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Resumen

El estudio de los sistemas que presentan interacción radiación-materia es fundamental para el
área de óptica cuántica, dado que permite comprender diferentes fenómenos, calcular propie-
dades y fungir como base para la computación cuántica. Un modelo ampliamente utilizado
es el de Jaynes-Cummings, que considera a un átomo de dos niveles en interacción con un
campo electromagnético cuantizado.
En este trabajo, se estudia el sistema formado por dos átomos de dos niveles en interacción
con un campo eléctrico cuantizado, con el objetivo de obtener la expresión para el Hamil-
toniano de interacción en el límite dispersivo. Para lograrlo, se propusieron y aplicaron dos
transformaciones unitarias, tomando como referencia las transformaciones unitarias para el
caso de un solo átomo que permiten simplificar el modelo y alcanzar el resultado buscado.
Como resultado principal, se obtuvo la expresión del Hamiltoniano buscado para el sistema
de estudio. Además, se generaliza el cálculo para un sistema de k átomos de dos niveles, del
cual se recuperan como casos particulares los correspondientes a uno y dos átomos.
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Abstract

The study of systems exhibiting radiation–matter interaction is fundamental in the field of
quantum optics, as it allows one to understand different phenomena, calculate properties, and
serve as a basis for quantum computation. A widely used model is the Jaynes–Cummings
model, which describes a two-level atom interacting with a quantized electromagnetic field.
In this work, we study the system formed by two two-level atoms interacting with a quantized
electric field, with the objective of obtaining the expression for the interaction Hamiltonian in
the dispersive limit. To this end, we propose and apply two unitary transformations, taking
as reference those used in the single-atom case, which allow us to simplify the model and
obtain the desired result.
As the main result, we obtain the expression for the interaction Hamiltonian in the dispersive
limit for the studied system. Furthermore, we generalize the calculation to a system of k two-
level atoms, from which the cases of one and two atoms are recovered as particular instances.
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Capítulo 1

Introducción

La física pasó por dos grandes revoluciones científicas en la primera mitad del siglo XX,
siendo estas la mecánica cuántica y la teoría de la relatividad. Ambas teorías surgieron por
la incapacidad de la mecánica newtoniana para explicar diferentes fenómenos físicos. Una de
las fallas de la teoría clásica se presentó al buscar estudiar el cuerpo negro, lo que conllevó a
la catástrofe ultravioleta. Fue gracias a Max Planck y a la idea que éste tuvo, la introducción
del cuanto de energía, que se consiguió obtener una descripción teórica que concordaba con
los resultados experimentales [1]; otros ejemplos de fallos clásicos son el efecto fotoeléctrico
y el calor específico en los sólidos. La cuantización de la energía representó un cambio de
paradigma en la física, el de considerar que las cantidades físicas son todas continuas; de
tal manera que ahora un sistema no podía poseer valores continuos sino discretos, siendo
múltiplos de la constante de Planck (h).

La cuantización no se limitó a la energía, sino que esto se daría con otras cantidades físicas
como el momento angular; se hallarían otras nuevas cantidades siendo inherentemente discre-
tas, como el espín [2]. También, este proceso continuó hacia otros aspectos de la física, como
la cuantización del campo electromagnético [3] y cuyos cuantos reciben el nombre de fotones
debido a Gilbert N. Lewis [1]. La formalización de la mecánica cuántica se consiguió con la
mecánica ondulatoria de Schrödinger y la mecánica matricial de Heisenberg, las cuales son
equivalentes entre sí.

El estudio de los sistemas cuánticos eventualmente llegó a la interacción radiación-materia,
la cual se identificó como una interacción de especial interés para diferentes áreas de la física.
Además de la cuantización del campo electromagnético, se requiere de una descripción cuán-
tica de los átomos, ya que los niveles energéticos en los átomos son discretos; una primera
aproximación para la descripción física se alcanza al considerar que un átomo posee sólo dos
estados posibles, el estado base y el estado excitado, siendo entonces un átomo de dos niveles.

La descripción de la interacción radiación-materia se consolida con el trabajo publicado por
Edwin Jaynes y Frederick Cummings, modelo que lleva su nombre, en donde no solamen-
te se describe al sistema físico formado por un átomo de dos niveles en interacción con un
campo electromagnético cuantizado, sino que se proporciona la solución analítica [4]. Pese a
la simplicidad del modelo, éste permite comprender qué sucede en los fenómenos de inter-
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acción entre radiación y materia; además, permite calcular propiedades de interés del sistema.

La importancia del modelo de Jaynes-Cummings no es sólo histórica para la física, sino que
actualmente sigue siendo un punto de partida para los estudios que se realizan [5–15]. Sin
embargo, el modelo posee una limitación crucial, considera un solo átomo de dos niveles,
mientras que en la naturaleza los sistemas se componen de una cantidad mucho mayor de
elementos. Debido a lo anterior, el siguiente paso para el estudio de la interacción radiación-
materia debe considerar un segundo átomo de dos niveles como paso intermedio para alcanzar
el modelo general para una cantidad k de átomos de dos niveles, siendo esto último una des-
cripción más certera de la realidad física. Si bien existen modelos que consideran una cantidad
arbitraria de átomos como el de Tavis-Cummings [16], estos no toman en cuenta el límite
dispersivo, el cual se describe en el siguiente párrafo.

El Hamiltoniano del modelo de Jaynes-Cummings se halla constituido por tres términos, el
Hamiltoniano del átomo de dos niveles que contiene la frecuencia de transición atómica, el
Hamiltoniano del campo electromagnético que incluye la frecuencia de éste y un término de
interacción de tipo dipolar. A partir de lo anterior, se puede suponer que la dinámica del
sistema existe si las frecuencias del campo y del átomo son similares, fenómeno de resonancia;
no obstante, la dinámica existe todo el tiempo, aunque no es tan significativa como cuando
las frecuencias son muy similares. A la dinámica existente entre átomo y campo fuera de
resonancia se le conoce como límite dispersivo y permite la simplificación del Hamiltoniano
que describe al sistema.

Por lo tanto, el presente trabajo busca hallar la expresión para el Hamiltoniano de interacción
en el límite dispersivo para el sistema formado por dos átomos de dos niveles en interacción
con un campo eléctrico cuantizado. Para alcanzar el objetivo se ha de establecer en primera
instancia el Hamiltoniano del sistema sin tomar en cuenta aún el límite dispersivo, esto se
consigue al sólo considerar la interacción átomo-campo y no la posible interacción átomo-
átomo, puesto que tal interacción complica la descripción física incluso para un sistema tan
pequeño como el que se busca estudiar. Una vez obtenido el Hamiltoniano base, se requiere
hacer uso de las transformaciones unitarias para hallar el Hamiltoniano de interacción del
sistema, donde una transformación unitaria permite una descripción equivalente del sistema
físico y que preserva ciertos aspectos de interés físico como la preservación del producto in-
terno y la norma entre vectores [17]. Sin embargo, la elección de la transformación unitaria
no es trivial, pues no se cuenta con una metodología universal para hallarlas, lo cual repre-
senta un reto metodológico. Una vez se alcanza el Hamiltoniano de interacción, se aplica una
segunda transformación unitaria que, bajo una cierta consideración, permite llegar al caso
del límite dispersivo, concretando así el objetivo de la tesis.

La tesis se conforma por tres capítulos posteriores al presente, estructurados en la siguiente
forma: el capítulo 2 comprende el marco teórico en que se sustenta el trabajo, por lo cual en
2.1 se mencionan los aspectos más fundamentales de la mecánica cuántica. En 2.2 se muestra
el procedimiento seguido para realizar la cuantización del campo electromagnético y obtener
así su Hamiltoniano; mientras que en 2.3 se describen las consideraciones necesarias para
establecer el Hamiltoniano del átomo de dos niveles. Es en 2.4 donde se establece finalmente
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el modelo de Jaynes-Cummings y en 2.5 se muestra el procedimiento necesario para alcanzar
el límite dispersivo para el caso de un átomo de dos niveles. En el capítulo 3 se desarrolla
el trabajo, donde se mencionan las consideraciones físicas tomadas y se divide conforme a
cada una de las transformaciones unitarias aplicadas. El capítulo 4 engloba los resultados y
conclusiones de la tesis. Finalmente, se incluye un apéndice que amplía el trabajo realizado,
en el cual se desarrolla con detalle el caso general para k átomos de dos niveles en interacción
con el campo eléctrico, calculando la expresión para el Hamiltoniano en el límite dispersivo.
El resultado obtenido permite recuperar, como casos particulares, los Hamiltonianos para
uno y dos átomos de dos niveles.

1.1. Planteamiento del problema
El desarrollo de la física como ciencia requiere de una continua investigación tanto en la
parte teórica como en el área de la experimentación, buscando describir y explicar diferentes
fenómenos físicos. En particular, el estudio de la interacción radiación-materia, así como de
los diferentes sistemas físicos en que esta puede presentarse, es de especial interés para áreas
como lo son la óptica cuántica, la física del estado sólido y la física atómica.

Un modelo de referencia para la interacción radiación-materia es el modelo de Jaynes-
Cummings [4], propuesto en 1963, que describe a un sistema de un único átomo de dos
niveles que interactúa con un campo electromagnético y el cual posee solución analítica.
Dicho trabajo es de relevancia, puesto que a partir de este se han podido estudiar otras fe-
nomenologías [5, 6], calcular propiedades de interés del sistema de estudio [7–10] e inclusive
proponer algunos métodos para la computación cuántica [11].

Sin embargo, numerosos trabajos consideran la interacción radiación-materia con un solo
átomo [12–15], al igual que en el modelo de Jaynes-Cummings; el problema radica entonces
en que los sistemas físicos en la naturaleza no se hallan compuestos por un único átomo o
elemento material, sino que se componen de una cantidad mayor de cuerpos, que para siste-
mas macroscópicos puede ser del orden del número de Avogadro.

Por lo anterior, el estudio de los sistemas en que se ve involucrado más de un átomo es de
interés, siendo el siguiente paso un sistema formado por dos átomos de dos niveles que inter-
accionan con un campo eléctrico cuantizado. Aunque el sistema de estudio no considera la
interacción átomo-átomo, pues esta interacción puede ser de diferentes tipos, ni se considera
que los átomos sean de especies químicas distintas, ya que esto complica el problema a estu-
diar. Además, se busca trabajar dentro del límite dispersivo, el cual se refiere a la existencia
de dinámica en el sistema de estudio incluso cuando este se halla fuera de resonancia, es de-
cir, la frecuencia de transición atómica difiere significativamente de la frecuencia del campo
eléctrico, lo que se conoce como gran desintonía [18].

El trabajo pretende entonces hallar el Hamiltoniano de interacción en el límite dispersivo
para el sistema de dos átomos de dos niveles en interacción con un campo eléctrico cuantiza-
do. Para alcanzar este objetivo, se debe hacer uso de transformaciones unitarias, pero no se
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cuenta con una metodología que garantice hallar la transformación unitaria apropiada para
todo tipo de problema, lo cual constituye uno de los retos de la tesis.

1.2. Justificación
El estudio de los sistemas con interacción radiación-materia es de gran relevancia, ya que
permite una mejor comprensión de este tipo de interacción, lo que a su vez facilita que el
conocimiento obtenido pueda ser usado como base para investigaciones tanto en ciencia bá-
sica como en aplicaciones prácticas. Por ello, el presente trabajo busca aportar al área de la
óptica cuántica, así como a campos relacionados, donde también se aborda el estudio de la
interacción radiación–materia.

Por otra parte, los estudios previos en el área se han basado mayormente en el modelo de Jay-
nes–Cummings, que describe un sistema formado por un átomo de dos niveles interactuando
con un campo electromagnético cuantizado. No obstante, la mayoría de los sistemas físicos
de interés contienen más de un átomo, por lo que, aunque el modelo de Jaynes-Cummings
proporciona una amplia información sobre la interacción radiación–materia, presenta una
gran limitación al considerar sólo un átomo. Es así que este trabajo busca avanzar hacia un
modelo más general al incorporar un segundo átomo de dos niveles en el sistema de estudio
dentro del límite dispersivo, lo que servirá como base para futuras investigaciones orientadas
a modelar sistemas con un número mayor de átomos, donde el caso general deberá incluir
una cantidad k de átomos.

Finalmente, al ser una investigación de carácter teórico, no se requieren instalaciones de
laboratorio ni equipo especializado, lo que permite realizar el trabajo de manera eficiente en
la Universidad Tecnológica de la Mixteca, utilizando únicamente como recurso electrónico
una computadora portátil para la consulta de bibliografía y artículos que fundamentarán el
desarrollo de la investigación.

1.3. Hipótesis
Es posible hallar un conjunto de transformaciones sobre el Hamiltoniano de Interacción de
dos átomos de dos niveles interactuando con un campo eléctrico cuantizado en el límite
dispersivo que permita simplificar la expresión.

1.4. Objetivos

1.4.1. Objetivo general
Obtener la expresión para el Hamiltoniano de interacción en el límite dispersivo en una
cavidad cuántica en la que se tiene la interacción de un campo eléctrico cuantizado con dos
átomos de dos niveles.
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1.4.2. Objetivos específicos
Hallar las transformaciones necesarias para la obtención del Hamiltoniano de interac-
ción en el límite dispersivo para un campo eléctrico cuantizado con dos átomos de dos
niveles.

Obtener el Hamiltoniano de interacción como un aporte al área de la óptica cuántica.

1.5. Metas
Estudiar los conceptos y principios de la mecánica cuántica necesarios para la descrip-
ción del sistema de interés.

Realizar el análisis del campo electromagnético dentro del marco de la mecánica cuán-
tica.

Estudiar el átomo de dos niveles y obtener su Hamiltoniano.

Realizar un análisis del modelo de Jaynes-Cummings que describe a un sistema formado
por un átomo de dos niveles interactuante con un campo cuantizado.

Hallar la expresión para el Hamiltoniano de interacción en el límite dispersivo para un
sistema de dos átomos de dos niveles en interacción con un campo eléctrico cuantizado.
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Capítulo 2

Marco Teórico

2.1. Fundamentos de la mecánica cuántica
Para la descripción de los sistemas a escalas aún más pequeñas que las micrométricas, como
lo son las escalas atómicas y nucleares, es necesario abandonar la mecánica desarrollada por
Newton y hacer uso de las herramientas que brinda la mecánica cuántica. Tales conceptos
básicos se describen en la presente sección.

2.1.1. Conceptos fundamentales de la mecánica cuántica
La mecánica cuántica se consolida como una teoría física a partir de un conjunto de postulados
que se toman como verdaderos y que parten de las observaciones experimentales; así como
de una ecuación diferencial, la ecuación de Schrödinger, que da paso a la descripción de
numerosos sistemas.

Postulados de la mecánica cuántica

Los postulados forman el marco de trabajo de la mecánica cuántica, los cuales son los si-
guientes [19,20]:

Postulado 1. El estado de un sistema
El estado de cualquier sistema físico está especificado, para cada tiempo t, por un vector
de estado |ψ(t)⟩ dentro de un espacio de Hilbert H; |ψ(t)⟩ contiene toda la información
necesaria acerca del sistema. Cualquier superposición de vectores de estado es también
un vector de estado.

Postulado 2. Observables y operadores
A cada cantidad física medible A, llamada observable, le corresponde un operador lineal
Hermitiano Â cuyos eigenvectores forman una base completa.

Postulado 3. Mediciones y eigenvalores de operadores
La medición de un observable A puede ser representada por la acción de Â sobre
un vector de estado |ψ(t)⟩. El único posible resultado de tal medición es uno de los
eigenvalores an del operador Â. Si el resultado de la medición de Â sobre un estado
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|ψ(t)⟩ es an, entonces el estado del sistema, inmediatamente luego de la medición,
cambia a |ψn⟩, es decir,

Â|ψ(t)⟩ = an|ψn⟩, (2.1)
donde an = ⟨ψn|ψ(t)⟩.

Postulado 4. Resultado probabilístico de las mediciones
Si se cuenta con un caso discreto o uno continuo se tiene lo siguiente:

• Espectro discreto
Cuando se mide un observable A de un sistema en un estado |ψ⟩, la probabilidad
de obtener uno de sus eigenvalores no degenerados (se dice que un eigenvalor es
degenerado si diferentes eigenvectores poseen el mismo eigenvalor), está dado por

Pn(an) = |⟨ψn|ψ⟩|2

⟨ψ|ψ⟩
= |an|2

⟨ψ|ψ⟩
. (2.2)

Si el eigenvalor es m-degenerado (m eigenvectores poseen el mismo eigenvalor),
entonces

Pn(an) =
∑m

j=1 |⟨ψj
n|ψ⟩|2

⟨ψ|ψ⟩
=
∑m

j=1 |a(j)
n |2

⟨ψ|ψ⟩
. (2.3)

• Espectro continuo
Para determinar la densidad de probabilidad de que una medición de Â conduzca
a un valor entre a y a+da para un sistema originalmente en el estado |ψ⟩ se cuenta
con la relación dada por

dP (a)
da

= |ψ(a)|2
⟨ψ|ψ⟩

= |ψ(a)|2∫+∞
−∞ |ψ(a′)|2da′ . (2.4)

Postulado 5. La evolución temporal de un sistema
La evolución temporal de un vector de estado |Ψ(t)⟩ de un sistema está gobernado por
la ecuación de Schrödinger dependiente del tiempo

iℏ
∂|Ψ(t)⟩
∂t

= Ĥ|Ψ(t)⟩, (2.5)

donde Ĥ es el operador Hamiltoniano correspondiente a la energía total del sistema.

Ecuación de Schrödinger

La ecuación que describe a los sistemas cuánticos cerrados, es la ecuación de Schrödinger [1],
introducida por primera vez por Erwin Schrödinger en 1926, está dada por

∇2ψ + 2m
ℏ2 (E − V )ψ = 0, (2.6)

la cual en forma más general, al considerar la dependencia temporal, puede ser escrita como

Ĥ|ψ(t)⟩ = iℏ
∂

∂t
|ψ(t)⟩. (2.7)
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2.1.2. Imágenes de Schrödinger, Heisenberg y de interacción
Para el estudio de la evolución temporal del sistema se cuenta con diferentes perspectivas,
conocidas como imágenes, que abordan tal cuestión. Estas imágenes son equivalentes entre
sí debido a que se hallan relacionados por transformaciones unitarias [2, 19].

Imagen de Schrödinger
En la imagen de Schrödinger, los vectores de estado muestran dependencia del tiempo,
sin embargo los operadores no lo hacen, tal que

iℏ
d

dt
|ψ(t)⟩ = Ĥ|ψ(t)⟩, (2.8)

en particular esta imagen tiene utilidad cuando el operador Hamiltoniano no muestra
dependencia del tiempo [1].
Se encuentra que la evolución temporal de un estado está dada por

|ψ(t)⟩ = Û(t, t0)|ψ(t0)⟩,

donde Û(t, t0) es el operador de evolución temporal, dado por

Û(t, t0) = e−i(t−t0)Ĥ/ℏ.

Imagen de Heisenberg
En la imagen de Heisenberg, la dependencia temporal recae en los operadores [19]. La
dependencia temporal de un operador Â en este esquema queda definido como

ÂH(t) = eitĤ/ℏÂe−itĤ/ℏ.

Así que la evolución temporal queda expresada en la ecuación de movimiento de Hei-
senberg, dada por

dÂH

dt
= 1
iℏ
[
ÂH , Ĥ

]
. (2.9)

Imagen de Interacción
En la imagen de interacción, tanto los operadores como los vectores de estado evolu-
cionan en el tiempo [19]. De lo anterior, surge la necesidad de tener una ecuación de
movimiento para los vectores de estado y otra para los operadores.
La ecuación para los vectores de estado es

iℏ
d|ψ(t)⟩I

dt
= V̂I |ψ(t)⟩I , (2.10)

donde V̂ es un operador de interés y en la imagen de interacción queda definido como
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V̂I = eitĤ0/ℏV̂ e−itĤ0/ℏ. (2.11)

Por su parte, la ecuación de movimiento para los operadores es

dÂI(t)
dt

= 1
iℏ
[
ÂI(t), Ĥ0

]
, (2.12)

donde ÂI(t) se halla usando la ecuación (2.11).

2.1.3. Matriz densidad
A diferencia de los sistemas de estudio más simples donde es posible tener un estado del
sistema bien definido, en la realidad no es frecuente conocer con exactitud el estado de un
sistema físico [20]. No obstante, el problema anterior se ve resuelto con la introducción del
operador o matriz densidad ρ̂, el cual queda definido como

ρ̂ =
∑

j

ρj|j⟩⟨j|,

donde |j⟩ refiere a alguna base que cumpla la propiedad de ser ortogonal y que no necesaria-
mente es aquella formada por los eigenestados del sistema de estudio.
La ecuación que describe la evolución temporal de ρ̂ se muestra a continuación

iℏ
∂ρ̂

∂t
= [Ĥ, ρ̂], (2.13)

la cual es conocida como la ecuación de von Neumann [1].

2.2. El campo electromagnético
Para un adecuado estudio del sistema de interés, es necesario conocer cómo es que el campo
electromagnético se expresa dentro del marco de la mecánica cuántica. En primera instancia,
se ha de tratar el campo electromagnético descrito con las ecuaciones de Maxwell, para luego
hallar el Hamiltoniano del campo electromagnético cuantizado.

2.2.1. Descripción clásica del campo electromagnético
Las ecuaciones de Maxwell, en su forma diferencial, se hallan dadas por las siguientes expre-
siones [21, 22]:

∇⃗ × H⃗ = J⃗ + ∂D⃗

∂t
,

∇⃗ × E⃗ = −∂B⃗

∂t
,

9



∇⃗ · D⃗ = ρ,

∇⃗ · B⃗ = 0,

donde H⃗ es el vector de campo magnético, J⃗ es la densidad de corriente, D⃗ es el vector
de desplazamiento eléctrico, E⃗ es el vector de campo eléctrico, B⃗ es el vector de inducción
magnética y ρ es la densidad de carga. Es a partir de estas ecuaciones que se consigue una
descripción completa del campo electromagnético de forma clásica, en particular si estas ecua-
ciones son usadas en ausencia de cargas o corrientes, estas pueden reducirse a las ecuaciones
de Maxwell en el vacío [23]:

∇ × B⃗ = 1
c

∂E⃗

∂t
,

∇ × E⃗ = 1
c

∂B⃗

∂t
,

∇ · E⃗ = 0,

∇ · B⃗ = 0.

2.2.2. Cuantización del campo electromagnético
Para realizar la cuantización del campo electromagnético se sigue el procedimiento de la
cuantización monomodal descrito por [24, 25], entonces se toma una cavidad de volumen V
encerrado por espejos perfectamente reflejantes. En este espacio se cumplen las ecuaciones
de Maxwell para el vacío listadas previamente y para un campo electromagnético monomodo
y monocromático (i.e. una única frecuencia), el campo eléctrico y magnético pueden ser
expresados en la forma

E⃗(z, t) = x̂

√
2ω2

ϵ0V
q(t) sin(kz), (2.14)

B⃗(z, t) = ŷ

c2k

√
2ω2

ϵ0V
q̇(t) cos(kz), (2.15)

donde ω es la frecuencia de oscilación del campo, k es el número de onda, ϵ0 es la permitividad
eléctrica del vacío y q(t) está dado como

q(t) ≡
√
ϵ0V

2ω2Eosin(ωt),

con E0 la amplitud del campo eléctrico.
Se cuenta además, con las siguientes relaciones,
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B0 = E0

c
,

c2 = 1
ϵ0µ0

,

k = ω

c
,

donde µ0 es la permeabilidad magnética del vacío.
Este campo se propaga en la dirección z del sistema de referencia que se establece adecuada-
mente, además de que se trata de un campo polarizado, por lo cual E⃗ y B⃗ se hallan en una
única dirección. Por otra parte, de la descripción clásica [26], se conoce que las densidades de
energía de campo eléctrico y magnético (uE y uB respectivamente) están dadas en la forma

uE = 1
2ϵ0E

2,

uB = 1
2
B2

µ0
.

Entonces, la densidad de energía del campo electromagnético es

u = uE + uB = 1
2

(
ϵ0E

2 + B2

µ0

)
.

Si la expresión anterior es integrada sobre todo el volumen, es posible expresar el Hamilto-
niano clásico del campo electromagnético como sigue

HF = 1
2

∫
V
dV

(
ϵ0E

2 + B2

µ0

)
. (2.16)

En este Hamiltoniano se sustituyen las expresiones (2.14) y (2.15). Luego de realizar la
integral correspondiente se consigue reducir al Hamiltoniano a

HF = 1
2
(
ω2q2 + p2

)
, (2.17)

donde se usó la relación

p = q̇.

Operadores de creación, aniquilación y de número

Se definen a continuación los operadores de creación, aniquilación y de número, los cuales
actúan sobre estados dados en la base de número [2] o también conocidos como estados de
Fock.
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Operador de creación
Se denota por â† y actúa en la forma

â†|n⟩ =
√
n+ 1|n+ 1⟩.

Operador de aniquilación
Es denotado como â y cumple con

â|n⟩ =
√
n|n− 1⟩.

Operador de número
Se define como N̂ = â†â, de forma que

N̂ |n⟩ = n|n⟩.

Es útil mencionar que los operadores de creación y aniquilación cumplen la siguiente relación
de conmutación, siempre que sean aplicados a bosones

[â, â†] = 1.
Retornando a la cuantización del campo electromagnético, se promueve a H, p y q en la
ecuación (2.17) a operadores

ĤF = 1
2
(
ω2q̂2 + p̂2

)
, (2.18)

y se encuentra que la relación entre los operadores q̂ y p̂ con â y â† es la siguiente:

q̂ =
√

2ℏ
2 (â+ â†),

p̂ =
√

2ℏω
2i (â− â†),

tal que luego de introducir las expresiones, la ecuación obtenida es esencialmente la ecuación
para el oscilador armónico [27], la cual puede entonces expresarse en la forma

ĤF = ℏω
(
â†â+ 1

2

)
= ℏω

(
N̂ + 1

2

)
,

donde se hizo uso de la definición para el operador de número y de la relación de conmutación
de los operadores de creación y de aniquilación.
Así pues, los eigenestados del campo electromagnético cuantizado están dados en la base de
número (estados de Fock), tal que

ĤF |n⟩ = ℏω
(
N̂ + 1

2

)
|n⟩. (2.19)

Dado que se trata de una ecuación de eigenvalores, la ecuación previa puede ser expresada
como
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ĤF |n⟩ = ℏω
(
n+ 1

2

)
|n⟩. (2.20)

2.3. El átomo de dos niveles
La importancia del estudio del átomo de dos niveles está justificado por la amplia variedad
de fenómenos que pueden comprenderse al considerar la interacción de un campo quasi-
monocromático y un átomo de dos niveles, de ahí que definir el Hamiltoniano que describe
al sistema se vuelve crucial. Se entiende por átomo de dos niveles a aquel en que el átomo
puede hallarse en uno de dos estados, en el estado base, que en adelante será denotado como
|g⟩ (debido a la palabra en inglés ground), o en el estado excitado, en adelante denotado por
|e⟩ (de la palabra en inglés excited).

Hamiltoniano del átomo de dos niveles
Del esquema que se muestra en la figura 2.1, se observa que al estado |e⟩ le corresponde una
energía ℏωa

2 (ωa es la frecuencia de transición entre los estados |g⟩ y |e⟩), y al estado |g⟩ le

corresponde una energía −ℏωa

2 , de acuerdo a cómo se definió el 0 de la energía, de lo cual es
sencillo verificar que la diferencia energética entre ambos niveles es simplemente

Ee − Eg = ℏωa

2 −
(

−ℏωa

2

)
= ℏωa.

De acuerdo al formalismo de la mecánica cuántica, un operador Â puede ser escrito en la
siguiente forma:

Â =
∑

a

a|a⟩⟨a|,

con a el eigenvalor del operador en el estado |a⟩ y |a⟩⟨a| el operador de proyección [2].
Así, para un átomo de dos niveles aislado, es decir sin interacción, su Hamiltoniano puede
ser escrito en la forma

ĤA = ℏωa

2 |e⟩⟨e| − ℏωa

2 |g⟩⟨g|. (2.21)

Matrices de Pauli y operadores de subida y bajada atómicos

A continuación se definen las matrices de Pauli [2], las cuales serán utilizadas para el Hamil-
toniano del átomo de dos niveles:

σ̂x =
(

0 1
1 0

)
; σ̂y =

(
0 −i
i 0

)
; σ̂z =

(
1 0
0 −1

)
.

Por su parte, los operadores de subida y bajada atómicos están expresados en términos de
las matrices de Pauli y se definen como
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Figura 2.1: Esquema de un átomo de dos niveles, mostrando los estados con su energía
correspondiente.

σ̂+ ≡ 1
2(σ̂x + iσ̂y); σ̂− ≡ 1

2(σ̂x − iσ̂y).

Ahora, se hace uso de la representación matricial que tienen los estados |e⟩ y |g⟩, tal que

|e⟩ =
(

1
0

)
; |g⟩ =

(
0
1

)
.

Se recurre a la definición dada para la matriz de Pauli σ̂z, de forma que el Hamiltoniano del
átomo de dos niveles sin interacción se reduce a

ĤA = 1
2ℏωaσ̂z. (2.22)

2.4. Modelo con interacción átomo-campo

El estudio de los sistemas en donde la luz y la materia interaccionan es amplio; no obstante,
un primer acercamiento se consigue al estudiar la interacción entre un campo electromagné-
tico cuantizado y un sistema atómico, particularmente un átomo de dos niveles. Pese a la
simplicidad del modelo, resulta interesante y esclarecedor el modelo propuesto originalmente
por Edwin Thompson Jaynes y Fred Cummings en 1963 [28], de ahí que se haga énfasis en
dicho modelo; de hecho, este modelo cuenta con solución analítica y existen diferentes formas
de resolverlo [29].
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Modelo de Jaynes-Cummings
El modelo de Jaynes-Cummings propone un Hamiltoniano para la interacción entre un campo
electromagnético cuantizado y un átomo de dos niveles en la forma

Ĥ = ĤF + ĤA + ĤI , (2.23)
donde ĤF es el Hamiltoniano para el campo electromagnético cuantizado desarrollado en la
sección 2.2.2, ĤA es el Hamiltoniano para el átomo de dos niveles sin interacción y ĤI es el
término que indica la interacción existente entre átomo y campo, tal interacción se debe al
dipolo eléctrico del átomo [4]. De forma que el Hamiltoniano resultante está dado por

Ĥ = 1
2ℏωaσ̂z + ℏω(â†â+ 1

2) + ℏΩ(σ̂+â+ â†σ̂−), (2.24)

donde

Ω = dεw

ϵ0V
sin(κz), (2.25)

es la frecuencia de Rabi para el modo del campo de la cavidad. V es el volumen de la cavidad
usada para la cuantización del campo electromagnético, d es la matriz de dipolo eléctrico y
εw es la magnitud del campo eléctrico.
En la ecuación (2.24), el último término correspondiente a la interacción representa los dos
procesos que pueden llevarse a cabo, σ̂+â puede ser entendido como el proceso en que un
fotón es aniquilado y el átomo sube un nivel de energía, o de forma equivalente, la absorción
de un fotón del campo electromagnético por el átomo implica la excitación de éste último tal
que pasa del estado base |g⟩ al estado excitado |e⟩. Por su parte, el término â†σ̂− indica lo
opuesto, es decir, el decaimiento del átomo al estado base y la emisión de un fotón.

2.5. Transformaciones para alcanzar el límite disper-
sivo

La presente sección busca mostrar el proceso establecido para obtener el Hamiltoniano de
interacción en el límite dispersivo para un sistema formado por un átomo de dos niveles en
interacción con un campo eléctrico cuantizado, lo cual se consigue a través de la aplicación
de dos transformaciones unitarias.

2.5.1. Primera transformación
En la sección del modelo de Jaynes-Cummings, se estableció que el Hamiltoniano que describe
a un átomo de dos niveles interactuante con un campo eléctrico cuantizado, se halla descrito
por la siguiente expresión:

Ĥ = ℏωa

2 σ̂z + ℏωN̂ + λ(âσ̂+ + â†σ̂−), (2.26)

donde se define λ = ℏΩ para simplificar la notación.
Por otro lado, la evolución temporal del sistema se encuentra descrita por la expresión
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dρ̂

dt
= − i

ℏ
[Ĥ, ρ̂] = i

ℏ
ρ̂Ĥ − i

ℏ
Ĥρ̂.. (2.27)

Para continuar, se define la transformación unitaria

Û1 = eiωt(N̂+ 1
2 σ̂z), (2.28)

y su adjunto Hermitiano dado por

Û †
1 = e−iωt(N̂+ 1

2 σ̂z). (2.29)
Ahora, se define un nuevo operador ρ̂I expresado por

ρ̂I = Û1ρ̂Û
†
1 = eiωt(N̂+ 1

2 σ̂z)ρ̂e−iωt(N̂+ 1
2 σ̂z), (2.30)

donde a ρ̂I se le calculará su evolución temporal de forma análoga a la ecuación (2.27), tal
que se busca llegar a una expresión como la siguiente:

dρ̂I

dt
= − i

ℏ
[ĤI , ρ̂I ],

en donde ĤI es el Hamiltoniano de interacción del sistema.
Para esto, se desarrolla la derivada temporal como sigue:

dρ̂I

dt
= d

dt

(
eiωt(N̂+ 1

2 σ̂z)ρ̂e−iωt(N̂+ 1
2 σ̂z)

)
,

dρ̂I

dt
= d

dt

(
eiωt(N̂+ 1

2 σ̂z)
)
ρ̂e−iωt(N̂+ 1

2 σ̂z) + eiωt(N̂+ 1
2 σ̂z)dρ̂

dt
e−iωt(N̂+ 1

2 σ̂z)

+eiωt(N̂+ 1
2 σ̂z)ρ̂

d

dt

(
e−iωt(N̂+ 1

2 σ̂z)
)
,

dρ̂I

dt
= iω

(
N̂ + 1

2 σ̂z

)
eiωt(N̂+ 1

2 σ̂z)ρ̂e−iωt(N̂+ 1
2 σ̂z) + eiωt(N̂+ 1

2 σ̂z)dρ̂

dt
e−iωt(N̂+ 1

2 σ̂z)

+eiωt(N̂+ 1
2 σ̂z)ρ̂e−iωt(N̂+ 1

2 σ̂z)
(

−iω
(
N̂ + 1

2 σ̂z

))
.

Se hace uso de la definición dada por la ecuación (2.30) y se ordenan los términos, tal que

dρ̂I

dt
= iω

(
N̂ + 1

2 σ̂z

)
ρ̂I − iωρ̂I

(
N̂ + 1

2 σ̂z

)
+ eiωt(N̂+ 1

2 σ̂z)dρ̂

dt
e−iωt(N̂+ 1

2 σ̂z).

Se introduce la ecuación (2.27) en la expresión previa,

dρ̂I

dt
= iω

(
N̂ + 1

2 σ̂z

)
ρ̂I − iωρ̂I

(
N̂ + 1

2 σ̂z

)
+ eiωt(N̂+ 1

2 σ̂z)
(
i

ℏ
ρ̂Ĥ − i

ℏ
Ĥρ̂

)
e−iωt(N̂+ 1

2 σ̂z).

Se distribuyen los términos y se introduce el operador identidad Î como se muestra,

dρ̂I

dt
= iω

(
N̂ + 1

2 σ̂z

)
ρ̂I − iωρ̂I

(
N̂ + 1

2 σ̂z

)
+ i

ℏ
eiωt(N̂+ 1

2 σ̂z)ρ̂ÎĤe−iωt(N̂+ 1
2 σ̂z)
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− i

ℏ
eiωt(N̂+ 1

2 σ̂z)ĤÎρ̂e−iωt(N̂+ 1
2 σ̂z).

Se elige al operador identidad en la forma

Î = e−iωt(N̂+ 1
2 σ̂z)eiωt(N̂+ 1

2 σ̂z). (2.31)

Se sustituyen y agrupan los primeros términos en forma de un conmutador,

dρ̂I

dt
= iω

[
N̂ + 1

2 σ̂z, ρ̂I

]
+ i

ℏ
eiωt(N̂+ 1

2 σ̂z)ρ̂e−iωt(N̂+ 1
2 σ̂z)eiωt(N̂+ 1

2 σ̂z)Ĥe−iωt(N̂+ 1
2 σ̂z)

− i

ℏ
eiωt(N̂+ 1

2 σ̂z)Ĥe−iωt(N̂+ 1
2 σ̂z)eiωt(N̂+ 1

2 σ̂z)ρ̂e−iωt(N̂+ 1
2 σ̂z).

Se hace uso nuevamente de la definición dada por (2.30),

dρ̂I

dt
= iω

[
N̂ + 1

2 σ̂z, ρ̂I

]
+ i

ℏ
ρ̂Ie

iωt(N̂+ 1
2 σ̂z)Ĥe−iωt(N̂+ 1

2 σ̂z) − i

ℏ
eiωt(N̂+ 1

2 σ̂z)Ĥe−iωt(N̂+ 1
2 σ̂z)ρ̂I .

Es posible simplificar la expresión anterior en la forma de un segundo conmutador,

dρ̂I

dt
= iω

[
N̂ + 1

2 σ̂z, ρ̂I

]
− i

ℏ
[
eiωt(N̂+ 1

2 σ̂z)Ĥe−iωt(N̂+ 1
2 σ̂z), ρ̂I

]
. (2.32)

Entonces se busca calcular la transformación sobre el Hamiltoniano Ĥ identificada en adelante
por Ĥ ′,

Ĥ ′ = eiωt(N̂+ 1
2 σ̂z)Ĥe−iωt(N̂+ 1

2 σ̂z),

donde Ĥ es el Hamiltoniano del modelo de Jaynes-Cummings denotado por la ecuación (2.26),
es decir,

Ĥ ′ = eiωt(N̂+ 1
2 σ̂z)

(
ℏωa

2 σ̂z + ℏωN̂ + λ(âσ̂+ + â†σ̂−)
)
e−iωt(N̂+ 1

2 σ̂z). (2.33)

Es conveniente realizar la transformación término a término, pero primero se establecerán
las relaciones de conmutación entre los operadores involucrados.

[â, â†] = 1;

[N̂ , â] = −â;

[N̂ , â†] = â†;

[σ̂z, σ̂+] = 2σ̂+;

[σ̂z, σ̂−] = −2σ̂−;

[σ̂+, σ̂−] = σ̂z.
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Cualquier otra relación de conmutación posible entre los operadores involucrados da como
resultado que dichos operadores conmutan entre sí.
Se procede a mostrar el cálculo de la transformación sobre el primer término de Ĥ ′, dado
que el procedimiento es análogo para los demás términos y sólo se mostrará el resultado de
estos.
Para el primer término identificado como Ĥ ′

1,

Ĥ ′
1 = ℏωa

2 eiωt(N̂+ 1
2 σ̂z)σ̂ze

−iωt(N̂+ 1
2 σ̂z),

se hace uso de la fórmula de Baker-Campbell-Hausdorff [30],

eiωt(N̂+ 1
2 σ̂z)σ̂ze

−iωt(N̂+ 1
2 σ̂z) = σ̂z +iωt

[
N̂ + 1

2 σ̂z, σ̂z

]
+ 1

2!(iωt)
2
[
N̂ + 1

2 σ̂z,
[
N̂ + 1

2 σ̂z, σ̂z

]]
+ . . . ,

pero

[N̂ , σ̂z] = 0;

[σ̂z, σ̂z] = 0.

Por lo que

eiωt(N̂+ 1
2 σ̂z)σ̂ze

−iωt(N̂+ 1
2 σ̂z) = σ̂z,

y por consiguiente

Ĥ ′
1 = ℏωa

2 σ̂z.

Luego

Ĥ ′
2 = ℏωeiωt(N̂+ 1

2 σ̂z)N̂e−iωt(N̂+ 1
2 σ̂z) = ℏωN̂.

Se ha de notar que para realizar la transformación en los casos donde aparecen âσ̂+ y â†σ̂−
es necesario introducir al operador identidad en el medio de estos, tal como se expresa en
(2.31). Entonces se obtiene como resultado:

Ĥ ′
3 = λeiωt(N̂+ 1

2 σ̂z)âσ̂+e
−iωt(N̂+ 1

2 σ̂z) = λâσ̂+;

Ĥ ′
4 = λeiωt(N̂+ 1

2 σ̂z)â†σ̂−e
−iωt(N̂+ 1

2 σ̂z) = λâ†σ̂−.

Se introducen estos resultados en (2.33),

Ĥ ′ = ℏωa

2 σ̂z + ℏωN̂ + λ(âσ̂+ + â†σ̂−), (2.34)

donde se aprecia que (2.26) y (2.34) son idénticas. Se introduce a (2.34) en (2.32),

dρ̂I

dt
= iω

[
N̂ + 1

2 σ̂z, ρ̂I

]
− i

ℏ

[
ℏωa

2 σ̂z + ℏωN̂ + λ(âσ̂+ + â†σ̂−), ρ̂I

]
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Se une a los conmutadores y se agrupan términos comunes,

dρ̂I

dt
= − i

ℏ

[
ℏ(ωa − ω)

2 σ̂z + λ(âσ̂+ + â†σ̂−), ρ̂I

]
.

De la ecuación previa se puede identificar al Hamiltoniano de interacción dado por

ĤI = ℏ(ωa − ω)
2 σ̂z + λ(âσ̂+ + â†σ̂−). (2.35)

Se define

∆ = ωa − ω,

tal que

ĤI = ℏ∆
2 σ̂z + λ(âσ̂+ + â†σ̂−), (2.36)

es entonces la expresión para el Hamiltoniano de interacción del sistema de un átomo de dos
niveles en interacción con un campo eléctrico cuantizado.

2.5.2. Segunda transformación
La segunda transformación unitaria es aquella que permite obtener al Hamiltoniano del
sistema en el límite dispersivo. Se propone al siguiente operador unitario:

Û2 = eη(âσ̂+−â†σ̂−), (2.37)

y su adjunto Hermitiano

Û †
2 = e−η(âσ̂+−â†σ̂−), (2.38)

donde η debe determinarse.
A continuación, se define el Hamiltoniano efectivo o de interacción en el límite dispersivo
dado por

Ĥeff = Û2ĤIÛ
†
2 = eη(âσ̂+−â†σ̂−)ĤIe

−η(âσ̂+−â†σ̂−).

Se sustituye en la expresión previa el resultado hallado en la ecuación (2.36)

Ĥeff = eη(âσ̂+−â†σ̂−)
{
ℏ△
2 σ̂z + λ(âσ̂+ + â†σ̂−)

}
e−η(âσ̂+−â†σ̂−).

De manera análoga a la sección anterior, se desarrolla la transformación unitaria, pero bajo
la condición de que

η ≪ 1,

por lo que se despreciarán los términos con η2 y potencias mayores en η, tal que
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Ĥeff = (λ− ℏ∆η)
(
âσ̂+ + â†σ̂−

)
+
(
ℏ∆
2 + λη

)
σ̂z + 2ληâ†âσ̂z + λη. (2.39)

Ahora, si se cumple la condición dada por

(λ− ℏ∆η) = 0 ⇔ η = λ

ℏ∆ ,

entonces la ecuación (2.39) se reduce a

Ĥeff =
(
ℏ∆
2 + λ2

ℏ∆

)
σ̂z + 2λ2

ℏ∆ â†âσ̂z + λ2

ℏ∆ . (2.40)

Se define lo siguiente:

∆D = ℏ∆
2 + λ2

ℏ∆ ,

χ = 2λ2

ℏ∆ ..

Por lo que

Ĥeff = ∆Dσ̂z + χâ†âσ̂z + λ2

ℏ∆ ,

Ĥeff = ∆Dσ̂z + χN̂σ̂z + λ2

ℏ∆ . (2.41)

Donde (2.41) es el Hamiltoniano de interacción en el límite dispersivo para un átomo de dos
niveles interactuando con un campo eléctrico cuantizado.

20



Capítulo 3

Transformaciones para alcanzar el
límite dispersivo para el caso de dos
átomos

3.1. Sistema de dos átomos de dos niveles en interac-
ción con un campo eléctrico cuantizado

Para llevar a cabo el trabajo de la presente tesis, se establece en primera instancia el sistema
a estudiar. Se considera que el sistema involucra a dos átomos de dos niveles, por lo que
los Hamiltonianos de los átomos serán idénticos, salvo por una etiqueta que identifica a los
operadores de cada uno; cada átomo posee interacción con el campo eléctrico cuantizado,
pero no se considera que exista interacción del tipo átomo-átomo. La justificación física
de no tomar en cuenta la interacción átomo-átomo es que estos se hallan a una distancia
suficientemente lejana entre sí como para que ningún átomo “note” la presencia del otro.
A partir de lo anterior, el Hamiltoniano que describe al sistema está dado por la siguiente
expresión:

Ĥ2 = ℏω
(
N̂ + 1

2

)
+ 1

2ℏωaσ̂
(1)
z + 1

2ℏωaσ̂
(2)
z + λ(âσ̂(1)

+ + â†σ̂
(1)
− ) + λ(âσ̂(2)

+ + â†σ̂
(2)
− ), (3.1)

en donde los superíndices usados en los operadores permiten identificar si un operador se
corresponde con uno u otro de los dos átomos involucrados. En las subsecciones siguientes se
mostrará el desarrollo para obtener el Hamiltoniano en el límite dispersivo para este sistema.
Se ha de notar que ambos átomos poseen la misma frecuencia de transición ωa, dado que se
trata de la misma especie química; además, lo anterior conlleva a que la interacción átomo-
campo sea del mismo tipo y se denote únicamente por λ.
Antes de desarrollar las transformaciones, es necesario notar que las reglas de conmutación
establecidas para el caso de un átomo se siguen manteniendo para el caso presente. Para los
operadores del campo:

[â, â†] = 1;
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Figura 3.1: Sistema de estudio: dos átomos de dos niveles dentro de una cavidad donde existe
un campo eléctrico cuantizado.

[N̂ , â] = −â;

[N̂ , â†] = â†.

Para cada uno de los átomos, se cumplen las siguientes relaciones de conmutación:

[σ̂(i)
z , σ̂

(i)
+ ] = 2σ̂(i)

+ ;

[σ̂(i)
z , σ̂

(i)
− ] = −2σ̂(i)

− ;

[σ̂(i)
+ , σ̂

(i)
− ] = σ̂(i)

z ,

donde i = 1, 2.
Por su parte, los operadores del átomo 1 conmutan con los operadores del átomo 2 puesto que
realizar una medición sobre el átomo 1 y luego sobre el átomo 2 es completamente equivalente
a realizar primero la medición sobre el átomo 2 y luego sobre el átomo 1. Esto último es
análogo a lo que sucede en el caso de un átomo, donde los operadores del campo y del átomo
conmutan entre sí, dado que los eigenvectores de estos operadores corresponden a espacios
vectoriales diferentes; lo cual se sustenta en el uso del producto directo de vectores [30].
Entonces, todos los conmutadores no mostrados explícitamente, dan como resultado cero.

3.1.1. Primera transformación
De igual manera al caso de un átomo, se ha de proponer la transformación unitaria, la cual
se halla expresada de la siguiente forma:

Û3 = eiωt(N̂+ 1
2 σ̂

(1)
z + 1

2 σ̂
(2)
z ), (3.2)

y su adjunto Hermitiano dado por
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Û †
3 = e−iωt(N̂+ 1

2 σ̂
(1)
z + 1

2 σ̂
(2)
z ). (3.3)

Se recuerda que el operador densidad contiene toda la información del sistema, para el sistema
de dos átomos será denotado por ρ̂2 y su evolución temporal expresada como

dρ̂2

dt
= i

ℏ
ρ̂2Ĥ2 − i

ℏ
Ĥ2ρ̂2. (3.4)

Se sigue el procedimiento para el caso de un átomo, por lo que se aplica la transformación a
ρ̂2, es decir,

ρ̂2,I = Û3ρ̂2Û
†
3 , (3.5)

donde los subíndices en ρ̂2,I refieren a que se trata de la matriz de densidad para dos átomos
de dos niveles y que dicho operador se halla descrito en la imagen de interacción. Luego, se
calcula su evolución temporal,

dρ̂2,I

dt
= dÛ3

dt
ρ̂2Û

†
3 + Û3

dρ̂2

dt
Û †

3 + Û3ρ̂2
dÛ †

3
dt

,

dρ̂2,I

dt
= iω

(
N̂ + 1

2 σ̂
(1)
z + 1

2 σ̂
(2)
z

)
Û3ρ̂2Û

†
3 + Û3

dρ̂2

dt
Û †

3

+Û3ρ̂2Û
†
3

(
−iω

(
N̂ + 1

2 σ̂
(1)
z + 1

2 σ̂
(2)
z

))
.

Se usan las relaciones dadas por las ecuaciones (3.4) y (3.5),

dρ̂2,I

dt
= iω

(
N̂ + 1

2 σ̂
(1)
z + 1

2 σ̂
(2)
z

)
ρ̂2,I + Û3

(
i

ℏ
ρ̂2Ĥ2 − i

ℏ
Ĥ2ρ̂2

)
Û †

3

−ρ̂2,I

(
iω
(
N̂ + 1

2 σ̂
(1)
z + 1

2 σ̂
(2)
z

))
.

Se simplifica la expresión anterior y se introduce el operador identidad Î,

dρ̂2,I

dt
=
[
iω
(
N̂ + 1

2 σ̂
(1)
z + 1

2 σ̂
(2)
z

)
, ρ̂2,I

]
+ i

ℏ
Û3ρ̂2ÎĤ2Û

†
3 − i

ℏ
Û3Ĥ2Î ρ̂2Û

†
3 .

Se elige que el operador identidad tome la siguiente forma Î = Û †
3 Û3,

dρ̂2,I

dt
=
[
iω
(
N̂ + 1

2 σ̂
(1)
z + 1

2 σ̂
(2)
z

)
, ρ̂2,I

]
+ i

ℏ
Û3ρ̂2Û

†
3 Û3Ĥ2Û

†
3 − i

ℏ
Û3Ĥ2Û

†
3 Û3ρ̂2Û

†
3 .

Se usa nuevamente la relación dada por (3.5) y se simplifica la expresión,

dρ̂2,I

dt
= − i

ℏ

[
−ℏω

(
N̂ + 1

2 σ̂
(1)
z + 1

2 σ̂
(2)
z

)
, ρ̂2,I

]
− i

ℏ
[
Û3Ĥ2Û

†
3 , ρ̂2,I

]
. (3.6)

Ahora, se busca calcular la transformación Û3Ĥ2Û
†
3 , tal que

Û3Ĥ2Û
†
3 = Û3

(
ℏω

(
N̂ + 1

2

)
+ 1

2ℏωaσ̂
(1)
z + 1

2ℏωaσ̂
(2)
z + λ(âσ̂(1)

+ + â†σ̂
(1)
− )

23



+λ(âσ̂(2)
+ + â†σ̂

(2)
− )

)
Û †

3 .

Se distribuye la transformación entre los términos del Hamiltoniano,

Û3Ĥ2Û
†
3 = ℏωÛ3N̂Û

†
3 + ℏω

2 + 1
2ℏωaÛ3σ̂

(1)
z Û †

3 + 1
2ℏωaÛ3σ̂

(2)
z Û †

3

+λ(Û3âσ̂
(1)
+ Û †

3 + Û3â
†σ̂

(1)
− Û †

3) + λ(Û3âσ̂
(2)
+ Û †

3 + Û3â
†σ̂

(2)
− Û †

3). (3.7)

Se aplica la transformación término a término:

Para el primer término,

Û3N̂Û
†
3 = eiωt(N̂+ 1

2 σ̂
(1)
z + 1

2 σ̂
(2)
z )N̂e−iωt(N̂+ 1

2 σ̂
(1)
z + 1

2 σ̂
(2)
z ).

Se utiliza la fórmula de Baker-Campbell-Haussdorff,

Û3N̂Û
†
3 = N̂ + iωt

[
N̂ + 1

2 σ̂
(1)
z + 1

2 σ̂
(2)
z , N̂

]
+ . . . ,

pero N̂ conmuta con σ̂(1)
z , σ̂(2)

z y consigo mismo, por lo que

Û3N̂Û
†
3 = N̂ .

Posteriormente,

Û3σ̂
(1)
z Û †

3 = eiωt(N̂+ 1
2 σ̂

(1)
z + 1

2 σ̂
(2)
z )σ̂(1)

z e−iωt(N̂+ 1
2 σ̂

(1)
z + 1

2 σ̂
(2)
z ),

Û3σ̂
(1)
z Û †

3 = N̂ + iωt
[
N̂ + 1

2 σ̂
(1)
z + 1

2 σ̂
(2)
z , σ̂(1)

z

]
+ . . . .

Pero σ̂(1)
z conmuta con los operadores presentes, tal que

Û3σ̂
(1)
z Û †

3 = σ̂(1)
z .

De forma similar al término previo,

Û3σ̂
(2)
z Û †

3 = σ̂(2)
z .

Para los términos que involucran a dos operadores, se introduce el operador identidad
entre estos en la forma Î = Û †

3 Û3,

Û3âσ̂
(1)
+ Û †

3 = Û3âÎ σ̂
(1)
+ Û †

3 = Û3âÛ
†
3 Û3σ̂

(1)
+ Û †

3 .

Por propiedades de los operadores, se puede calcular la transformación sobre â y la
transformación para σ̂(1)

+ por separado y luego conjuntar los resultados, por lo que
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•
Û3âÛ

†
3 = eiωt(N̂+ 1

2 σ̂
(1)
z + 1

2 σ̂
(2)
z )âe−iωt(N̂+ 1

2 σ̂
(1)
z + 1

2 σ̂
(2)
z ),

Û3âÛ
†
3 = â+ iωt

[
N̂ + 1

2 σ̂
(1)
z + 1

2 σ̂
(2)
z , â

]
+ . . . ,

Û3âÛ
†
3 = â+ iωt

{
[N̂ , â] + 1

2[σ̂(1)
z , â] + 1

2[σ̂(2)
z , â]

}
+ . . . .

Se usan las relaciones de conmutación, obteniendo

Û3âÛ
†
3 = â+ iωt {−â+ 0 + 0} + · · · = â+ (−iωt)â+ (−iωt)2

2! â+ . . . ,

Û3âÛ
†
3 = â

(
1 + (−iωt) + (−iωt)2

2! + . . .

)
,

Û3âÛ
†
3 = âe−iωt.

• Mientras que

Û3σ̂
(1)
+ Û †

3 = eiωt(N̂+ 1
2 σ̂

(1)
z + 1

2 σ̂
(2)
z )σ̂

(1)
+ e−iωt(N̂+ 1

2 σ̂
(1)
z + 1

2 σ̂
(2)
z ),

Û3σ̂
(1)
+ Û †

3 = σ̂
(1)
+ + iωt

[
N̂ + 1

2 σ̂
(1)
z + 1

2 σ̂
(2)
z , σ̂

(1)
+

]
+ . . . ,

Û3σ̂
(1)
+ Û †

3 = σ̂
(1)
+ + iωt

{
[N̂ , σ̂(1)

+ ] + 1
2[σ̂(1)

z , σ̂
(1)
+ ] + 1

2[σ̂(2)
z , σ̂

(1)
+ ]
}

+ . . . .

Se utilizan las relaciones de conmutación, tal que

Û3σ̂
(1)
+ Û †

3 = σ̂
(1)
+ +iωt

{
0 + 1

2
(
2σ̂(1)

+

)
+ 0

}
+ · · · = σ̂

(1)
+ +(iωt)σ̂(1)

+ + (iωt)2

2! σ̂
(1)
+ + . . . ,

Û3σ̂
(1)
+ Û †

3 = σ̂
(1)
+

(
1 + (iωt) + (iωt)2

2! + . . .

)
,

Û3σ̂
(1)
+ Û †

3 = σ̂
(1)
+ eiωt.

Entonces,
Û3âσ̂

(1)
+ Û †

3 = âe−iωtσ̂
(1)
+ eiωt = âσ̂

(1)
+ .

De forma similar, se encuentran las transformaciones restantes, obteniendo lo siguiente:

Û3ââ
†σ̂

(1)
− Û †

3 = â†σ̂
(1)
− ;

Û3âσ̂
(2)
+ Û †

3 = âσ̂
(2)
+ ;

Û3â
†σ̂

(2)
− Û †

3 = â†σ̂
(2)
− .
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Se introducen estos resultados en (3.7),

Û3Ĥ2Û
†
3 = ℏω

(
N̂ + 1

2

)
+ 1

2ℏωaσ̂
(1)
z + 1

2ℏωaσ̂
(2)
z + λ(âσ̂(1)

+ + â†σ̂
(1)
− ) + λ(âσ̂(2)

+ + â†σ̂
(2)
− ).

De igual manera que en el caso de un átomo, la transformación unitaria aplicada al Hamil-
toniano del sistema lo deja inalterado, tal que

Û3Ĥ2Û
†
3 = Ĥ2.

Se sustituyen estos resultados en (3.6),

dρ̂2,I

dt
= − i

ℏ

[
−ℏωN̂ − ℏω

2 σ̂(1)
z − ℏω

2 σ̂(2)
z + Ĥ2, ρ̂2,I

]
.

Se simplifica y reescribe la última expresión,

dρ̂2,I

dt
= − i

ℏ

[
(ωa − ω)

2 ℏσ̂(1)
z + (ωa − ω)

2 σ̂(2)
z + λ(âσ̂(1)

+ + â†σ̂
(1)
− ) + λ(âσ̂(2)

+ + â†σ̂
(2)
− ), ρ̂2,I

]

− i

ℏ

[
ℏω
2 , ρ̂2,I

]
.

Se observa que el segundo conmutador debe ser cero, ya que es el conmutador de una constante
y un operador. Además, según la definición dada en el capítulo anterior, se tiene ∆ = ωa −ω,
de modo que

dρ̂2,I

dt
= − i

ℏ

[
∆
2 ℏσ̂(1)

z + ∆
2 ℏσ̂(2)

z + λ(âσ̂(1)
+ + â†σ̂

(1)
− ) + λ(âσ̂(2)

+ + â†σ̂
(2)
− ), ρ̂2,I

]
.

Así, se identifica al Hamiltoniano de interacción Ĥ2,I como

Ĥ2,I = ∆
2 ℏσ̂(1)

z + ∆
2 ℏσ̂(2)

z + λ(âσ̂(1)
+ + â†σ̂

(1)
− ) + λ(âσ̂(2)

+ + â†σ̂
(2)
− ). (3.8)

3.1.2. Segunda transformación
Para hallar el Hamiltoniano en el límite dispersivo, se requiere de una segunda transformación
unitaria, la cual se propone en la forma

Û4 = eη(âσ̂
(1)
+ −â†σ̂

(1)
− +âσ̂

(2)
+ −â†σ̂

(2)
− ), (3.9)

y su adjunto Hermitiano

Û †
4 = e−η(âσ̂

(1)
+ −â†σ̂

(1)
− +âσ̂

(2)
+ −â†σ̂

(2)
− ). (3.10)

Se define Ĥ2,eff = Û4Ĥ2Û
†
4 como el Hamiltoniano en el límite dispersivo para el sistema de

dos átomos de dos niveles. Para aplicar la transformación, se toma en cuenta la condición
η ≪ 1, por lo que se desprecian términos de orden cuadrático y superiores para η.

26



Entonces,

Ĥ2,eff = Û4

(
∆
2 ℏσ̂(1)

z + ∆
2 σ̂

(2)
z + λ(âσ̂(1)

+ + â†σ̂
(1)
− ) + λ(âσ̂(2)

+ + â†σ̂
(2)
− )

)
Û †

4 .

Se distribuye la transformación entre los términos del Hamiltoniano,

Ĥ2,eff = ∆ℏ
2 Û4σ̂

(1)
z Û †

4 + ∆ℏ
2 Û4σ̂

(2)
z Û †

4 + λ(Û4âσ̂
(1)
+ Û †

4 + Û4â
†σ̂

(1)
− Û †

4)

+λ(Û4âσ̂
(2)
+ Û †

4 + Û4â
†σ̂

(2)
− Û †

4). (3.11)
Se calcula la transformación término a término:

Û4σ̂
(1)
z Û †

4 = σ̂(1)
z + η

[
âσ̂

(1)
+ − â†σ̂

(1)
− + âσ̂

(2)
+ − â†σ̂

(2)
− , σ̂(1)

z

]
+ . . . ,

con la condición para η basta considerar los primeros dos términos

Û4σ̂
(1)
z Û †

4 ≈ σ̂(1)
z + η

{[
âσ̂

(1)
+ , σ̂(1)

z

]
−
[
â†σ̂

(1)
− , σ̂(1)

z

]
+
[
âσ̂

(2)
+ , σ̂(1)

z

]
−
[
â†σ̂

(2)
− , σ̂(1)

z

]}
.

Se expanden los conmutadores,

Û4σ̂
(1)
z Û †

4 ≈ σ̂(1)
z + η

{
â
[
σ̂

(1)
+ , σ̂(1)

z

]
+
[
â, σ̂(1)

z

]
σ̂

(1)
+ − â†

[
σ̂

(1)
− , σ̂(1)

z

]
−
[
â†, σ̂(1)

z

]
σ̂

(1)
−

}
+η

{
â
[
σ̂

(2)
+ , σ̂(1)

z

]
+
[
â, σ̂(1)

z

]
σ̂

(2)
+ − â†

[
σ̂

(2)
− , σ̂(1)

z

]
−
[
â†, σ̂(1)

z

]
σ̂

(2)
−

}
,

y se dejan sólo los conmutadores que no son cero,

Û4σ̂
(1)
z Û †

4 ≈ σ̂(1)
z + η

{
â
[
σ̂

(1)
+ , σ̂(1)

z

]
− â†

[
σ̂

(1)
− , σ̂(1)

z

]}
.

Se hace uso de las relaciones de conmutación,

Û4σ̂
(1)
z Û †

4 ≈ σ̂(1)
z + η

{
â
(
−2σ̂(1)

+

)
− â†

(
2σ̂(1)

−

)}
.

Por lo que,
Û4σ̂

(1)
z Û †

4 ≈ σ̂(1)
z − 2η

(
âσ̂

(1)
+ + â†σ̂

(1)
−

)
.

Se sigue un procedimiento similar para el segundo término

Û4σ̂
(2)
z Û †

4 ≈ σ̂(2)
z − 2η

(
âσ̂

(2)
+ + â†σ̂

(2)
−

)
.

Para los términos con dos operadores, primero se expande la transformación con ayuda
de la fórmula de Baker-Campbell-Hausdorff,

Û4âσ̂
(1)
+ Û †

4 = âσ̂
(1)
+ + η

[
âσ̂

(1)
+ − â†σ̂

(1)
− + âσ̂

(2)
+ − â†σ̂

(2)
− , âσ̂

(1)
+

]
+ . . . .

Se hace uso de la condición, se corta la expansión hasta el término lineal en η y se
expanden los conmutadores,

Û4âσ̂
(1)
+ Û †

4 ≈ âσ̂
(1)
+ + η

{[
âσ̂

(1)
+ , âσ̂

(1)
+

]
−
[
â†σ̂

(1)
− , âσ̂

(1)
+

]
+
[
âσ̂

(2)
+ , âσ̂

(1)
+

]
−
[
â†σ̂

(2)
− , âσ̂

(1)
+

]}
.
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El primer y tercer conmutador son cero, pues en el primero se cuenta con los mismos
operadores; mientras que en el tercero todos los operadores involucrados conmutan.
Entonces esto reduce la expresión como se muestra,

Û4âσ̂
(1)
+ Û †

4 ≈ âσ̂
(1)
+ − η

{[
â†σ̂

(1)
− , âσ̂

(1)
+

]
+
[
â†σ̂

(2)
− , âσ̂

(1)
+

]}
.

Se expande a los conmutadores restantes,

Û4âσ̂
(1)
+ Û †

4 ≈ âσ̂
(1)
+ −η

{
â†
[
σ̂

(1)
− , âσ̂

(1)
+

]
+
[
â†, âσ̂

(1)
+

]
σ̂

(1)
− + â†

[
σ̂

(2)
− , âσ̂

(1)
+

]
+
[
â†, âσ̂

(1)
+

]
σ̂

(2)
−

}
.

El tercer conmutador es cero y no es necesario expandirlo, puesto que los operadores
involucrados conmutan entre sí,

Û4âσ̂
(1)
+ Û †

4 ≈ âσ̂
(1)
+ − η

{
â†
[
σ̂

(1)
− , âσ̂

(1)
+

]
+
[
â†, âσ̂

(1)
+

]
σ̂

(1)
− +

[
â†, âσ̂

(1)
+

]
σ̂

(2)
−

}
.

Una vez más, se expande a los conmutadores obteniendo lo siguiente:

Û4âσ̂
(1)
+ Û †

4 ≈ âσ̂
(1)
+ − η

{
â†â

[
σ̂

(1)
− , σ̂

(1)
+

]
+ â†

[
σ̂

(1)
− , â

]
σ̂

(1)
+ + â

[
â†, σ̂

(1)
+

]
σ̂

(1)
−

}
−η

{[
â†, â

]
σ̂

(1)
+ σ̂

(1)
− + â

[
â†, σ̂

(1)
+

]
σ̂

(2)
− +

[
â†, â

]
σ̂

(1)
+ σ̂

(2)
−

}
.

Se elimina a los conmutadores que son cero al usar las relaciones de conmutación,

Û4âσ̂
(1)
+ Û †

4 ≈ âσ̂
(1)
+ − η

{
â†â

[
σ̂

(1)
− , σ̂

(1)
+

]
+
[
â†, â

]
σ̂

(1)
+ σ̂

(1)
− +

[
â†, â

]
σ̂

(1)
+ σ̂

(2)
−

}
.

Se aplican las relaciones de conmutación en los conmutadores restantes,

Û4âσ̂
(1)
+ Û †

4 ≈ âσ̂
(1)
+ − η

{
â†â

(
−σ̂(1)

z

)
+ (−1)σ̂(1)

+ σ̂
(1)
− + (−1)σ̂(1)

+ σ̂
(2)
−

}
.

Entonces,
Û4âσ̂

(1)
+ Û †

4 ≈ âσ̂
(1)
+ + η

{
â†âσ̂(1)

z + σ̂
(1)
+ σ̂

(1)
− + σ̂

(1)
+ σ̂

(2)
−

}
.

A través de procedimientos análogos, se pueden calcular las tres transformaciones que hacen
falta, cuyos resultados se muestran a continuación:

Û4â
†σ̂

(1)
− Û †

4 ≈ â†σ̂
(1)
− + η

{
ââ†σ̂(1)

z + σ̂
(1)
− σ̂

(1)
+ + σ̂

(1)
− σ̂

(2)
+

}
;

Û4âσ̂
(2)
+ Û †

4 ≈ âσ̂
(2)
+ + η

{
â†âσ̂(2)

z + σ̂
(2)
+ σ̂

(1)
− + σ̂

(2)
+ σ̂

(2)
−

}
;

Û4â
†σ̂

(2)
− Û †

4 ≈ â†σ̂
(2)
− + η

{
ââ†σ̂(2)

z + σ̂
(2)
− σ̂

(1)
+ + σ̂

(2)
− σ̂

(2)
+

}
.

Se introducen estos resultados en (3.11),

Ĥ2,eff = ∆ℏ
2
(
σ̂(1)

z − 2η
(
âσ̂

(1)
+ + â†σ̂

(1)
−

))
+ ∆ℏ

2
(
σ̂(2)

z − 2η
(
âσ̂

(2)
+ + â†σ̂

(2)
−

))
+λ

(
âσ̂

(1)
+ + η

{
â†âσ̂(1)

z + σ̂
(1)
+ σ̂

(1)
− + σ̂

(1)
+ σ̂

(2)
−

})
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+λ
(
â†σ̂

(1)
− + η

{
ââ†σ̂(1)

z + σ̂
(1)
− σ̂

(1)
+ + σ̂

(1)
− σ̂

(2)
+

})
+λ

(
âσ̂

(2)
+ + η

{
â†âσ̂(2)

z + σ̂
(2)
+ σ̂

(1)
− + σ̂

(2)
+ σ̂

(2)
−

})
+λ

(
â†σ̂

(2)
− + η

{
ââ†σ̂(2)

z + σ̂
(2)
− σ̂

(1)
+ + σ̂

(2)
− σ̂

(2)
+

})
.

Se agrupan los términos comunes,

Ĥ2,eff = ∆ℏ
2
(
σ̂(1)

z + σ̂(2)
z

)
+ (λ− ℏ∆η)

(
âσ̂

(1)
+ + â†σ̂

(1)
− + âσ̂

(2)
+ + â†σ̂

(2)
−

)
+λη

(
â†â+ ââ†

) (
σ̂(1)

z + σ̂(2)
z

)
+ λη

(
{σ̂(1)

+ , σ̂
(1)
− } + {σ̂(2)

+ , σ̂
(2)
− }

)
+λη

(
{σ̂(1)

+ , σ̂
(2)
− } + {σ̂(2)

+ , σ̂
(1)
− }

)
.

Donde los únicos anticonmutadores diferentes de cero son aquellos que tienen superíndices
iguales, es decir,

{σ̂(i)
+ , σ̂

(i)
− } = Î .

De manera que

Ĥ2,eff = ∆ℏ
2
(
σ̂(1)

z + σ̂(2)
z

)
+ (λ− ℏ∆η)

(
âσ̂

(1)
+ + â†σ̂

(1)
− + âσ̂

(2)
+ + â†σ̂

(2)
−

)
+λη

(
â†â+ ââ†

) (
σ̂(1)

z + σ̂(2)
z

)
+ 2ληÎ (3.12)

Por otro lado, de la relación de conmutación para los operadores de creación y aniquilación
del campo se cumple que

ââ† = 1 + â†â.

Por lo que

â†â+ ââ† = 2â†â+ 1.
Se sustituye la expresión previa en (3.12) y se agrupan términos,

Ĥ2,eff =
(

∆ℏ
2 + 2ληâ†â+ λη

)(
σ̂(1)

z + σ̂(2)
z

)
+ 2λη

+(λ− ℏ∆η)
(
âσ̂

(1)
+ + â†σ̂

(1)
− + âσ̂

(2)
+ + â†σ̂

(2)
−

)
. (3.13)

Si se cumple la condición dada por

λ− ℏ∆η = 0 ⇔ η = λ

ℏ∆ ,

implica que (3.13) se reduce a

Ĥ2,eff =
(

∆ℏ
2 + 2λ2

ℏ∆ â†â+ λ2

ℏ∆

)(
σ̂(1)

z + σ̂(2)
z

)
+ 2 λ

2

ℏ∆ . (3.14)

Se define
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χ = 2λ2

ℏ∆ ; ∆D = ℏ∆
2 + λ2

ℏ∆ .

Su sustituyen las definiciones, que son las mismas que para el caso de un átomo, en (3.14),

Ĥ2,eff =
(
χâ†â+ ∆D

) (
σ̂(1)

z + σ̂(2)
z

)
+ 2 λ

2

ℏ∆ . (3.15)

Que es equivalente a

Ĥ2,eff =
(
χN̂ + ∆D

) (
σ̂(1)

z + σ̂(2)
z

)
+ 2 λ

2

ℏ∆ . (3.16)

Siendo la expresión (3.16) el Hamiltoniano en el límite dispersivo para el sistema de dos
átomos de dos niveles interactuando con un campo eléctrico.
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Capítulo 4

Resultados y Conclusiones

4.1. Resultados
Los resultados obtenidos en el presente trabajo apuntan al hallazgo de las transformaciones
unitarias apropiadas para obtener las expresiones para el Hamiltoniano de interacción y
el Hamiltoniano en el límite dispersivo para el sistema de dos átomos de dos niveles en
interacción con el campo eléctrico.
Entonces, el primer resultado se refiere a la transformación unitaria denotada por

Û3 = eiωt(N̂+ 1
2 σ̂

(1)
z + 1

2 σ̂
(2)
z ),

la cual es similar al caso de un único átomo de dos niveles y que involucra únicamente a tres
operadores, justamente aquellos que son necesarios para la escritura de los Hamiltonianos
del campo eléctrico y de cada uno de los átomos sin que se considere aún el término de
interacción.
El segundo resultado refiere a la identificación adecuada del Hamiltoniano de interacción del
sistema, expresado como

Ĥ2,I = ∆
2 ℏσ̂(1)

z + ∆
2 σ̂

(2)
z + λ(âσ̂(1)

+ + â†σ̂
(1)
− ) + λ(âσ̂(2)

+ + â†σ̂
(2)
− ),

el cual muestra similitud al caso de referencia de un solo átomo.
La proposición de la segunda transformación unitaria quedó definida como

Û4 = eη(âσ̂
(1)
+ −â†σ̂

(1)
− +âσ̂

(2)
+ −â†σ̂

(2)
− ),

de lo cual se aprecia que esta transformación involucra a los operadores necesarios para
describir el término de interacción en el Hamiltoniano del sistema.
Finalmente, el resultado principal de esta tesis refiere a la obtención del Hamiltoniano en el
límite dispersivo para el sistema de estudio, el cual es:

Ĥ2,eff =
(
χN̂ + ∆D

) (
σ̂(1)

z + σ̂(2)
z

)
+ 2 λ

2

ℏ∆ .
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4.2. Conclusiones
Se alcanzó el objetivo de la tesis al hallar la expresión para el Hamiltoniano de interacción en
el límite dispersivo para el sistema de dos átomos de dos niveles en interacción con el campo
eléctrico. El conjunto de resultados señalados en la sección previa son bastante similares al
caso de un solo átomo de dos niveles, salvo las etiquetas que permiten distinguir a los ope-
radores propios de cada uno de los átomos en el sistema de estudio.

Por un lado, la primera transformación unitaria hallada Û3 es idéntica a la transformación
unitaria Û1 excepto por el hecho del término añadido del segundo átomo y que, como se
mencionó en la sección previa, basta con tomar en consideración a los operadores involucra-
dos en los Hamiltonianos del campo y de los átomos cuando estos se hallan sin interacción.
Lo anterior sugiere entonces que una transformación unitaria apropiada para un sistema con
más átomos necesita adicionar el operador σ̂z, con su respectiva etiqueta, tantas veces co-
mo átomos sean considerados. La segunda transformación unitaria mostró ser análoga a la
primera transformación unitaria en el sentido de que se requirió solamente añadir los operado-
res para el caso de un átomo y etiquetarlos para tomar en cuenta a los dos átomos del sistema.

Por otro lado, el Hamiltoniano de interacción hallado muestra términos idénticos a excepción
de la etiqueta para cada uno de los átomos, lo cual nuevamente sugiere que el Hamiltoniano
de interacción para una cantidad k de átomos de dos niveles podría ser escrito simplemente
como la suma de k veces el Hamiltoniano de interacción para el caso de un átomo de dos
niveles y cuyas etiquetas cubran la totalidad de átomos involucrados. Asimismo, la expresión
para el Hamiltoniano de interacción en el límite dispersivo mostró que este se halla compuesto
por la suma de los Hamiltonianos de interacción en el límite dispersivo para el caso de un
átomo de dos niveles, con la distinción correspondiente para cada átomo.

Finalmente, en el apéndice A se muestran los cálculos realizados para hallar las expresio-
nes de los Hamiltonianos de interacción y de interacción en el límite dispersivo para un
sistema de k átomos, siendo esto una extensión de los propósitos de la tesis; además de la
proposición de las transformaciones unitarias necesarias para alcanzar tales expresiones. Los
resultados logrados no solamente reproducen los del caso de un átomo de dos niveles y el del
sistema de estudio, sino que también verifican la suposición que surge del trabajo presente,
es decir, que para cada uno de los Hamiltonianos de interés es suficiente con sumar k veces
los Hamiltonianos respectivos para el caso de un átomo de dos niveles y etiquetarlos.
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Apéndice A

Sistema de K átomos de dos niveles
en interacción con un campo eléctrico
cuantizado

Es posible realizar un desarrollo más general que involucre a una cantidad arbitraria k de
átomos de dos niveles que interaccionen con el campo eléctrico cuantizado, pero que no
exista la interacción átomo-átomo. Se busca entonces mostrar que el siguiente procedimiento
permite obtener una descripción más general y que permite recuperar los resultados obtenidos
para el caso de uno y dos átomos de dos niveles.
El Hamiltoniano ĤK de tal sistema se halla descrito por la siguiente expresión

ĤK = ℏω(N̂ + 1
2) + ℏωa

2

k∑
m=1

σ̂(m)
z + λ

k∑
m=1

(âσ̂(m)
+ + â†σ̂

(m)
− ). (A1)

Se procede a buscar el Hamiltoniano de interacción ĤK,I , para lo cual se parte de lo siguiente:

Los operadores N̂ , â y â† actúan sólo sobre el campo eléctrico.

Los operadores σ̂(m)
z , σ̂(m)

+ y σ̂(m)
− actúan unicamente sobre el m− ésimo átomo.

Es de interés establecer los siguientes conmutadores, los cuales son los únicos diferentes de
cero:

[â, â†] = 1;

[N̂ , â] = −â;

[N̂ , â†] = â†;

[σ̂(i)
z , σ̂

(j)
+ ] = 2σ̂(j)

+ δij;

[σ̂(i)
z , σ̂

(j)
− ] = −2σ̂(j)

− δij;

[σ̂(i)
+ , σ̂

(j)
− ] = σ̂(j)

z δij.
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Además del anticonmutador{
σ̂

(m)
+ , σ̂

(j)
−

}
= Îδim,

donde el símbolo δi,j se refiere a la delta de Kronecker [30], descrita por lo siguiente:

δi,j = 1, si i = j,
δi,j = 0, si i ̸= j.

A.1. Primera transformación
La transformación unitaria que habrá de aplicarse, se define con base al caso de un átomo,
de modo que

Û5 = eiωt(N̂+ 1
2
∑k

j=1 σ̂
(j)
z ), (A2)

y su adjunto Hermitiano

Û †
5 = e−iωt(N̂+ 1

2
∑k

j=1 σ̂
(j)
z ). (A3)

La ecuación de movimiento del sistema se halla dada por

dρ̂K

dt
= − i

ℏ
[ĤK , ρ̂K ] = − i

ℏ
ĤK ρ̂K + i

ℏ
ρ̂KĤK . (A4)

Se aplica la transformación unitaria a ρ̂K en la forma ρ̂K,I = Û5ρ̂KÛ
†
5 ; y se desarrolla su

ecuación de movimiento para hallar a ĤK,I ,

dρ̂K,I

dt
= d(eiωt(N̂+ 1

2
∑k

j=1 σ̂
(j)
z ))

dt
ρ̂Ke

−iωt(N̂+ 1
2
∑k

j=1 σ̂
(j)
z ) + eiωt(N̂+ 1

2
∑k

j=1 σ̂
(j)
z )dρ̂K

dt
e−iωt(N̂+ 1

2
∑k

j=1 σ̂
(j)
z )

+eiωt(N̂+ 1
2
∑k

j=1 σ̂
(j)
z )ρ̂K

d(e−iωt(N̂+ 1
2
∑k

j=1 σ̂
(j)
z ))

dt
.

Se deriva respecto del tiempo y se usan las definiciones de las ecuaciones (A2), (A3) y (A4)

dρ̂K,I

dt
= iω

N̂ + 1
2

k∑
j=1

σ̂(j)
z

 Û5ρ̂KÛ
†
5 − Û5ρ̂KÛ

†
5 iω

N̂ + 1
2

k∑
j=1

σ̂(j)
z


− i

ℏ
Û5ĤK ρ̂KÛ

†
5 + i

ℏ
Û5ρ̂KĤKÛ

†
5 .

Se usa la definición dada para ρ̂K,I y se introduce al operador identidad en la forma conve-
niente dada por Î = Û †

5 Û5,

dρ̂K,I

dt
= iω

N̂ + 1
2

k∑
j=1

σ̂(j)
z

 ρ̂K,I − ρ̂K,Iiω

N̂ + 1
2

k∑
j=1

σ̂(j)
z


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− i

ℏ
Û5ĤÛ

†
5 Û5ρ̂Û

†
5 + i

ℏ
Û5ρ̂Û

†
5 Û5ĤKÛ

†
5 . (A5)

Se simplifica a (A5) con la notación de conmutadores,

dρ̂K,I

dt
= − i

ℏ

−ℏω

N̂ + 1
2

k∑
j=1

σ̂(j)
z

 , ρ̂k,I

− i

ℏ
[
Û5ĤKÛ

†
5 , ρ̂K,I

]
.

Que a su vez puede escribirse como:

dρ̂K,I

dt
= − i

ℏ

[
−ℏω

(
N̂ + 1

2

k∑
m=1

σ̂(m)
z

)
+ Û5ĤKÛ

†
5 , ρ̂K,I

]
.

Ahora se calcula la transformación Û5ĤKÛ
†
5 , donde ĤK está dado por (A1),

Û5ĤKÛ
†
5 = Û5

(
ℏω(N̂ + 1

2) + ℏωa

2

k∑
m=1

σ̂(m)
z + λ

k∑
m=1

(âσ̂(m)
+ + â†σ̂

(m)
− )

)
Û †

5 .

Se distribuye la transformación entre los términos de ĤK y se introduce el operador identidad
en la forma Î = Û †

5 Û5,

Û5ĤKÛ
†
5 = ℏωÛ5N̂Û

†
5 + 1

2ℏω + ℏωa

2

k∑
m=1

Û5σ̂
(m)
z Û †

5

+λ
k∑

m=1
(Û5âÛ

†
5 Û5σ̂

(m)
+ Û †

5 + Û5â
†Û †

5 Û5σ̂
(m)
− Û †

5). (A6)

Se calculan las transformaciones sobre cada término:

Se sabe que N̂ conmuta con los operadores de la transformación,

Û5N̂Û
†
5 = eiωt(N̂+ 1

2
∑k

j=1 σ̂
(j)
z )N̂e−iωt(N̂+ 1

2
∑k

j=1 σ̂
(j)
z ) = N̂ .

De forma análoga para σ̂(m)
z ,

Û5σ̂
(m)
z Û †

5 = eiωt(N̂+ 1
2
∑k

j=1 σ̂
(j)
z )σ̂(m)

z e−iωt(N̂+ 1
2
∑k

j=1 σ̂
(j)
z ) = σ̂(m)

z .

Por otro lado,
Û5âÛ

†
5 = eiωt(N̂+ 1

2
∑k

j=1 σ̂
(j)
z )âe−iωt(N̂+ 1

2
∑k

j=1 σ̂
(j)
z ),

puesto que los operadores de la transformación conmutan entre sí, es posible lo siguiente:

Û5âÛ
†
5 = eiωtN̂eiωt 1

2
∑k

j=1 σ̂
(j)
z âe−iωt 1

2
∑k

j=1 σ̂
(j)
z e−iωtN̂ = eiωtN̂ âe−iωtN̂ .

De lo cual se obtiene finalmente que

Û5âÛ
†
5 = âe−iωt.
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De forma similar,

Û5â
†Û †

5 = eiωt(N̂+ 1
2
∑k

j=1 σ̂
(j)
z )â†e−iωt(N̂+ 1

2
∑k

j=1 σ̂
(j)
z ) = eiωtN̂ â†e−iωtN̂ = â†eiωt.

En las última dos transformaciones a calcular, se hace uso de la delta de Kronecker
como se muestra a continuación:

Û5σ̂
(m)
+ Û †

5 = eiωt(N̂+ 1
2
∑k

j=1 σ̂
(j)
z )σ̂

(m)
+ e−iωt(N̂+ 1

2
∑k

j=1 σ̂
(j)
z ),

pero σ̂(m)
+ conmuta con N̂ ,

Û5σ̂
(m)
+ Û †

5 = eiωt 1
2
∑k

j=1 σ̂
(j)
z σ̂

(m)
+ e−iωt 1

2
∑k

j=1 σ̂
(j)
z .

Se hace uso de la fórmula de Baker-Campbell-Hausdorff,

Û5σ̂
(m)
+ Û †

5 = σ̂
(m)
+ + iωt

1
2

k∑
j=1

[
σ̂(j)

z , σ̂
(m)
+

]
+ · · · = σ̂

(m)
+ + iωt

1
2

k∑
j=1

(2σ̂(m)
+ δmj) + . . . .

Posteriormente

Û5σ̂
(m)
+ Û †

5 = σ̂
(m)
+ + iωtσ̂

(m)
+ + 1

2

iωt12
k∑

j=1
σ̂(j)

z , iωtσ̂
(m)
+

+ . . . .

Que se reduce finalmente a

Û5σ̂
(m)
+ Û †

5 = σ̂
(m)
+

(
1 + iωt+ 1

2(iωt)2 + . . .
)

= σ̂
(m)
+ eiωt.

A partir de un proceso equivalente se encuentra que

Û5σ̂
(m)
− Û †

5 = σ̂
(m)
− e−iωt.

Se sustituyen en la ecuación (A6) los resultados hallados,

Û5ĤKÛ
†
5 = ℏωN̂ + 1

2ℏω + ℏωa

2

k∑
m=1

σ̂(m)
z + λ

k∑
m=1

(âe−iωtσ̂
(m)
+ eiωt + â†eiωtσ̂

(m)
− e−iωt).

Se simplifica la expresión previa,

Û5ĤKÛ
†
5 = ℏωN̂ + 1

2ℏω + ℏωa

2

k∑
m=1

σ̂(m)
z + λ

k∑
m=1

(âσ̂(m)
+ + â†σ̂

(m)
− ). (A7)

Se sustituye a (A7) en (A.1) y se reduce la expresión a lo siguiente:

dρ̂K,I

dt
= − i

ℏ

[
−ℏω

2

k∑
m=1

σ̂(m)
z + 1

2ℏω + ℏωa

2

k∑
m=1

σ̂(m)
z + λ

k∑
m=1

(âσ̂(m)
+ + â†σ̂

(m)
− ), ρ̂K,I

]
.

Se escribe la expresión anterior en la forma:
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dρ̂K,I

dt
= − i

ℏ

[
ℏ(ωa − ω)

2

k∑
m=1

σ̂(m)
z + λ

k∑
m=1

(âσ̂(m)
+ + â†σ̂

(m)
− ), ρ̂K,I

]
− i

ℏ

[1
2ℏω, ρ̂K,I

]
.

En el primer conmutador se define ∆ = ωa − ω, mientras que se observa que el segundo
conmutador es cero,

dρ̂K,I

dt
= − i

ℏ

[
k∑

m=1

(
ℏ∆
2 σ̂(m)

z + λ(âσ̂(m)
+ + â†σ̂

(m)
− )

)
, ρ̂K,I

]
.

Por lo que el Hamiltoniano de interacción para el sistema que involucra a K átomos queda
expresado como:

ĤK,I =
k∑

m=1

(
ℏ∆
2 σ̂(m)

z + λ(âσ̂(m)
+ + â†σ̂

(m)
− )

)
. (A8)

A.2. Segunda transformación
Para la segunda transformación se propone que esta tome la siguiente forma:

Û6 = eη
∑k

j=1(âσ
(j)
+ −â†σ̂

(j)
− ), (A9)

y su adjunto Hermitiano

Û †
6 = e−η

∑k

j=1(âσ
(j)
+ −â†σ̂

(j)
− ). (A10)

Así, se define al Hamiltoniano efectivo ĤK,eff = Û6ĤK,IÛ
†
6 ,

ĤK,eff = eη
∑k

j=1(âσ
(j)
+ −â†σ̂

(j)
− )
(

k∑
m=1

(
ℏ∆
2 σ̂(m)

z + λ(âσ̂(m)
+ + â†σ̂

(m)
− )

))
e−η

∑k

j=1(âσ
(j)
+ −â†σ̂

(j)
− ).

Se distribuye la transformación entre los términos del Hamiltoniano de interacción,

ĤK,eff = ℏ∆
2

k∑
m=1

Û6σ̂
(m)
z Û †

6 + λ
k∑

m=1
Û6âσ̂

(m)
+ Û †

6 + λ
k∑

m=1
Û6â

†σ̂
(m)
− Û †

6 . (A11)

Se aplica la transformación término a término y se toma en cuenta la condición η ≪ 1, de
forma que se pueden despreciar términos de orden cuadrático y superiores para η.

Para el primer término

Û6σ̂
(m)
z Û †

6 = eη
∑k

j=1(âσ
(j)
+ −â†σ̂

(j)
− )σ̂(m)

z e−η
∑k

j=1(âσ
(j)
+ −â†σ̂

(j)
− ),

Û6σ̂
(m)
z Û †

6 = σ̂(m)
z +

η k∑
j=1

(âσ(j)
+ − â†σ̂

(j)
− ), σ̂(m)

z

+ . . . .
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Se hace uso de la condición,

Û6σ̂
(m)
z Û †

6 ≈ σ̂(m)
z + η

k∑
j=1

{[
âσ

(j)
+ , σ̂(m)

z

]
−
[
â†σ̂

(j)
− , σ̂(m)

z

]}
,

Û6σ̂
(m)
z Û †

6 ≈ σ̂(m)
z + η

k∑
j=1

{
â
[
σ

(j)
+ , σ̂(m)

z

]
− â†

[
σ̂

(j)
− , σ̂(m)

z

]}
.

Se aplican los conmutadores establecidos previamente

Û6σ̂
(m)
z Û †

6 ≈ σ̂(m)
z + η

k∑
j=1

{
â(−2σ(j)

+ δjm) − â†(2σ(j)
− δjm)

}
.

Finalmente,
Û6σ̂

(m)
z Û †

6 ≈ σ̂(m)
z − 2η

(
âσ

(m)
+ + â†σ

(m)
−

)
.

Para el segundo término se tiene lo siguiente:

Û6âσ̂
(m)
+ Û †

6 = eη
∑k

j=1(âσ
(j)
+ −â†σ̂

(j)
− )âσ̂

(m)
+ e−η

∑k

j=1(âσ
(j)
+ −â†σ̂

(j)
− ),

Û6âσ̂
(m)
+ Û †

6 = âσ̂
(m)
+ +

η k∑
j=1

(âσ(j)
+ − â†σ̂

(j)
− ), âσ̂(m)

+

+ . . . .

Se aplica la condición tal que

Û6âσ̂
(m)
+ Û †

6 ≈ âσ̂
(m)
+ + η

k∑
j=1

{[
âσ

(j)
+ , âσ̂

(m)
+

]
−
[
â†σ̂

(j)
− , âσ̂

(m)
+

]}
.

El primer conmutador es siempre cero, por lo que

Û6âσ̂
(m)
+ Û †

6 ≈ âσ̂
(m)
+ − η

k∑
j=1

[
â†σ̂

(j)
− , âσ̂

(m)
+

]
.

Se expande el conmutador y se conservan los términos que no se anulan,

Û6âσ̂
(m)
+ Û †

6 ≈ âσ̂
(m)
+ + η

k∑
j=1

{
−â†â

[
σ̂

(j)
− , σ̂

(m)
+

]
−
[
â†, â

]
σ̂

(m)
+ σ̂

(j)
−

}
.

Se usan las relaciones de conmutación,

Û6âσ̂
(m)
+ Û †

6 ≈ âσ̂
(m)
+ + η

k∑
j=1

{
−â†â(−σ̂(j)

z δjm) + σ̂
(m)
+ σ̂

(j)
−

}
.

Por lo que

Û6âσ̂
(m)
+ Û †

6 ≈ âσ̂
(m)
+ + ηâ†âσ̂(m)

z + η
k∑

j=1
σ̂

(m)
+ σ̂

(j)
− .
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A través de un proceso análogo al anterior se encuentra que:

Û6â
†σ̂

(m)
− Û †

6 ≈ â†σ̂
(m)
− + ηââ†σ̂(m)

z + η
k∑

j=1
σ̂

(m)
− σ̂

(j)
+ .

Se sustituyen los resultados obtenidos en la ecuación (A11),

ĤK,eff = ℏ∆
2

k∑
m=1

(
σ̂(m)

z − 2η
(
âσ

(m)
+ + â†σ

(m)
−

))
+ λ

k∑
m=1

âσ̂(m)
+ + ηâ†âσ̂(m)

z + η
k∑

j=1
σ̂

(m)
+ σ̂

(j)
−



+λ
k∑

m=1

â†σ̂
(m)
− + ηââ†σ̂(m)

z + η
k∑

j=1
σ̂

(m)
− σ̂

(j)
+

 .
Se agrupan los términos,

ĤK,eff = ℏ∆
2

k∑
m=1

σ̂(m)
z (λ− ℏ∆η)

k∑
m=1

(
âσ

(m)
+ + â†σ

(m)
−

)
+ λη

k∑
m=1

(
â†â+ ââ†

)
σ̂(m)

z

+λη
k∑

m=1

 k∑
j=1

σ̂
(m)
+ σ̂

(j)
− +

k∑
j=1

σ̂
(m)
− σ̂

(j)
+

 .
Dado que [â, â†] = 1, entonces ââ† = (1 + â†â). De tal forma que (â†â+ ââ†) = (2â†â+ 1),

ĤK,eff = ℏ∆
2

k∑
m=1

σ̂(m)
z + (λ− ℏ∆η)

k∑
m=1

(
âσ

(m)
+ + â†σ

(m)
−

)
+ λη

k∑
m=1

(
2â†â+ 1

)
σ̂(m)

z

+λη
k∑

m=1

 k∑
j=1

σ̂
(m)
+ σ̂

(j)
− +

k∑
j=1

σ̂
(m)
− σ̂

(j)
+

 .
Puesto que

k∑
m=1

k∑
j=1

σ̂
(m)
− σ̂

(j)
+ ≡

k∑
m=1

k∑
j=1

σ̂
(j)
− σ̂

(m)
+ ,

entonces

ĤK,eff = ℏ∆
2

k∑
m=1

σ̂(m)
z + (λ− ℏ∆η)

k∑
m=1

(
âσ

(m)
+ + â†σ

(m)
−

)
+ λη

k∑
m=1

(
2â†â+ 1

)
σ̂(m)

z

+λη
k∑

m=1

k∑
j=1

(
σ̂

(m)
+ σ̂

(j)
− + σ̂

(j)
− σ̂

(m)
+

)
, (A12)

donde

σ̂
(m)
+ σ̂

(j)
− + σ̂

(j)
− σ̂

(m)
+ =

{
σ̂

(m)
+ , σ̂

(j)
−

}
= Îδjm.

De esta forma, la ecuación (A12) se reduce a
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ĤK,eff =
k∑

m=1

(
ℏ∆
2 + λη

(
2â†â+ 1

))
σ̂(m)

z +(λ−ℏ∆η)
k∑

m=1

(
âσ

(m)
+ + â†σ

(m)
−

)
+λη

k∑
m=1

k∑
j=1

Îδjm.

Se simplifica nuevamente esta última expresión, tal que

ĤK,eff =
k∑

m=1

(
ℏ∆
2 + λη

(
2â†â+ 1

))
σ̂(m)

z + (λ− ℏ∆η)
k∑

m=1

(
âσ

(m)
+ + â†σ

(m)
−

)
+ λη

k∑
m=1

Î .

En donde la última sumatoria puede ser reducida a un único término,

ĤK,eff =
k∑

m=1

(
ℏ∆
2 + λη

(
2â†â+ 1

))
σ̂(m)

z + (λ− ℏ∆η)
k∑

m=1

(
âσ

(m)
+ + â†σ

(m)
−

)
+ ληk. (A13)

Si se cumple la condición dada por

λ− ℏ∆η = 0 ⇔ η = λ

ℏ∆ ,

entonces (A13) se reduce a

ĤK,eff =
k∑

m=1

(
ℏ∆
2 + 2λ2

ℏ∆ â†â+ λ2

ℏ∆

)
σ̂(m)

z + λ2

ℏ∆k. (A14)

Se define

χ = 2λ2

ℏ∆ ; ∆D = ℏ∆
2 + λ2

ℏ∆ .

Estas definiciones son sustituidas en la expresión (A14), obteniendo finalmente

ĤK,eff =
k∑

m=1

(
∆D + χâ†â

)
σ̂(m)

z + λ2

ℏ∆k. (A15)

La expresión anterior es justamente el Hamiltoniano de interacción en el límite dispersivo
para un sistema de k átomos de dos niveles. Se puede verificar fácilmente que si k = 1, se
recupera la ecuación (2.41); asimismo, si k = 2 se recupera la expresión (3.16), como se espera
de un modelo más general que se reduce a los casos más sencillos.
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