + MUaas\V0] + Uial6T])

ANhasP0) + Uhat6P0)). (3.11)

Se calcula la transformacién término a término:

0,600] = 6 4 n [agt — ale™ +a6? —afe™ 60 + ..,
con la condicion para 7 basta considerar los primeros dos términos

0,600] ~ 60 +n{[ast?, 60| — |afe™, 60| + 66D, 6] - [af6®, 60| }.

z

Se expanden los conmutadores,

0,6000] ~ 60 +n{a 6,60 + [a,60] 61 —af 6, 6] — [af, 60 6}

z

z

i {a 6,60 + [a.60] 6 — af 6 600] — [at,50)] 6@}
y se dejan sélo los conmutadores que no son cero,
0,600 ~ 60 +n{al6l, 6] —at |6, 60]}.

Se hace uso de las relaciones de conmutacion,
0,600] ~ 60 +n{a(—261") —at (26)}.

Por lo que,
0,600 ~ 60 — 2 (a6 +af6™).

= Se sigue un procedimiento similar para el segundo término
0,600] ~ 61 — 27 (a6 + a'6) .

= Para los términos con dos operadores, primero se expande la transformacion con ayuda
de la férmula de Baker-Campbell-Hausdorff,

0,a60] = a6+ [a6) — afe +a6? — afe® asl] + ...

Se hace uso de la condicién, se corta la expansion hasta el término lineal en 1 y se
expanden los conmutadores,

0406300 ~ a6 +n {[ac,a6] — [a'6, asV] + [a6?, a6l)] - [a'6® asl)]}.



El primer y tercer conmutador son cero, pues en el primero se cuenta con los mismos
operadores; mientras que en el tercero todos los operadores involucrados conmutan.
Entonces esto reduce la expresién como se muestra,

0,a60] ~ a6 —n{[ate™ asl] + [a'6® as] }.
Se expande a los conmutadores restantes,
0,06 0] ~ a6 —n {a' [, al] + [af a6l 61 + af [6@, 461" + [af, a6"] 6P} .

El tercer conmutador es cero y no es necesario expandirlo, puesto que los operadores
involucrados conmutan entre si,

0,a6 V0] = a6y —n{at [60,a61"] + [af asl] 6 + [af, a6V] 62}
Una vez mas, se expande a los conmutadores obteniendo lo siguiente:
U,aV0f = a6t —n{afa |6, 6] +at [0, 4] 6 + a faf, 61| 6}
—n{[a,a] 606 +alal, 6] 6 + [af,a) 616
Se elimina a los conmutadores que son cero al usar las relaciones de conmutacion,
0,600 ~ a6l —n{ata |6, 60] + [af a] 616! + [af, a] 61V6™}.
Se aplican las relaciones de conmutacion en los conmutadores restantes,

z

0,60 = a6 —n{ata (=60) + (=1)66 + (-1)5V5}.

Entonces,
0,a6V0] ~ as +n{afas + 6060 + 61062

A través de procedimientos analogos, se pueden calcular las tres transformaciones que hacen
falta, cuyos resultados se muestran a continuacion:

Uyate 0] ~ 6D + n {aate® + 606 + 5061
0,a690] ~ a6 +n{atas?® + 6960 + 66

0,062 0] = a'6® + n{aa’e® + 660 + 6262
Se introducen estos resultados en (3.11),

. AR
Hyepr = > (69) —2n (&65:) +afg

+A (a6 +n{atas® + 6106 + 606 1)



+A (a6 +n{aats® + 651

Se agrupan los términos comunes,

f,,,, = A B4 (50

60 +6@) + (A hay) (a6t +a'e) + a6l + als®)
+n (afa +aa) (610 +62) + o ({6, 60} + {62,69})

~(1) A2 ~(2) ~(1
+An ({05r O 4+ (6 J(_)}).
Donde los tnicos anticonmutadores diferentes de cero son aquellos que tienen superindices
iguales, es decir,

De manera que
. Al
Hoepr = = (600 +6%) + (A — nan) (a6} + alel + 4o +ale™)

+ (afa+aal) (610 + 62) + 2091 (3.12)

Por otro lado, de la relacién de conmutacion para los operadores de creaciéon y aniquilacion
del campo se cumple que

Por lo que

ata +aat =2ata + 1.

Se sustituye la expresion previa en (3.12) y se agrupan términos,

~ Ah
Hyepp = <2 + 2/\77&T& + An) (5-9) 4 5—9)) + 2\

+(A = hay) (ast +af6e® + s + af6®). (3.13)
Si se cumple la condicién dada por
A—hAn=0 < _ A
T] - 77 - hA)
implica que (3.13) se reduce a
~ AR 2\ A2 A2
H. ==+ == (6 + 6P 2—. 14
2.eff (2 +hAaa+hA><gz +az)~|— WA (3.14)

Se define
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2N _hA N A2
AN D=y T A
Su sustituyen las definiciones, que son las mismas que para el caso de un dtomo, en (3.14),

. )2
Hyeps = (xa'a+Ap) (68 +61) + 22+ (3.15)
Que es equivalente a
N . 22
Hoepr = (XN + Ap) (61 +61) + 20 (3.16)

Siendo la expresién (3.16) el Hamiltoniano en el limite dispersivo para el sistema de dos
atomos de dos niveles interactuando con un campo eléctrico.
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Capitulo 4

Resultados y Conclusiones

4.1. Resultados

Los resultados obtenidos en el presente trabajo apuntan al hallazgo de las transformaciones
unitarias apropiadas para obtener las expresiones para el Hamiltoniano de interaccién y
el Hamiltoniano en el limite dispersivo para el sistema de dos atomos de dos niveles en
interaccién con el campo eléctrico.
Entonces, el primer resultado se refiere a la transformacion unitaria denotada por

0, = ez’wt(J(er%ai”+%&§"’)7
la cual es similar al caso de un tinico atomo de dos niveles y que involucra tinicamente a tres
operadores, justamente aquellos que son necesarios para la escritura de los Hamiltonianos
del campo eléctrico y de cada uno de los atomos sin que se considere atun el término de
interaccion.
El segundo resultado refiere a la identificacion adecuada del Hamiltoniano de interaccion del
sistema, expresado como

A A
~(1
H27[ = 57102 ) +

el cual muestra similitud al caso de referencia de un solo atomo.
La proposicion de la segunda transformacién unitaria quedé definida como
~ 6D _ataD) 5D 41402

__nlacy’—a'c"+acy —a'c
U, = "%y + )
de lo cual se aprecia que esta transformacion involucra a los operadores necesarios para
describir el término de interacciéon en el Hamiltoniano del sistema.
Finalmente, el resultado principal de esta tesis refiere a la obtencién del Hamiltoniano en el
limite dispersivo para el sistema de estudio, el cual es:

fyess = (XN + Ap) (610 +62) + 22;.
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4.2. Conclusiones

Se alcanzo el objetivo de la tesis al hallar la expresién para el Hamiltoniano de interaccién en
el limite dispersivo para el sistema de dos atomos de dos niveles en interaccién con el campo
eléctrico. El conjunto de resultados sefialados en la seccién previa son bastante similares al
caso de un solo atomo de dos niveles, salvo las etiquetas que permiten distinguir a los ope-
radores propios de cada uno de los atomos en el sistema de estudio.

Por un lado, la primera transformacién unitaria hallada Us es idéntica a la transformacion
unitaria U, excepto por el hecho del término anadido del segundo atomo y que, como se
mencioné en la seccion previa, basta con tomar en consideracién a los operadores involucra-
dos en los Hamiltonianos del campo y de los dtomos cuando estos se hallan sin interaccion.
Lo anterior sugiere entonces que una transformacion unitaria apropiada para un sistema con
mas atomos necesita adicionar el operador 6., con su respectiva etiqueta, tantas veces co-
mo atomos sean considerados. La segunda transformacién unitaria mostré ser analoga a la
primera transformacion unitaria en el sentido de que se requirié solamente anadir los operado-
res para el caso de un atomo y etiquetarlos para tomar en cuenta a los dos atomos del sistema.

Por otro lado, el Hamiltoniano de interaccién hallado muestra términos idénticos a excepcion
de la etiqueta para cada uno de los atomos, lo cual nuevamente sugiere que el Hamiltoniano
de interaccién para una cantidad k de atomos de dos niveles podria ser escrito simplemente
como la suma de k veces el Hamiltoniano de interacciéon para el caso de un atomo de dos
niveles y cuyas etiquetas cubran la totalidad de dtomos involucrados. Asimismo, la expresién
para el Hamiltoniano de interaccién en el limite dispersivo mostro que este se halla compuesto
por la suma de los Hamiltonianos de interaccién en el limite dispersivo para el caso de un
atomo de dos niveles, con la distinciéon correspondiente para cada atomo.

Finalmente, en el apéndice A se muestran los cédlculos realizados para hallar las expresio-
nes de los Hamiltonianos de interaccion y de interaccion en el limite dispersivo para un
sistema de k atomos, siendo esto una extension de los propositos de la tesis; ademés de la
proposicién de las transformaciones unitarias necesarias para alcanzar tales expresiones. Los
resultados logrados no solamente reproducen los del caso de un atomo de dos niveles y el del
sistema de estudio, sino que también verifican la suposicién que surge del trabajo presente,
es decir, que para cada uno de los Hamiltonianos de interés es suficiente con sumar k veces
los Hamiltonianos respectivos para el caso de un atomo de dos niveles y etiquetarlos.
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Apéndice A

Sistema de K atomos de dos niveles
en interacciéon con un campo eléctrico
cuantizado

Es posible realizar un desarrollo més general que involucre a una cantidad arbitraria k de
atomos de dos niveles que interaccionen con el campo eléctrico cuantizado, pero que no
exista la interaccion atomo-atomo. Se busca entonces mostrar que el siguiente procedimiento
permite obtener una descripcion mas general y que permite recuperar los resultados obtenidos
para el caso de uno y dos atomos de dos niveles.

El Hamiltoniano Hy de tal sistema se halla descrito por la siguiente expresion

A 1 hw, &
Hthw(N+§)+;

k
&0+ A3 (as\™ +afa"™), (A1)
m=1

m=1

Se procede a buscar el Hamiltoniano de interacciéon Hy r, para lo cual se parte de lo siguiente:

» Los operadores N, a y a' actiian sélo sobre el campo eléctrico.

= Los operadores 6™, 6(+m) y 6™ acttian unicamente sobre el m — ésimo dtomo.

Es de interés establecer los siguientes conmutadores, los cuales son los tnicos diferentes de
cero:

NO®) ~() s .
u [Ug),a(] ] = —20'_])(51']‘7
« 69,69 =605,
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Ademas del anticonmutador
e (60 69) = I,
donde el simbolo 9, ; se refiere a la delta de Kronecker [30], descrita por lo siguiente:
dij =1, sii=j,
0i; =0, sii#j].
A.1. Primera transformacion

La transformacién unitaria que habra de aplicarse, se define con base al caso de un atomo,
de modo que

N (R kos0)

Us = ezwt(N—"% 2518 ), (A2)
y su adjunto Hermitiano

A (R koS0

U5T _ e—zwt(N-l—% Zj:l 6y ) (A3)

La ecuacién de movimiento del sistema se halla dada por

dpx oA T A i
DL —— s = ——H — Hy. A4
i h[ K> PK] P KPK + hpK K (A4)

Se aplica la transformacién unitaria a px en la forma pg; = U5ﬁKU§ ; v se desarrolla su
ecuacion de movimiento para hallar a Hg s,

. iwt(N+1 5% 60 _ A ,
dpr1 _ d(e™' N2 251 ) ﬁKefiwt(]\Aer% S e 4N S e dpk ot (N5 300 6)
dt dt dt
—iwt(N+5 38 5—9)))
dt

Se deriva respecto del tiempo y se usan las definiciones de las ecuaciones (A2), (A3) y (A4)

+€iwt(1\7+% > &Ej))ﬁK d(e

dp 7+ 157500\ 0ean it — Oepeltin | 5 '
/;fz’f — w (N+ 5 269)) UsprUs — UsprUliw (N+ 3 Z@]))
=1

—ﬁU5HKpKU§ + ﬁUg)pKHKUg.

Se usa la definicién dada para pg ; y se introduce al operador identidad en la forma conve-
niente dada por I = U§U5,

dlaKI . & 1 k ~(5) N N . & 1 ~ ()
Tt’:zw N+§ZUZ] PK.I — PK, W N+§Zazj
j=1
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_;@ﬁmg@wg + ;@wgmwg. (A5)
Se simplifica a (A5) con la notacién de conmutadores,
dprys i A1’f. . ira oA A
i e (e 5 | - 0 ]
Que a su vez puede escribirse como:
dt h

Ahora se calcula la transformacion Us H KU5, donde Hy estd dado por (A1),

1\3 \

k
Z > +U5HKU5T7ﬁK,I] -

A A A A A 1 h/wa k i m AT Al &
U0 Uf = Uy (hw(N SEIREDY & A3 (as(™ +alsl >)> Ul

m=1

Se distribuye la transformacion entre los términos de Hy y se introduce el operador identidad
en la forma I = U5TU5,

hw k
UsH Ul = hwUs NUJ S Usg™U]
m=1
k A A A A A A A
A S (UsaUi 05608 + Usat U056 0. (A6)

Se calculan las transformaciones sobre cada término:
= Se sabe que N conmuta con los operadores de la transformacion,

A A S k ~ (7 ~ . & k ~(j ~
U N _ uut(N—i—% ijl Jgj))Ne—zwt(N—i-% ijl oéJ)) - N

» De forma andloga para 5§m),

0] = O T gt st T o) gt
= Por otro lado,
A A A(J) _ A(])
U5&Ug zwt(NJr Z &6 iwt(N+1 Z )’

puesto que los operadores de la transformacion conmutan entre si, es posible lo siguiente:

A A . oo k ) A(]) ~ X ~ . ~
- t13°7 Ge tl - A
U5CLU§ — ezthezw 2 Ejflcrz —iw Z N wtN GWtNae th‘

De lo cual se obtiene finalmente que



= De forma similar,

A e ik () e ik A() S S
Usallf = (Ve 251 0 ) gl NH3 2050, 057  piwtN gt o—iwtN gt it

= En las dltima dos transformaciones a calcular, se hace uso de la delta de Kronecker
como se muestra a continuacion:

A~ A~ : G152 0) ; TL1Nk S 0)
U56Srm) Ul = ™1tz 2% )65rm)€_wt(N+§ 2519

Y

pero 6(+m) conmuta con N,

> m) 1y ~(m 1 K A ~(m ~(m 1 ~(m
U5€r(+ )Ug = cr(+ ) 4+ Zwt§ > [agj),agr )} +--= O'Sr ) + Zwt§ Z(Qaﬁr )5m]) +
j=1 j=1
Posteriormente
Fr a(m) A~ (m

T 7 — \ 1 m}‘l : ~(m a A —uut zwt AT iwt A (m) —iwt
UsHUl = hwN + 2hw+ 5 glm Z +a e,
m=1 m=1
Se simplifica la expresion previa,
UsHy Ul = > & A3 (as(™ + afe™), (A7)
m=1 m=1

Se sustituye a (A7) en (A.1) y se reduce la expresion a lo siguiente:

d/\ . hw k 1 hwa k k m m
[letﬂ - _% ) > e+ 2 > ot Y (@t +atet™), pre]

m=1 m=1 m=1

Se escribe la expresion anterior en la forma:
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dp [ R(w, — k i m - 1
L~ 2 [(“’“’) S 6 4 A Y (a6(™ +afe! )),ﬁm] — 5 |5t o

En el primer conmutador se define A = w, — w, mientras que se observa que el segundo
conmutador es cero,

dp ' hA
Zf;l - _% [Z ( 5" + Mas (™ + af 6_’”))> ,ﬁK,I] :

m=1

Por lo que el Hamiltoniano de interaccion para el sistema que involucra a K atomos queda
expresado como:

. hA
Hyp = Z ( : 6™ 4+ Nas'™ + atel™ >)>. (A8)

m=1

A.2. Segunda transformacion

Para la segunda transformacién se propone que esta tome la siguiente forma:

Us = e”zfil(&af)_&T&<‘j>), (A9)
y su adjunto Hermitiano

O = o1 (a0) —ate?)

6 — .

Asi, se define al Hamiltoniano efectivo H Keff = Uﬁﬁ K, IUg ,

FIK,@ff = 6772?:1(&053)_&T6(_j)) <Z <h2A ~(m) + )\(AA(m +a AT (m )>> 6_772?:1(&”0) ata(a))

m=1

Se distribuye la transformacion entre los términos del Hamiltoniano de interaccion,

. hA & L
Hiepp = — Z Ust™U{ + A Z Usa MO+ X S Usaf 6" 0. (A11)
m=1

Se aplica la transformacion término a término y se toma en cuenta la condicién n < 1, de
forma que se pueden despreciar términos de orden cuadratico y superiores para 7.

= Para el primer término

A A k ~ (3) () 4o _ate@
Uﬁﬁgm)Ug = enzjzl('wj —ate? _”Za (a0’ —ate)

Y

k - .
d=6" 1 10X (a0 —ate),60m | + ...



Se hace uso de la condicioén,

10 ~ 60 403" {30, 509  [ats9 50]),
j=1
0] ~ 5 4 3" (a0 509 — at [69 50])

Finalmente,

» Para el segundo término se tiene lo siguiente:

@) ks () ot 50)
UGA&Jr )UT — 67723 1(a‘7 —GTUJ )Aa.gr )6_”723]':1(‘w+J —atet )’

(a0 — at6), act™ | + ...

k
Usa\™0¢ = a6\™ + [nS
Se aplica la condicion tal que

0600 ~ a6 + i{{m,a@ ]~ a6 as{])

El primer conmutador es siempre cero, por lo que

Usas ™ 0§ ~ ast™ nzkj[ e ast™].

J=1

Se expande el conmutador y se conservan los términos que no se anulan,

Do) ~ a6 + 93" {~a1a [p9,60]  [at,a] 6769

Por lo que



= A través de un proceso andlogo al anterior se encuentra que:

k .
Usaf 6™ U8 ~ afe"™ 4 naats™ + 03 6"60).
j=1

Se sustituyen los resultados obtenidos en la ecuacién (A11),

k k i '
sy =1 32 (607 = 20 (a0 +70)) 423 (dﬁi’”) +natast™ + 5y ai%—&f))

2 m=1 m=1

Se agrupan los términos,

R EA K k k
Hicerr == 1 60N = han) 3 (act™ +ale™) + Zl (a'a + aat) 6™

m=

k k , k .
2 3 (Y606 366 |
j=1 j=1
Dado que [a, a'] = 1, entonces aa’ = (1 + afa). De tal forma que (a'a + aa’) = (2afa + 1),

k k k
Arerr =256 4 (A= hag) Y (aot™ +alo"™) + 2 > (20%a+1) 6™
m=1

2 m=1 m=1

k[ k . k .
S (2 RO 26%9) |

m=1 \j=1 7j=1
Puesto que
ko k ' ko k
S Y60 =3 % 6D,
m=1 j=1 m=1 j=1
entonces
R EA K k k
Hygepp = - Z am 4 (A — hAn) Z (&OTSr )+ &Ta(m)) + A\n Z (2aTa + 1) 6£m)
m=1 m=1 m=1
ko k A ‘
+a7 30 Y (6076 + V60, (A12)
m=1 j=1
donde

0+
De esta forma, la ecuacién (A12) se reduce a
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A hA k kb
Hyeps = Z (2 + A (2ata + 1)) +(A=hAn) Y (aot™ +ato"™ ) 420 303 16jm.

m=1 m=1 m=1j=1

Se simplifica nuevamente esta tltima expresion, tal que

. hA K ko
Hgpepp = Z <2+>\17( —|—1)> + (A= hAn) > (owJr 0(_m)) + A > 1.
m=1 m=1

m=1

En donde la dltima sumatoria puede ser reducida a un tinico término,

N k A k
Hg epr = Z <h2 +An (Qde + 1)) + (A — hAn) Z <a0+ +afo" ) + Ank. (A13)
m=1

m=1

Si se cumple la condicién dada por

A—hAn=0 < n= h/\A’
entonces (A13) se reduce a
Hyopp = mz:; (ZA + ?;Z&Ta + ;Z) 5 4 };\Zk (A14)
Se define
22 hA A2
YEhAT o AT A
Estas definiciones son sustituidas en la expresién (A14), obteniendo finalmente
. i A2
Hyepr = mgl (Ap + xata) 6™ + k. (A15)

La expresion anterior es justamente el Hamiltoniano de interaccion en el limite dispersivo
para un sistema de k atomos de dos niveles. Se puede verificar facilmente que si k£ = 1, se
recupera la ecuacién (2.41); asimismo, si k = 2 se recupera la expresion (3.16), como se espera
de un modelo mas general que se reduce a los casos mas sencillos.
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