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Resumen

El efecto Aharonov-Bohm (A-B) [1] muestra draméticamente que en la teorfa cuédntica
los potenciales escalar (¢) y vectorial (A) [i.e., el cuadripotencial A, = (¢, A)] adquieren
significado fisico, a diferencia del electromagnetismo clasico, donde éstos se introducen sélo
como entes mateméaticos para facilitar la descripcién de los campos reales eléctrico (E) y
magnético (B). El efecto fue verificado experimentalmente por primera vez por Chambers
[2].

En este trabajo revisaremos el efecto A-B de dos maneras. La primera es en la forma tra-
dicional, por medio de integrales de trayectoria de Feynman, la cual siguen muchos textos,
como Sakurai [3] por ejemplo. La segunda, y la cual es el resultado de este trabajo, se basa
en resolver directamente la ecuacion de Schrodinger. En algunos textos (como Arfken [4]
y Ryder [5]) es comin que se proporcione la funcién de onda solucién sin ninguna expli-
cacién de cémo se obtiene (s6lo se sustituye y satisface la ecuacién); aqui la construimos

explicitamente.
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Abstract

The Aharonov-Bohm (A-B) effect [1] demonstrates that within quantum theory, the
scalar (¢) and vector (A) potentials [i.e., the four-potential A, = (¢, A)] acquire a physical
significance, in contrast to classical electromagnetism, where they are introduced merely as
mathematical entities to facilitate the description of the physical electric (E) and magnetic
(B) fields. The effect was first experimentally verified by Chambers [2].

In this work, we review the A-B effect in two distinct ways. The first is the traditional
approach, employing Feynman path integrals, as followed in many textbooks such as that by
Sakurai [3]. The second, which constitutes a result of the present work, is based on solving
the Schrodinger equation directly. In some texts (e.g., Arfken [4] and Ryder [5]), the solution
wavefunction is often provided without explanation of its derivation (it is merely verified by

substitution); herein, we construct it explicitly.
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Introduccion

Considere una bateria del tipo que usted encuentra en la tienda de la esquina. Las letras
sobre una bateria tipica AA establecen que proporciona electricidad a 1.5 Volts. Esto significa
que hay una diferencia de potencial de 1.5V entre las terminales de la bateria (al menos
cuando la bateria estd en condiciones normales). En dichas condiciones, si cada terminal
esta conectada con un alambre de cobre a una placa conductora y las placas estan separadas
1 cm, entonces la baterfa dard lugar a un campo eléctrico de 1.5V /cm entre las placas. Pero,
Jcual serd el potencial en cada placa? ;jEstara la terminal positiva a un potencial de +1.5
V, v la negativa a cero? ; Estara la positiva a cero y la negativa a -1.5V? ;O qué sucede? Si
estas son preguntas vagas, como parecen ser, es porque tienen una presuposicion falsa: que
hay algo como el valor absoluto del potencial eléctrico en un lugar, mas alla de las diferencias
de potencial entre tal lugar y otros. Rechazando dicha presuposicion, uno es libre de asignar
cualquier nimero real a una ubicacién como su potencial eléctrico en volts, siempre que
uno considere las diferencias de potencial reales entre dicho lugar y otros cuando uno les
asigne potenciales eléctricos también. Las diferentes asignaciones estarian relacionadas por
una simple transformacion en el potencial eléctrico, la cual consiste en la adicién del mismo
numero real al potencial en cada punto. Siguiendo la iniciativa de Weyl, ha llegado a ser una
costumbre llamar a esto una transformacién de norma [6].

7 1 (Gauge, en inglés) se

Al parecer es un accidente histérico el que el término “Norma
aplique a las teorfas que sustentan al Modelo Esténdar de Particulas [5, 9, 10, 11]. El término
se origind como una traduccion de la palabra alemana “eich”, la cual aparecié por prime-

ra vez en el articulo mencionado en el parrafo anterior de Herman Weyl en 1918. En dicho

! Algunos autores sudamericanos como Gambini y Pullin [7, 8] usan el término “calibre” en lugar de

“norma’”.



articulo, publicado después de la Teoria General de la Relatividad de Einstein [12, 13, 14, 15],
Weyl propone una teoria unificada de gravedad y electromagnetismo, la cual resulté inade-
cuada. Las variables fundamentales de la teoria eran la métrica del espacio-tiempo y el
potencial electromagnético. La teoria es invariante bajo ciertas transformaciones lineales que
tienen que ver con un cambio en la escala de longitud y duraciones. El efecto de dichas
transformaciones sobre el potencial electromagnético simplemente heredé el nombre. En un
contexto completamente clasico [16, 17, 18], el electromagnetismo actiia sobre particulas car-
gadas solamente a través de un campo electromagnético que da lugar a la fuerza de Lorentz
[F = e(E 4+ v x B)]: el potencial electromagnético [A, = (¢, —A)] no tiene manifestaciones
independientes y parece mejor considerarlo como una estructura matemdtica superflua, en el
sentido de que no representa algo fisico [4, 19, 20, 21, 22|. Pero la situacién es diferente en
el dominio cudntico. Los fenémenos tales como el efecto Aharonov-Bohm (A-B) propor-
cionan una ilustraciéon real del hecho de que hay algo mas para el electromagnetismo clésico
que sélo el campo. Los efectos del electromagnetismo sobre la fase de particulas cargadas (y
el subsecuente comportamiento observable) que pasan a través de una regién del espacio no
son siempre determinados completamente por el campo electromagnético en dicha region.
Como lo sefialaron Aharonov y Bohm en su articulo original de 1959 2 [1]: en el dominio
cudntico no es el campo B sino el potencial electromagnético mismo A el que parece dar
lugar a estos efectos.

La mecénica cudntica [3, 24, 25, 26, 27] predice que cuando un rayo de particulas cargadas
ha pasado a través de una region del espacio en la cual no hay campo electromagnético, puede
producirse o alterarse el patrén de interferencia por la presencia de un campo magnético
estatico. Esto fue confirmado experimentalmente por primera vez por Chambers en 1960
[2], v desde entonces ha sido demostrado repetidamente y de manera més convincente en
una serie de experimentos que incluye el trabajo de Tonomura et al en 1986 [28]; Peskin
y Tonomura proporcionaron en 1989 una revisién ttil [29]. De acuerdo con la covarianza
de Lorentz, hay también un efecto Aharonov-Bohm eléctrico. El patrén de interferencia
producido por electrones que han pasado a través de una region en la cual no puede haber

campo electromagnético seria diferente si el campo eléctrico fuera de dicha regién se varia

2Esencialmente el mismo efecto fue discutido diez afios antes por W. Ehrenberg y R. E. Siday [23].



adecuadamente sin afectar el campo electromagnético experimentado por los electrones. Pero
este efecto es mas dificil de demostrar experimentalmente. Mas adelante daremos una breve
descripcion del efecto A-B magnético en la cual se hace uso de un solenoide muy delgado y
muy largo. Este efecto es la base de la tecnologia de los SQUID “s (superconducting quantum
interference device) los cuales se usan hoy en dia para medir flujos magnéticos de manera muy
precisa [7, 30]. Una revision del efecto A-B es necesaria como un preludio para estudiar el
efecto A-B no Abeliano [31], donde son necesarias incluir teorfas de Yang-Mills [32, 33, 34],
ademas de que en anos recientes se ha buscado estudiar la relacién del efecto A-B con
materiales de baja dimensién (unidimensionales, bidimensionales o cuénticos puntuales) con
caracteristicas topoldgicas (grafeno, por ejemplo) y con la materia condensada [35, 36].

La mecéanica cuantica, construida a partir de contribuciones fundamentales de fisicos como
Einstein, Planck, Dirac, Heisenberg, Schrodinger, entre otros, encuentra en este trabajo un
enfoque particular en dos formulaciones clave, la mecdnica cudntica ondulatoria desarrollada
por Erwin Schrodinger en 1926, y las integrales de trayectoria introducidas por Richard
Feynman en 1948. El objetivo central de esta tesis es analizar el efecto Aharonov-Bohm
desde ambas perspectivas, con dos propdsitos especificos: establecer si estas formulaciones
conducen a resultados equivalentes, y explorar interpretaciones fisicas y geométricas del
fenémeno, en particular el rol del potencial vectorial A.

Este trabajo esta organizado de la siguiente manera. El primer capitulo aborda la dinami-
ca cuantica, centrandose en la evolucion temporal de los sistemas cuanticos y la ecuacion de
Schrédinger como herramienta fundamental para describir esta evolucion. Se explican con-
ceptos clave como la diferencia entre la imagen de Schrodinger, donde los estados cuanticos
evolucionan con el tiempo, y la imagen de Heisenberg, donde son los operadores los que cam-
bian con éste. Ademas, se introduce la ecuacién de movimiento de Heisenberg y se discuten
los kets de estado, las observables y las amplitudes de transicion, que son esenciales para
entender como se relacionan estas dos imagenes.

El segundo capitulo se enfoca en los propagadores y las integrales de trayectoria de
Feynman. Se explica el concepto de propagador en mecénica ondulatoria y su interpretacién
como una amplitud de transicién, el cual describe la probabilidad de que un sistema pase

de un estado a otro. Se introduce la idea de sumar sobre todas las trayectorias posibles que



puede seguir un sistema, lo que lleva a la formulacion de Feynman de la mecanica cuantica,
donde la probabilidad de transicion se calcula integrando sobre todas las posibles historias
del sistema.

En el tercer capitulo, se exploran los potenciales y las transformaciones de norma, con
un enfoque particular en los potenciales constantes y su impacto en la dindmica cuantica.
Ademas, se muestran de forma concisa las transformaciones de norma en el contexto del elec-
tromagnetismo, destacando su importancia para entender cémo los campos electromagnéticos
influyen en los sistemas cuanticos y cémo estas transformaciones afectan las ecuaciones que
describen dichos sistemas.

El cuarto capitulo esta dedicado al efecto Aharonov-Bohm, analizado desde la perspec-
tiva de la formulaciéon de Feynman, en donde, considerando aspectos vistos en los capitulos
anteriores, se deduce la expresion que describe este efecto puramente cuantico.

Finalmente, el quinto capitulo aborda lo que es el nticleo de esta tesis, el efecto Aharonov-
Bohm desde la perspectiva de la ecuacién de Schrodinger; en primer lugar se resuelve la
ecuacion sin la presencia del solenoide para posteriormente considerar la presencia de éste y
cémo se crea una interaccién campo-particula, llegando a una expresion que describa de la
misma manera el efecto A-B y que nos brinde una comprensién mejor y quiza mas completa
del fenémeno.

En el dltimo capitulo se presentan las conclusiones y se desarrolla un analisis que refuerza
la idea de que los potenciales, y no sélo los campos, tienen un significado fisico profundo en
la mecanica cuantica, y proporciona una comprension mas completa de este efecto intrigan-
te, ademds de las diferentes aplicaciones que tiene este (efecto) en dreas como la geometria

diferencial, la topologia y la teoria de grupos.

Conceptos tales como topologia, grupo fundamental, holonomia, etc., se pueden revisar

en las referencias [37, 38].



Planteamiento del problema

La idea general de este trabajo de tesis es hacer una revision del efecto A-B a partir de
dos enfoques y notar que, en efecto, se obtienen los mismos resultados. El primer enfoque
es utilizando el método de integrales de trayectoria de Feynman [39]. El segundo enfoque es
comparar las soluciones de la ecuacion de Schrodinger en presencia y ausencia de un campo

magnético B.

Justificacion

Este trabajo de tesis esta justificado porque hasta el momento no existe un estudio sis-
tematico que aborde los dos puntos de vista del tratamiento del efecto A-B. Por ejemplo,
Sakurai [3] hace el estudio mediante integrales de trayectoria de Feynman y solamente men-
ciona que puede hacerse también mediante la ecuacién de Schrédinger. Otra justificacién de
esta revision del efecto A-B es que es necesaria como un preludio para estudiar el efecto A-B
no Abeliano [31], donde son necesarias incluir teorias de Yang-Mills [32, 33], y el cual al
parecer, tiene aplicaciones en cémputo cuantico [34], lo cual estdn desarrollando los paises
mas avanzados desde que Feynman propuso la posibilidad de construir una computadora de
este tipo [40].

Ademaés de que en anos recientes se ha buscado estudiar la relacién del efecto A-B con
materiales de baja dimensién(unidimensionales, bidimensionales o cudnticos puntuales) con

caracteristicas topoldgicas (grafeno, por ejemplo) y con la materia condensada [35, 36].

Hipétesis

Partiremos del hecho de que existen dos enfoques para la explicacion del efecto A-B, el
de comparar soluciones de la ecuacion de Schrodinger y el de integrales de trayectoria de

Feynman. En base a lo anterior veremos que ambos enfoques conducen al mismo resultado.



Objetivo General

El objetivo general es verificar que los dos enfoques mencionados (a la Schrédinger y
a la Feynman) conducen al mismo efecto A-B, donde se deduce que a nivel cuédntico es
el potencial vectorial magnético (A) quien juega un papel mas fundamental que el propio

campo magnético (B).

Objetivos especificos

1. Revisar y desarrollar el primer enfoque mencionado (integrales de trayectoria de Feyn-

man).

2. Desarrollar el segundo enfoque mencionado (ecuacién de Schrédinger) y mostrar que

conduce al mismo efecto A-B dado por el primer enfoque.

3. Lograr un mejor entendimiento de lo que realmente significa el potencial vectorial A.

Metas

Las metas son las siguientes:
1. Fortalecer conceptos vistos en mecénica cudntica y teoria electromagnética.

2. Desarrollar conocimientos nuevos sobre la electrodinamica, geometria diferencial, to-
pologia y teoria de grupos, los cuales son necesarios para la resolucién del problema

propuesto.

3. Solucionar el problema propuesto (i.e., mostrar explicitamente que tanto el enfoque de

Schrodinger como el de Feynman conducen al mismo efecto A-B).

4. Realizar la redaccion, revision y defensa de la tesis.



Capitulo 1

Dinamica cuantica

1.1. Evoluciéon temporal y la ecuacién de Schrodinger

En la mecanica cudntica, el tiempo es un parametro, no un operador; no tiene sentido
hablar del operador de tiempo de la misma manera en que hablamos del operador de posicion.
Irénicamente, en el desarrollo historico de la mecanica ondulatoria, tanto L. de Broglie
como E. Schrodinger fueron guiados por una especie de analogia covariante entre energia y
tiempo, por un lado, y momento y posicién (coordenada espacial) por otro. Sin embargo,
cuando observamos la mecéanica cuantica en su forma final, no hay rastro de un tratamiento

simétrico entre espacio y tiempo.

1.1.1. Operador de evolucién temporal

., Como cambia un ket de estado con el tiempo? Supongamos que tenemos un sistema
fisico cuyo ket de estado en ¢y estd representado por |a). En tiempos posteriores, en ge-
neral, no esperamos que el sistema permanezca en el mismo estado |a). Denotemos el ket

correspondiente al estado en algiin momento posterior por:

|, to; t), (t > to), (1.1.1)

donde hemos escrito «, ¢y para recordar que el sistema solia estar en el estado |a) en algin

tiempo de referencia anterior t5. Dado que se supone que el tiempo es un parametro continuo,



esperamos que

lim |« to; t) = |a), (1.1.2)
t—to

y también podemos usar una notacién abreviada,
|Oé,t0;t0> = |O[,t0>. (]_]_3)

La idea bésica es estudiar la evolucién temporal de un ket de estado, es decir, como cambia

el ket de estado bajo un desplazamiento temporal ¢y — ¢:

evolucién temporal
> |

’CY, t0>

a,t). (1.1.4)
Como en el caso de la traslacién, los dos kets estan relacionados por un operador al que

llamamos operador de evolucién temporal % (t,ty):

|Oé,t0;t> = %(t,to”&,to). (115)

Tenemos un par de propiedades que se deben atribuir al operador de evolucién temporal:

1. La unitariedad,

UT(t,t0)U (t, 1) = 1. (1.1.6)
2. La propiedad de composicién:

%(tg,to) = %(t27t1)%(t1,t0), (tQ >t > to) (117)

Consideremos también un operador de evolucién temporal infinitesimal % (to + dt, ty):
|O£,t0;t0+dt> = OZ/(to—th,to)’&,to% (118)

Debido a la continuidad [véase la ec. (1.1.2)], el operador infinitesimal de evolucién temporal

debe reducirse al operador identidad cuando dt tiende a cero, i.e.,

lfm % (to + dt, to) = 1, (1.1.9)

dt—0
y, al igual que en el caso de la traslacion, esperamos que la diferencia entre % (to + dt, ty) y

1 sea de primer orden en dt.



Suponemos que todos estos requisitos se satisfacen mediante
U (to + dt, ty) = 1 — iQdt, (1.1.10)

donde €2 es un operador hermitiano,

Qf =Q. (1.1.11)

Con la Ec. (1.1.10), el operador de desplazamiento temporal infinitesimal satisface la

propiedad de composicion
U (to + dty + dta, to) = U (to + dty + dta, to + dty) % (to + diq, to), (1.1.12)

la cual difiere del operador identidad por un término de orden dt.

La propiedad de unitariedad también se puede verificar de la siguiente manera:
Uty + dt, to)U (to + dt, to) = (1 +iQTdt)(1 — iQdt) =~ 1, (1.1.13)

donde los términos de orden (dt)? o superiores pueden despreciarse.
En la antigua teoria cudntica se postula que la frecuencia angular w esta relacionada con

la energia mediante la relaciéon de Planck-Einstein:
E = hw. (1.1.14)

donde h = % es la constante de Dirac (h es la constante de Planck). Ahora, tomemos prestado
de la mecénica cléasica la idea de que el Hamiltoniano es el generador de la evolucion temporal

(Goldstein 2002 [17]). Entonces, es natural relacionar €2 con el operador Hamiltoniano H:

Q=—. 1.1.15
; (11.15)
Finalmente, el operador infinitesimal de evolucién temporal se escribe como:

U (to + dt, ty) = 1 — %Hdt, (1.1.16)

donde se supone que H, el operador Hamiltoniano, es hermitiano.



1.1.2. La ecuacién de Schrodinger

Ahora estamos en posicion de derivar la ecuacién diferencial fundamental para el operador
de evolucién temporal % (t, t). Usamos la propiedad de composicién de % (t,ty) cambiando

ty > tyts—>t+dtenlaEc (1.1.7):

U+ dt, tg) = U (t+ dt, O)U (L, ty) = <1 - %Hdt) U (t, o), (1.1.17)
donde hemos usado, ademés, la igualdad (1.1.16).
Asi,
Ut +dt, to) — U (t,ty) = —%Hdt%(t,to), (1.1.18)
lo cual se puede escribir en forma de ecuacién diferencial:
O t0) = -2 (1,10) (1.1.19)
at s 0) — h ;Lo )- st

Esta es la ecuacién de Schrodinger para el operador de evolucién temporal.

Ahora, si multiplicamos ambos lados de la Ec. (1.1.19) por |a, ty) a la derecha, obtenemos:

ih%%<t7t0>’aat0> = H%(t,to)’@,to>. (1120)

Pero |a, ty) no depende de ¢, por lo que esto es equivalente a:

0
iha‘&,tg;t) = H|a,t0;t), (1121)

donde se ha utilizado la Ec. (1.1.5). Esta es la ecuaciéon de Schrédinger para un ket de

estado.

1.2. La imagen de Schrodinger vs la imagen de Heisen-
berg

Previamente se introdujo el concepto de desarrollo temporal al considerar el operador de
evolucion temporal que afecta a los kets de estado; este enfoque de la dindmica cuantica se

conoce como la imagen de Schrodinger. Existe otra formulacién de la dindmica cuantica

10



en la que los observables, en lugar de los ket de estado, varian con el tiempo; este segundo

enfoque se conoce como la imagen de Heisenberg.

1.2.1. Kets de estado y observables en las imagenes de Schrodin-

ger y Heisenberg

En la imagen de Schrodinger, los operadores correspondientes a observables como z, p,
y S, estan fijos en el tiempo, mientras que los kets de estado varian con el tiempo. En
contraste, en la imagen de Heisenberg los operadores correspondientes a observables varian
con el tiempo; los kets de estado estan fijos en lo que eran en ty. Es conveniente establecer

to en % (t,tg) como cero por simplicidad y trabajar con % (t), que se define por

W (tty = 0) = U(t) = exp (—%) | (1.2.1)

Definimos la observable en la imagen de Heisenberg por:

ARty = w1 () ASU(t), (1.2.2)

donde los superindices H y S representan Heisenberg y Schrodinger respectivamente.

En t = 0, la observable en la imagen de Heisenberg y la correspondiente observable en la

imagen de Schrodinger coinciden:

At =0) = A", (1.2.3)

Los kets de estado también coinciden en las dos imégenes en ¢ = 0; en tiempos posteriores,

el ket de estado en la imagen de Heisenberg esta “congelado” en lo que era en t = 0:

|Oé,t0 = 0,t>H = |O[,t0 = 0), (124)

independiente de t. Esto contrasta con el ket de estado en la imagen de Schrodinger:
la, tg = 0;t)s = % (t)|a, to = 0). (1.2.5)
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El valor esperado (A) es obviamente el mismo en ambas imagenes:

sla,ty = 0;t|A%a, to = 0;t) g = (o, tg = 0| % TASU |a, ty = 0)

=i (a,to = 0;t| A% (t)|a, to = 0; t) . (1.2.6)

1.2.2. La ecuacion de movimiento de Heisenberg

En lo que sigue suponemos que A° no depende explicitamente del tiempo; al diferenciar

la ec. (1.2.2) obtenemos:

dA™T owt ¢ s OU i t 48 it St
= AU+ WA e = S UTHYUTAY + U AU UTHE (1.2.7)

donde hemos usado [véase la Ec. (1.1.19)]

.

aZ - —%H%t, (1.2.8)
,

aZ - —%%TH. (1.2.9)

Dado que H fue introducido originalmente en la imagen de Schrodinger, podriamos estar
tentados a definir:

HY =9 HY . (1.2.10)

de acuerdo con (1.2.2). Pero en aplicaciones elementales donde % viene dado por (1.2.1), %

y H obviamente conmutan; como resultado,
W'HY = H, (1.2.11)

por lo que es correcto escribir la ec. (1.2.7) como

dAH)
7 :ﬁ[A(H),H]. (1.2.12)

Esta ecuacién se conoce como la ecuacién de movimiento de Heisenberg (aunque fue

Dirac quién la derivé por primera vez).
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Es instructivo comparar la Ec. (1.2.12) con la ecuacién de movimiento clasica en forma
de paréntesis de Poisson. En la fisica clasica, para una funcién A de ¢’s y p's que no involucra
explicitamente el tiempo, tenemos:

dA

E = [A, H]clésico- (2220)

Nuevamente, vemos que la regla de cuantizacién de Dirac conduce a la ecuacién correcta en
mecanica cuantica.

Para cantidades que poseen partes clasicas, la ecuacién clasica correcta puede obtenerse
a partir de la ecuacién mecdanico-cuantica correspondiente a través del ansatz

[, ]
E — [; ]clésico- (1213)

En general, podemos decir que la mecanica clasica puede ser derivada de la mecanica cudntica

pero lo opuesto no es cierto.

1.2.3. Particulas libres; el teorema de Ehrenfest

Tanto si trabajamos en la imagen de Schrodinger como en la de Heisenberg, para po-
der utilizar las ecuaciones de movimiento primero debemos aprender a construir el operador
Hamiltoniano apropiado. Para un sistema fisico con analogos cldsicos, asumimos que el Ha-
miltoniano tiene la misma forma que en la fisica clasica; simplemente reemplazamos las
variables clasicas x; y p; por los correspondientes operadores en mecanica cuantica. Con este
supuesto, podemos reproducir las ecuaciones clasicas correctas en el limite clasico.

Cuando surge una ambigiiedad debido a observables que no conmutan, intentamos resol-
verla requiriendo que H sea hermitiano; por ejemplo, escribimos el andlogo mecanico-cuanti-
co del producto clasico xp como %(xp + px). Cuando el sistema fisico en cuestién no tiene
analogos clasicos, solo podemos postular la estructura del operador Hamiltoniano. Proba-
mos varias formas hasta obtener el Hamiltoniano que produce resultados consistentes con

observaciones empiricas.

En aplicaciones practicas, es frecuente necesitar evaluar el conmutador de x; (o p;) con
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funciones de z; y p;. Para este fin, son ttiles las siguientes féormulas:

_OF
harF(pﬂ==zhémi, (1.2.14)
Yy
[uCKXH=~4th, (1.2.15)

donde F'y G son funciones que pueden expandirse en potencias de p; y x; respectivamente.
Ahora estamos en condiciones de aplicar la ecuacién de movimiento de Heisenberg a una
particula libre de masa m. Tomamos el Hamiltoniano con la misma forma que en mecanica
clasica:
p° (0 +p,+p)

H="—=———= =" 1.2.16
2m 2m ( )

Vemos las observables p; y x;, las cuales entendemos como los operadores momento y posicion
en la imagen de Heisenberg aunque omitimos el superindice (H). Dado que p; conmuta con

cualquier funcién de p;!, tenemos:

= = Vi H
dt zh[ }

Por lo tanto, para una particula libre, el operador momento es una constante del movi-

— 0. (1.2.17)

miento, lo que significa que p;(t) es igual a p;(0) para todo tiempo. En general, es evidente
de la ecuacién de movimiento de Heisenberg [Ec. (1.2.12)] que cuando A% conmuta con el

Hamiltoniano, A% es una constante del movimiento. Ademés,

de; 1, pi0) 1 1. pi _ pi(0)
at ih[x“H] om ihom' 3p2 (Z]%) B m (1.2.18)

donde hemos aprovechado (1.2.14), por lo que obtenemos la solucién:

%@y:@my+(@ﬂﬁ>a (1.2.19)

m

que recuerda la ecuacion clasica de trayectoria para movimiento rectilineo uniforme. Es

importante notar que, aunque se cumple:

'Recuerde que la relaciones de conmutacién fundamentales son [z;, p;] = ihid;;.
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[2;(0), ;(0)] = 0. (1.2.20)

para tiempos iguales, el conmutador de las x;’s en tiempos diferentes no se anula; especifi-

camente:
i (0)t  hit
Aplicando la relacién de incertidumbre a este conmutador, obtenemos:
h*t?
((Az;))((Az;)) 1= > T (1.2.22)

Entre otras cosas, esta relacion implica que incluso si la particula esta bien localizada en
t = 0, su posicion se vuelve cada vez mas incierta con el tiempo, conclusion que también puede
obtenerse estudiando la evolucién temporal de paquetes de onda en mecanica ondulatoria.

Ahora anadimos un potencial V(x) a nuestro Hamiltoniano de particula libre:
2

H= 2p—m V(). (1.2.23)

Aqui V(x) debe entenderse como funcién de los operadores z, y y z. Usando (1.2.15) obte-

nemos:
dp; 1 V(%)
Por otro lado, vemos que:
dr;  p;
== 1.2.2
el (1.2.25)

puesto que x; conmuta con el nuevo término V(x). Podemos usar nuevamente la ecuacién

de movimiento de Heisenberg para deducir:

dt2 ik | dt’ m m dt’

Combinando esto con la ec. (1.2.24), obtenemos finalmente en forma vectorial:

2 ) . )
do _ 1 [dxl H} - {&,H} _ Ldv (1.2.26)

d*x

m—y = -VV(x). (1.2.27)

Esta es la versiéon mecanico-cuantica de la segunda ley de Newton. Tomando los valores
esperados de ambos lados respecto a un ket de estado de Heisenberg que no evoluciona en

el tiempo, obtenemos:
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. d(p)
maEt® = g

= —(VV(x)). (1.2.28)
Este resultado se conoce como el teorema de Ehrenfest, en honor a P. Ehrenfest, quien lo
derivé en 1927 usando el formalismo de la mecanica ondulatoria. Cuando el teorema se escribe
en esta forma de valores esperados, su validez es independiente de si usamos la imagen de
Heisenberg o la de Schrodinger; después de todo, los valores esperados son iguales en ambas
imégenes. En contraste, la forma operacional (1.2.27) solo tiene sentido si entendemos x y p
como operadores en la imagen de Heisenberg.

Notemos que en la Ec. (1.2.28) la h ha desaparecido completamente. Por lo tanto, no

es sorprendente que el centro de un paquete de ondas se mueva como una particula clasica

sujeta a V(x).

1.2.4. Kets base y amplitudes de transicion

Una concepcién errénea sobre como evolucionan los kets base con el tiempo es pensar
que a medida que pasa el tiempo, todos los kets se mueven en la imagen de Schrodinger y
son estacionarios en la imagen de Heisenberg, lo cual no es propiamente correcto; el punto
importante es distinguir el comportamiento de los kets de estado del de los kets base.

Los eigenkets de observables deben usarse como kets base. ; Qué sucede con el tiempo al
definir la ecuacién de eigenvalores

Ald'y = d'|a’)? (1.2.29)

En la imagen de Schrodinger, A no cambia, por lo que los kets base, obtenidos como soluciones
a esta ecuacion de eigenvalores en t = 0, por ejemplo, deben permanecer sin cambios. A
diferencia de los kets de estado, los kets base no cambian en la imagen de Schrédinger.

La situacion es muy diferente en la imagen de Heisenberg, donde la ecuaciéon de eigenva-

lores que debemos estudiar es para el operador dependiente del tiempo:

AT =wTA0)% . (1.2.30)

A partir de la Ec. (1.2.29) evaluado en ¢ = 0, cuando ambas imégenes coinciden, deducimos
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UTA)VUUT|d) = dUT|d). (1.2.31)

lo que implica una ecuacién de eigenvalores para Af:

AT (g 1\a)) = o (% T]d))). (1.2.32)

Si seguimos manteniendo la vision de que los eigenkets de observables forman los kets base,
entonces {Z (t)|a’)} deben usarse como kets base en la imagen de Heisenberg. A medida que
pasa el tiempo, los kets base en la imagen de Heisenberg, denotados por |a/,t)y, se mueven
de la siguiente manera:

' )y = wT|d). (1.2.33)

Debido a la aparicién de %7 en lugar de % en (1.2.33), los kets base en la imagen de Hei-
senberg giran en sentido opuesto en comparacién con los kets de estado en la imagen de
Schrodinger; especificamente, |a, )y satisface la “ecuacién de Schrédinger con signo inver-

tido”.

0
ia|a/,t>}[ = —H\a’,t>H. (1234)

En cuanto a los eigenvalores en si, vemos en (1.2.32) que permanecen inalterados con el
tiempo. Observamos también la siguiente expansién para A (t) en términos de los kets y
bras base de la imagen de Heisenberg;:

A () = "Jd tygd (d t) =Y wVd )| % = U TAD % . (1.2.35)
a’ a’

lo que muestra que todo es bastante consistente, siempre que los kets base en la imagen

de Heisenberg cambien como en (1.2.33). Vemos que los coeficientes de expansion de un ket

de estado en términos de kets base son los mismos en ambas imagenes:
Cu(t) = {(d| - (Z]|a,tog =0)) (Img. Schrodinger), (1.2.36)
Cu(t)=({d'|%) - |a,tg =0) (Img. Heisenberg). (1.2.37)

17



De manera pictérica, podriamos decir que el coseno del angulo entre el ket de estado y el ket
base es el mismo, ya sea que rotemos el ket de estado en sentido antihorario o el ket base en
sentido horario. Estas consideraciones se aplican igualmente a los kets base que exhiben un
espectro continuo; en particular, la funcién de onda (2'|a)) puede interpretarse ya sea como
(1) el producto interno del eigenbra de posicion estacionaria con el ket de estado mévil (la
imagen de Schrodinger) o como (2) el producto interno del eigenbra de posicién mévil con
el ket de estado estacionario (la imagen de Heisenberg).

Para ilustrar atin mas la equivalencia entre las dos imagenes, estudiamos las amplitudes
de transicion, que desempenaran un papel fundamental en el capitulo 2. Supongamos que
hay un sistema fisico preparado en ¢ = 0 para estar en un eigenestado del observable A
con eigenvalor a/. En algin tiempo posterior ¢ podriamos preguntar: jcual es la amplitud
de probabilidad, conocida como amplitud de transicion, para que el sistema se encuentre
en un eigenestado del observable B con eigenvalor &7 Aqui A y B pueden ser iguales o
diferentes. En la imagen de Schrddinger, el ket de estado en t estd dado por % (t,0)|a’),

mientras que los kets base |a’) y |b') no varfan con el tiempo; asi que tenemos

(| - (%]d)) (1.2.38)
~— =

bra base ket de estado
para esta amplitud de transicién. En contraste, en la imagen de Heisenberg el ket de estado es
estacionario, es decir, permanece como |a’) en todo momento, pero los kets base evolucionan

de manera opuesta. Asi que la amplitud de transicién es

(Wz)- Jd) . (1.2.39)
—— ~—

bra base ket de estado

Obviamente, (1.2.38) y (1.2.39) son iguales. Ambos pueden escribirse como
o'\ (t,0)|a"). (1.2.40)

En un sentido vago, esta es la amplitud de transicién para “ir”del estado |a) al estado |V).

18



Capitulo 2

Propagadores e integrales de

trayectoria de Feynman

2.1. Propagadores en mecanica ondulatoria

El problema de evoluciéon temporal méas general con un Hamiltoniano H independiente
del tiempo puede resolverse una vez que expandemos el ket inicial |a,tp) en términos de
los eigenkets |a’) de una observable que conmuta con H. Si trasladamos este enunciado al

lenguaje de la mecénica ondulatoria, tenemos

_GH(t —
|, to;t) = exp {w] v, to)

- Z la'){d|av, to) exp {M] ;

donde E, denota los eigenvalores de los eigenkets de energia de H en la base de |a’).

(2.1.1)

Multiplicando ambos lados por (x/| a la izquierda, tenemos

%, tort) = 3]0’} (@] to) exp {#’“to)} , (2.1.2)

a/

lo cual es de la forma

U, 1) = 3 urlto)u (x) exp {M} , (2.1.3)

donde
Uy (x") = (X'|a’) (2.1.4)
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representa la eigenfuncién del operador A con eigenvalor a/. Notese también que

(o o) = /d% (a/ %) (x|, to), (2.1.5)

lo cual reconocemos como la regla usual en mecanica ondulatoria para obtener los coeficientes

de expansiéon del estado inicial:

Car = /dga:u:,(x’)w(x’,to). (2.1.6)

Ahora (2.1.2) junto con (2.1.5) pueden visualizarse también como algin tipo de operador

integral que actia sobre la funcién de onda inicial para llevar a la funcion de onda final:
U(x" t) = /d?’x’K(x",t;x’,to)\ll(xl,to). (2.1.7)

Aqui el kernel (nticleo) del operador integral, conocido como el propagador en mecénica

ondulatoria, estda dado por

K(x" t;x 1) = Y _(x"|a){a’|x) exp {M] : (2.1.8)

al

En cualquier problema dado, el propagador depende solamente del potencial y es indepen-
diente de la funcién de onda inicial. Puede construirse una vez que se dan las eigenfunciones
de energia y sus eigenvalores.

Hay dos propiedades del propagador que vale la pena mencionar aqui:

I. Parat > ty, K(x",t;%x,ty) satisface la ecuacién de onda dependiente del tiempo de

Schrodinger en las variables x” y ¢, con X" y ¢, fijos.

II1.
lim K (x",t; %', to) = 8*(x" — x). (2.1.9)

t—to

Por estas dos propiedades, el propagador (2.1.8), considerado como una funcién de x”,
es simplemente la funciéon de onda en ¢ de una particula que estaba localizada precisamente
en x’ en un tiempo anterior tg. En realidad, esta interpretacién sigue, quizas de manera més

elegante, de notar que (2.1.8) también puede escribirse como:

—1H(t—1t
K(xX", ;%' ty) = (x"| exp {%} %), (2.1.10)
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donde el operador de evolucién temporal que actia sobre |x’) da sélo el ket de estado en t de
un sistema que estaba localizado precisamente en x’ al tiempo to(< t). Si deseamos resolver
un problema mas general donde la funciéon de onda inicial se extiende sobre una region
finita del espacio, todo lo que debemos hacer es multiplicar W(x',tg) por el propagador
K(x",t;x',ty) e integrar sobre todo el espacio (esto es, sobre x’). De esta manera podemos

sumar las diferentes contribuciones desde diferentes posiciones (x').

2.2. Propagador como una amplitud de transicion

Recordando que la funcién de onda es el producto interno del bra de posicién fijo (x| con
el ket de estado que se mueve |, t; t) puede considerarse también como el producto interno
del bra de posicién en la imagen de Heisenberg (x', ¢|, el cual se mueve “opuestamente” en el
tiempo, con el ket de estado |a, ty) en la imagen de Heisenberg, el cual esté fijo en el tiempo.
De esa manera, el propagador puede escribirse también como

K(x" t:x',t) = Z<X’/|a/><a/|xl> exp {—_ZEQ,E; — to)}

al

= S exp (—z'th> ') (a'| exp (i};I:O) [x)

a/

= X' t|x' o), (2.2.1)

donde |x/;tg) v (x”,t| deben entenderse como un eigenket y un eigenbra del operador de
posicién en la imagen de Heisenberg. En la notacién de la imagen de Heisenberg, (V/, t|a’) es la
amplitud de probabilidad para que un sistema originalmente preparado como un eigenestado
de A con eigenvalor @’ en algtin tiempo inicial ty, = 0 se encuentre més tarde en el tiempo ¢
en un eigenestado de B con eigenvalor ¥, y se denomina la amplitud de transicién para
ir del estado |a’) al estado |V'). En términos generales,(x”, t|x’, o) es la amplitud para que la
particula vaya del punto del espacio-tiempo (x',%y) a otro punto del espacio-tiempo (x”,1),
por lo que el término amplitud de transicion para esta expresion es muy apropiado.
Resulta ser conveniente usar una notacién que trata las coordenadas de espacio y tiempo

de manera més simétrica. Para este fin se escribe (x”,t"|x/,t') en lugar de (x” t|x’,ty). Ya
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que en cualquier tiempo dado los kets de posicién en la imagen de Heisenberg forman un

conjunto completo, podemos insertar el operador identidad escrito como:

/d%” Ix" "V (x", "] =1 (2.2.2)

en cualquier lugar que deseemos. Por ejemplo, considérese la evolucién temporal de ' a t";

ividiendo el intervalo temporal (#/, en dos partes, (t',t") y (t",t"), tenemos
dividiendo el int lot 1 (¢, " d t t',t" t" "), t
<X”/, t”/|X/, t/> — / d3m// <X,”, t,//|X”7 t”> <}(//7 t//|X,7 t,>, (t/// > t > t ) (223)

Esta es la propiedad de composicién de la amplitud de transicién. Claramente, podemos
dividir el intervalo temporal en muchos subintervalos mas pequenos tanto como deseemos.

Tenemos

n nn ! 3 _m 3 // //// //// /// /// /// /// // //
(x" "%t / d’z / d’x ") (x X )

(X" XY, (" > > > ), (2.2.4)

etc. Si de algiin modo se obtiene la forma de (x”,¢”|x’, ) para un intervalo de tiempo infini-
tesimal (entre t' y t” = t' + dt), se puede obtener la amplitud (x”,#"|x’,t') para un intervalo
temporal finito componiendo las amplitudes de transicién apropiadas para intervalos tem-

porales infinitesimales de una manera andloga a (2.2.4).

2.3. Integrales de trayectoria y la suma sobre trayec-
torias

Sin pérdida de generalidad nos restringimos a problemas unidimensionales. También,

evitamos expresiones inconvenientes como

" n

N veces

usando la notacién xy. Con esta notacion consideramos la amplitud de transicién para una
particula que va del punto de espacio-tiempo inicial (z1,¢;) al punto de espacio-tiempo final

(xn,tn). El intervalo temporal entero entre ¢; y ty se divide en N — 1 partes iguales:

(tn — 1)

tj—tj1 = At =
7o N -1

(2.3.1)
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Explotando la propiedad de composicién, se obtiene

(N, tn|z, tr) /dﬂfN 1/d33N 2 /dﬂf2 (N, tn|en_1,tn-1)

X(xN_1,tN_1|TN_2,tN_2) - (®a, Lo|T1, t1). (2.3.2)

Para visualizar esto graficamente, considerese un plano de espacio-tiempo, como se muestra
en la Figura 2.1. Los puntos de espacio-tiempo inicial y final se fijan como (z1,¢1) y (zn,tn),
respectivamente. Para cada segmento de tiempo, digamos entre t,,_; y t,, se nos instruye a
considerar la amplitud de transicién que va de (z,_1,t,—1) a (z,,t,); entonces integramos
sobre xg, 3, ..., xNn_1. Esto significa que debemos sumar sobre todas las posibles trayectorias

en el plano de espacio-tiempo con los puntos extremos fijos.

tA Oons 7y)

In

r

I3

[E7) N

Figura 2.1: Trayectorias en el plano xt.

2.4. Formulacién de Feynman

En mecanica clasica se asocia una trayectoria definida en el plano xt con el movimiento de
la particula; en contraste, en mecanica cuantica todas las trayectorias posibles deben jugar
roles que incluyen aquellos que no tienen alguna semejanza con la trayectoria clasica. A pesar
de todo debemos de algin modo poder reproducir la mecanica cldsica de una manera suave
en el limite i — 0. ;Cémo vamos a lograr esto?

Como un joven estudiante graduado en la Universidad de Princeton, R. P. Feynman

traté de atacar este problema. Al buscar una posible pista, él dijo que estaba intrigado por
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una misteriosa nota en el libro de Dirac el cual, en nuestra notacién, equivale al siguiente

enunciado:

|:. /t2 dt Lclésico<:c7 m)
exp (2
' h

] corresponde a (o, to|xy, 1),
1

donde Leysico se refiere al Lagrangiano clasico.
Feynman intent6 buscarle sentido a esta nota. ; “Corresponde a” es lo mismo que “es igual
a” o que “es proporcional a” ? Al hacerlo él fue llevado a formular un enfoque de espacio-
tiempo para la mecanica cuantica basado en integrales de trayectoria.

En la formulacién de Feynman la accion clasica juega un rol muy importante. Para

abreviar, se introduce una nueva notacion:
tn
S(n,n—1)= / dt Lessico (T, T). (2.4.1)
tn—1

Ya que Legsico €8 una funcién de z y &, S(n,n—1) estd definida solo después de que se especi-
fica una trayectoria definida a lo largo de la cual se lleva a cabo la integracion. Considerando
un pequeno segmento a lo largo de una trayectoria preescrita, supéngase entre (z,_1,t,_1)
y (Zn,t,). De acuerdo a Dirac, se instruye asociar exp[iS(n,n — 1)/h] con dicho segmento.
Al ir a lo largo de la trayectoria definida a seguir, se multiplican sucesivamente expresiones

de este tipo para obtener

ﬂeXP {%} = exp [( )ZS n—l] = exp {%} (2.4.2)

Esto no da atn (xy,ty|z1,t1); mas bien, esta ecuacién es la contribucién a (xy,ty|x1,t1)
que surge de la trayectoria particular que se ha considerado, atin se debe integrar sobre
Zo,x3,...,Tn. Al mismo tiempo, explotando la propiedad de composicion, se permite que
el intervalo temporal entre t, ; y t, sea infinitesimalmente pequeno. Asi nuestra expresién

candidata para (zy,ty|x1,t1) puede escribirse, en cierto sentido aproximado, como:

xvtnlmt)~ 3 e [%} | (2.4.3)

todas las trayectorias

donde la suma debe tomarse sobre un conjunto de trayectorias inumerablemente infinito.
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Para formular la conjetura de Feynman de manera més precisa, tenemos que regresar a
(T, tn|Tn-1,tn—1), donde se supone que la diferencia temporal t,, —¢,,_; es infinitesimalmente

pequena. Sea,

(Ls bl Tty tnt) = {w(m)} exp [w] , (2.4.4)

donde S(n,n—1) es evaluada en un momento en el limite At — 0 y donde se ha insertado un
factor de peso, 1/w(At), el cual se supone que depende sélo del intervalo temporal t,, — ,, 1
y no de V(x).

Debido a que el intervalo temporal es muy pequeno, es legitimo hacer una aproximacion

de linea recta para la trayectoria que une (,,_1,t,_1) ¥ (Zn, t,) como sigue:

S(n,n—1) — /tt_l di {meQ _ V(m)}

At { (%) [W] Ty (("”’”ZA) } . (2.4.5)

Como el factor de peso 1/w(At) que aparece en (2.4.4) es independiente de V(x), y

notando la ortonormalidad en el sentido de la funcién ¢, de los eigenkets de posicién en la

imagen de Heisenberg a tiempos iguales,

<$n> tnyxnfb tn71>‘tn:tn_1 = 5(xn - xnfl)a (246)

1 m
w(At) ~ \V 2minAt (24.7)

Asi, conforme At — 0, obtenemos:

obtenemos

m

2mihAt

<xn7tn|xn717tn71> = (248)

h

La expresion final para la amplitud de transicién con ¢ty — ¢; finito es

exp [M} |
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tylen, ) = i m_)n
Ty, tn]oy, ) = N%o(Q’]TihAt)

x / dan_y / day_g- - / dxgi_lexp {w} (2.4.9)

donde el limite N — oo se toma con xy y ty fijos. Se define ahora un nuevo tipo de operador

integral multidimensional (de hecho, infinito-dimensional)

on ) m (N-1)/2
/xl Dix(t)] = A}l_[}réo (27m'hAt> /de_l/da:N_g . --/dxg (2.4.10)

Asi (2.4.9) se puede reescribir como:

Tn t2 . >
(N, ty|r, tr) :/ Dlx(t)] exp {z/ dtLda%w] : (2.4.11)
T t1

Esta expresion se conoce como la integral de trayectoria de Feynman. Su significado
como suma sobre todas las trayectorias posibles deberia ser evidente a partir de la ecuacion
(2.4.9).

Los pasos que nos condujeron a la ecuacién (2.4.9) no deben interpretarse como una
derivacién formal. Mas bien, nosotros (o Feynman) hemos intentado una nueva formulacién
de la mecanica cuantica basada en el concepto de trayectorias, motivados por el enigmético
comentario de Dirac. Las tnicas ideas que tomamos prestadas de la formulaciéon convencio-
nal de la mecdnica cuantica son: (1) el principio de superposicién (utilizado al sumar las
contribuciones de las diversas trayectorias alternativas), (2) la propiedad de composicién de
la amplitud de transicion, y (3) la correspondencia con la fisica clasica en el limite i — 0.

Los métodos que emplean integrales de trayectoria han resultado ser herramientas suma-
mente poderosas en diversas areas de la fisica moderna, como la teoria cuantica de campos
y la mecanica estadistica. En el capitulo 4, retomaremos este enfoque para deducir el efecto

Aharonov-Bohm.
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Capitulo 3

Potenciales y transformaciones de

norina

3.1. Potencial constante

En mecénica clasica es bien conocido que el punto cero de la energia potencial no tiene
significado fisico. El desarrollo temporal de variables dindmicas como x(t) y L(t) es inde-
pendiente de si usamos V(x) o V(x) + V, con Vj constante en el espacio y en el tiempo.
La fuerza que aparece en la segunda ley de Newton depende tinicamente del gradiente del
potencial, una constante aditiva es claramente irrelevante. ; Cudl es la situacién analoga en
mecanica cuantica? Para entenderlo hay que ver la evolucién temporal del ket de estado (en

la imagen de Schrodinger) sujeto a un potencial.

Sea |, to; t) un ket de estado en presencia de V' (x) y sea |, to; t) el ket de estado apropiado

para

V(x) =V(x)+ V. (3.1.1)

Las condiciones iniciales son tales que ambos kets coinciden con |a) en ¢ = ty. Recordando que
el ket de estado en ¢ puede obtenerse aplicando el operador de evolucién temporal % (t, to)

al ket de estado en t;, obtenemos:

|, f0; £) = exp [—z’ (%JH/(X) +vo) (t_ht())} la) = exp [M} o, to: t), (3.1.2)
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i.e., el ket calculado bajo la influencia de V tiene una dependencia del tiempo sélo por un

7’L'V0(t7t0)

factor de fase exp [ ; ] . Para estados estacionarios esto significa que si la dependencia

7’L'E(t7to)
h

—i(E+Vo)(t—to)
h

del tiempo calculada con V(x) es exp [ ]7 entonces la correspondiente dependencia

temporal calculada con V(x) + Vj es exp [ ] , es decir, el uso de V en lugar de V
solo nos lleva al cambio:

E— E+V,. (3.1.3)

Los efectos observables tales como la evolucién temporal de los valores esperados de (x) y (S)
dependen siempre de diferencias de energia; las frecuencias de Bohr que caracterizan la de-
pendencia sinusoidal en el tiempo de los valores esperados son las mismas, ya sea que usemos

V(x) o V(x) + Vy. En general, no hay diferencia en los valores esperados de las observables

—iVo (t—to)

si cada ket de estado es multiplicado por un factor comuin exp [ ;

] . Este es un primer
ejemplo de una clase de transformaciones conocidas como transformaciones de norma.

El cambio en nuestra convencion para el punto cero de la energia potencial
V(x) = V(x)+ Vo (3.1.4)

debe acompanarse de un cambio en el ket de estado:

—iVo(t — to)

" ] lav, to; t). (3.1.5)

la, to; t) — exp {

Por supuesto, este cambio implica un cambio en la funcién de onda:

—iVo(t —to)

U(x' t
(x,)—>exp{ "

]m@@. (3.1.6)

Ahora, considérese un Vj que es espacialmente uniforme pero dependiente del tiempo. En

este caso, el andlogo de la ecuacién (3.1.5) es:

¢ ”
la, to; ) — exp (—z/ dt'%) la, to; t). (3.1.7)
to

Fisicamente, usar V' (x) + Vy(t) en lugar de V(x) significa simplemente que estamos eligiendo
un nuevo punto cero de la escala de energia en cada instante de tiempo. Aunque la eleccién

de la escala absoluta del potencial es arbitraria, las diferencias de potencial tienen una
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Region de
Interferencia

Figura 3.1: Interferencia cuantica para detectar una diferencia de potencial

importancia fisica no trivial y, de hecho, pueden detectarse de manera sorprendente. Para
ilustrar este punto, consideremos el arreglo mostrado en la Figura 3.1

Un haz de particulas cargadas se divide en dos partes, cada una de las cuales entra en una
jaula metélica. Si lo deseamos, podemos mantener una diferencia de potencial finita entre
las dos jaulas activando un interruptor, como se muestra. Una particula en el haz puede
visualizarse como un paquete de ondas cuya dimensiéon es mucho menor que la dimension
de la jaula. Supongamos que activamos la diferencia de potencial sélo después de que los
paquetes de ondas entren en las jaulas y la desactivamos antes de que los paquetes de ondas
salgan de las jaulas.

La particula dentro de la jaula no experimenta ninguna fuerza porque, dentro de la jaula,
el potencial es espacialmente uniforme; por lo tanto, no hay un campo eléctrico presente.
Ahora, recombinemos los dos componentes del haz de tal manera que se encuentren en la
region de interferencia de la Figura 3.1. Debido a la existencia del potencial, cada componente
sufre un cambio de fase, como se indica en la ecuacién (3.1.7). Como resultado, hay un
término observable de interferencia en la intensidad del haz en la region de interferencia, a

saber:

cos(¢p1 — ¢a), sin(¢1 — Pa), (3.1.8)

1
b1 — o = (ﬁ>

donde )
/ Va(t") — Vi(t)] dt'. (3.1.9)

0
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Por lo tanto, a pesar de que la particula no experimenta ninguna fuerza, hay un efecto
observable que depende de si se ha aplicado o no Va(t) — Vi(t). Obsérvese que este efecto
es puramente cudntico; en el limite A — 0, el efecto de interferencia desaparece porque la

oscilacion del coseno se vuelve infinitamente rapida.

3.2. Transformaciones de norma en electromagnetismo

Pasemos ahora a los potenciales que aparecen en electromagnetismo. Consideramos un
campo eléctrico y un campo magnético derivables del potencial escalar ¢(x) y del potencial

vectorial A(x), independientes del tiempo :
E=-V¢y, B=VxA. (3.2.1)

El Hamiltoniano para una particula con carga eléctrica e (e < 0 para el electrén) sometida

a un campo electromagnético se toma de la fisica clasica como:

1 e  \?2
H=_— (p - —A) + ed. (3.2.2)
c
En mecéanica cuantica, ¢ y A se entienden como funciones del operador de posicién x de
la particula cargada. Dado que p y A no conmutan, es necesario interpretar (3.2.2) con

cuidado. Lo mas seguro es escribir:
e \2 9 € e?
(p—EA) Sp’ - “(p-ATAp)+ A% (3.2.3)

En esta forma el Hamiltoniano es obviamente hermitiano.
Para estudiar la dinamica de una particula cargada sometida a ¢ y A, procedemos en la

representacion de Heisenberg. Podemos evaluar la derivada temporal de x de manera directa:

dr; [z, H 1 e
i ih om (p’ - EAZ>' (324)

Esto muestra que el operador p, definido como el generador de traslaciones, no es lo mismo
que m‘fi—’;. A menudo, p se llama momento candnico, para distinguirlo del momento

cinemdtico (o mecénico), denotado por IT:
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M=m—=p—-A. 3.2.5
mos =P (3.2.5)

Aunque tenemos
[pi,pj] =0 (3.2.6)

para el momento candnico, el conmutador analogo no se anula para el momento mecanico.

En su lugar, obtenemos

eA; eA; eA; —eA; eA;
1L, 1] = |:pi_77pj_TJ:| = {Pi,pj——]] + [ >Pj——j}

c c c
_ {pz-, e_Ai] _ {G_Ai’pj} (3.2.7)
c c
eAj €A]’ €Al’ eAl-
= —Dpi + Di — Dj +Dj )
c c c c

donde se ha usado (3.2.6) y que [A;, A;] = 0.

Aplicando a una funcién ¥, ordenando, y recordando que p = —iAV tenemos:

A; A; A; A;
[1L;, IL;] W = (—PieT] +Pjec - +eiji - Pj) v

g ¢ - (3.2.8)
Ya que B; = €;;;,0; A, tenemos:
h h
Por lo tanto,
1
11, 11,] = (%) i1 Br. (3.2.10)
Ademas, reescribiendo el hamiltoniano como:
]._.[2
H=— 211
5 + e, (3 )
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y usando la relaciéon de conmutacién fundamental, podemos derivar la version cuantica de

la fuerza de Lorentz:

d’x  dII 1 /dx dx
X _ 9 E+—(ZxB-BxZ)|. 2.12
" T 6[ +20<dtx th)] (32.12)

Este es el teorema de Ehrenfest, escrito en la representacion de Heisenberg, para una particula
cargada en presencia de E y B.
Ahora discutimos las transformaciones de norma en electromagnetismo. Considérese pri-

mero:

b=+ A=A (3.2.13)

con A\ constante, es decir, independiente de x y ¢t. Tanto E como B permanecen sin cam-
bios, obviamente. Esta transformacion simplemente equivale a un cambio en el punto cero
de la escala de energia, una posibilidad tratada al comienzo de este capitulo; simplemente
reemplazamos V' por eg.

Es mucho maés interesante la transformacién:
o— ¢, A— A+ VA (3.2.14)

donde A es una funciéon de x. Los campos electromagnéticos estaticos E y B no cambian

bajo (3.2.14). Tanto (3.2.13) como (3.2.14) son casos especiales de:

10A
qﬁ%qﬁ——a—, A — A+ VA, (3.2.15)
c ot
los cuales dejan E y B, dados por:
10A
E=-Vp——, B= A 2.1
Vo—-—, V x A, (3.2.16)

sin cambios, pero en lo que sigue no consideramos campos ni potenciales dependientes del
tiempo. En el resto de este capitulo, el término transformacion de norma se refiere a (3.2.14).

En fisica clésica, los efectos observables como la trayectoria de una particula cargada son
independientes de la norma utilizada, es decir, de la eleccion particular de A que adoptemos.
Consideremos una particula cargada en un campo magnético uniforme en la direccion z,
B = Bz. Este campo magnético puede derivarse de:

1 1
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o también de:

A, = —By, A, =0, A, =0 (3.2.18)

La segunda forma se obtiene de la primera mediante:

B
N:A—V(ig) (3.2.19)

que corresponde precisamente a la forma de (3.2.14). Independientemente de qué A usemos,
la trayectoria de la particula cargada con un conjunto dado de condiciones iniciales es la
misma: simplemente una hélice (movimiento circular uniforme cuando se proyecta en el plano
xy superpuesto con un movimiento rectilineo uniforme en la direccién z). Sin embargo, si
examinamos p, y py, los resultados son muy diferentes. En particular, p, es una constante
de movimiento cuando se usa (3.2.18) pero no cuando se usa (3.2.17).

Recordemos las ecuaciones de movimiento de Hamilton:

b OH o, _ OH dp._ OH
a0z’ dt Oy At = 0z

(3.2.20)

En general, el momento candénico p no es una cantidad invariante bajo transformaciones

de norma; su valor numérico depende de la norma particular utilizada, incluso cuando nos

dx

referimos a la misma situacion fisica. En contraste, el momento cinemético II, o m%;,

que
traza la trayectoria de la particula, es una cantidad invariante bajo transformaciones de
norma.

En la mecanica cudntica es razonable exigir que los valores esperados se comporten de
manera similar a las cantidades clasicas correspondientes bajo transformaciones de norma,
de modo que (x) y (IT) no cambien bajo transformaciones de norma, mientras que se espera
que (p) cambie.

Denotemos por |a) el ket de estado en presencia de A; el ket de estado para la misma

situacién fisica cuando se utiliza:

A=A+VA (3.2.21)

en lugar de A se denota por |&@). Aqui A, al igual que A, es una funcién del operador de

posicion x. Los requisitos basicos son:
(a]x|a) = (a|x|a) (3.2.22)
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(a|TI|a) = (a|TI|a). (3.2.23)

Ademas, requerimos, como es habitual, que la norma del ket de estado se preserve:
(a]a) = (a|&). (3.2.24)
Debemos construir un operador G que relacione |&) con |a):
&) = Gla). (3.2.25)

Las propiedades de invariancia (3.2.22) y (3.2.23) estdn garantizadas si:

G'xG =x (3.2.26)
y
Gi <p _ % - eVCA> . %' (3.2.27)

Afirmamos que:

G =exp (ieA(X)) (3.2.28)

hard el trabajo. Primero, G es unitario, por lo que la Ec. (3.2.24) es correcta. Segundo,
(3.2.26) se satisface obviamente porque x conmuta con cualquier funcién de x. En cuanto a

(3.2.27), basta notar que:

i) (b e eA\]
P he )PP\ e ) TP ne ) PP\ e p
= —exp <—ﬁ) 1hV {exp <@>} +p (3.2.29)
he he

eVA
=p—+ )
c

donde hemos usado [p;, G(x)] = —iho,G.

La invariancia de la mecdnica cudntica bajo transformaciones de norma también puede
demostrarse directamente mirando la ecuacion de Schrodinger. Sea |, to; ) una solucién a
la ecuacién de Schrodinger en presencia de A:

(p—eA/c)?

e,
o +ep| |a,to;t) = zh§|a,t0;t>. (3.2.30)
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La solucion correspondiente en presencia de A debe satisfacer:

—eA/c—eVA/c)? 0
Vemos que si el nuevo ket se toma como:
e
|, to; ) = exp (%) la, to; t), (3.2.32)
c

de acuerdo con (3.2.28), entonces la nueva ecuacién de Schrodinger (3.2.31) se satisface; todo

lo que debemos notar es que:

) 2 . 2
exp A P— A _ VA exp by - P cA ; (3.2.33)
he c c he c

lo cual sigue de aplicar (3.2.29) dos veces.

La ecuacién (3.2.32) también implica que las correspondientes funciones de onda estén

relacionadas mediante:

he

donde A(x') es ahora una funcién real del valor propio del operador de posicién x'. Esto

U(x' ) = exp (ieA(x’)) U(x',t), (3.2.34)

puede, por supuesto, verificarse también sustituyendo directamente (3.2.34) en la ecuacién
de onda de Schrodinger con A reemplazado por A + VA.

Cuando se utilizan potenciales vectoriales en diferentes normas para la misma situacién
fisica, los correspondientes kets de estado (o funciones de onda) deben ser necesariamente
diferentes. Sin embargo, solo se necesita un cambio simple; podemos pasar de una norma
especificada por A a otra especificada por A + VA simplemente multiplicando el ket antiguo

ie

ﬁ) El momento candnico, definido como el

(o la funcién de onda antigua) por exp (
generador de traslaciones, es manifiestamente dependiente de la norma en el sentido de
que su valor esperado depende de la norma particular elegida, mientras que el momento
cinematico y el flujo de probabilidad son invariantes de norma.

Es natural preguntarse por qué la invariancia bajo (3.2.28) se llama invariancia de nor-
ma (gauge en inglés). Esta palabra es la traduccién del alemén FEichinvarianz, donde Eich
significa “norma” y cuyo origen se comenta en lo que sigue.

Consideremos primero alguna funcién de posicién en x: F'(x). En un punto vecino, ob-

viamente tenemos:

F(x+dx) ~ F(x)+ (VF) - dx. (3.2.35)
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Pero suponga que aplicamos un cambio de escala a medida que pasamos de x a x + dx:
1 — [1+ X(x) - dx] : (3.2.36)
en x en x+dx.

Entonces debemos reescalar F'(x) de la siguiente manera:
F(x + dX)reescalado =~ F(x) + [(V + X)F] - dx. (3.2.37)

en lugar de (3.2.35). La combinacién V + X es similar a la combinacién invariante de norma:
V- %, (3.2.38)

Histéricamente, en 1918 H. Weyl propuso una teoria en la que el electromagnetismo y la
gravitaciéon podrian unificarse mediante una simetria local de cambio de escala, que llamo
FEichinvarianz [6]. En su teoria, el potencial vectorial electromagnético A estaba relacionado
con un cambio de escala local en la métrica del espacio-tiempo. Sin embargo, esta idea
fue criticada por Einstein (en el mismo articulo) y otros fisicos, ya que predecia efectos no
observados, como cambios en las lineas espectrales de los atomos. Con el nacimiento de la
mecanica cuantica, V. Fock y F. London se dieron cuenta de la importancia de la combinacion
invariante de norma (3.2.38), y recordaron el trabajo anterior de Weyl comparando ¥ con

1 veces A. Estamos atascados con el término wnvariancia de norma aunque el analogo en

mecanica cuantica de (3.2.36),

e
1-(—]A-d

corresponderia en realidad a un “cambio de fase” y no a un “cambio de escala”.

1 (3.2.39)

en x+dx
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Capitulo 4

El efecto Aharonov-Bohm a la

Feynman

4.1. Introducciéon

El uso del potencial vectorial A en mecanica cuantica tiene consecuencias profundas,
algunas de las cuales exploraremos a continuacién. Comenzamos con un problema que, a
primera vista, parece relativamente inofensivo. Consideremos primero una situaciéon aparen-
temente sencilla: una particula cargada confinada en el interior de una cascara cilindrica
hueca, cuyas paredes son rigidas, como se muestra en la Figura 4.1a. La funciéon de onda
debe anularse en las superficies interna y externa del cilindro, asi como en sus extremos. Este
es un problema tipico de valores en la frontera, donde se pueden obtener los eigenestados de
energia de forma directa.

Ahora bien, si introducimos un campo magnético confinado en la regioén interior inaccesi-
ble, como se muestra en la Figura 4.1b (especificamente, podemos imaginar un solenoide muy
largo insertado en el orificio central, de tal forma que ningiin campo magnético se filtre hacia
la regién p > p,. ). Las condiciones de frontera para la funcién de onda se toman iguales
que antes; se asume que las paredes siguen siendo igualmente rigidas. De manera intuitiva,
podriamos conjeturar que el espectro de energia no cambia, ya que la regiéon con B = 0
es completamente inaccesible para la particula cargada confinada dentro de la cdscara. Sin

embargo, la mecénica cuantica nos indica que esta conjetura es incorrecta. Esto se debe a
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que la funcion de onda adquiere un factor de fase dependiente del potencial vectorial A, a

pesar de que la particula no experimenta fuerza de Lorentz.

(a) (b)

Figura 4.1: Cascara cilindrica hueca: (a) sin campo magnético, (b) con un campo magnético

uniforme.

4.2. El efecto Aharonov-Bohm

Consideremos una particula de carga e que pasa por encima o por debajo de un cilindro
muy largo e impenetrable, como se muestra en la Figura 4.2. Dentro del cilindro hay un
campo magnético paralelo al eje del cilindro, tomado como normal al plano de la Figura
4.2. Por lo tanto, las trayectorias de la particula por encima y por debajo encierran un flujo
magnético. Nuestro objetivo es estudiar como la probabilidad de encontrar a la particula en
la regién de interferencia B depende del flujo magnético.

Sean z7 y x, puntos tipicos en la regién fuente A y la regién de interferencia B, respec-
tivamente; recordamos de la mecanica clasica que el Lagrangiano en presencia del campo
magnético se puede obtener a partir del Lagrangiano en ausencia del campo magnético,

denominado como L2

Jasico» de la siguiente manera:

2
© _ m[dx 0) e dx
Lclzisico - E (E) ? Lclésico + E% . ¥ (421)
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CILINDRO
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LA FUENTE

Figura 4.2: Efecto Aharonov-Bohm.

El correspondiente cambio en la acciéon para algin segmento de trayectoria definido que va

desde (x,_1,t,_1) hasta (x,,t,) se expresa de la siguiente manera:

© 0 e [ (dx
SP(n,n—-1)— SY(n,n—-1)+ - dt g AL (4.2.2)
tn—

Pero esta ultima integral puede expresarse como:

S/tt_ dt( ) A= - / A-dl, (4.2.3)

donde dl es el elemento de linea diferencial a lo largo del segmento de la trayectoria, por lo
que cuando consideramos la contribucién completa desde x; hasta x,, tenemos el siguiente

cambio:

Hexp[ (n, ”_1 } {Hexp{ (n, "_1)”exp (/ A- dl) (4.2.4)

Esto es valido para una trayectoria especifica, como la que va por encima del cilindro.

Aun debemos sumar sobre todas las trayectorias posibles, lo cual puede parecer una tarea
formidable. Afortunadamente, sabemos por la teoria de electromagnetismo que la integral
de linea f;n"_l A - dl es independiente de las trayectorias; es decir, depende sélo de los puntos
extremos, siempre y cuando el bticle formado por un par de trayectorias diferentes no encierre
un flujo magnético.

Como resultado, las contribuciones debidas a A # 0 para todas las trayectorias que pasan
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por encima del cilindro estan dadas por un factor de fase comun; de manera similar, las
contribuciones de todas las trayectorias que pasan por debajo del cilindro se multiplican por
otro factor de fase comtun. En la notacion de la integral de trayectoria, tenemos, para la

amplitud de transicion completa:

/encimap[*””(t)] exp {ZS(O)(”;%” — 1)1 N /debajop[x<t)] exp [z’S(O)(ni%n — 1)}

— [ Dtjen [iS(O)(ni;n—l)] {exp K%) /x::A'dIH (425

L, P (S o | () [ A}

La probabilidad de encontrar la particula en la region de interferencia B depende del médulo

al cuadrado de la amplitud de transicién completa y, por lo tanto, de la diferencia de fase
entre la contribucion de las trayectorias que van por encima y por debajo. La diferencia de

fase debido a la presencia de B es simplemente:
e Tn e Tn
< A -dl - (—)/ A-dl
(AR (VAR

- ()

donde ®p representa el flujo magnético dentro del cilindro impenetrable. Esto significa que,

() fana

encima debajo

(4.2.6)

al variar la intensidad del campo magnético, aparece una componente sinusoidal en la proba-
bilidad de observar la particula en la regién B, con un periodo determinado por una unidad

fundamental de flujo magnético, a saber:
2mhe
€|

Debemos enfatizar que el efecto de interferencia discutido aqui es puramente mecanico-

= 4,135 x 107" Gauss - cm?. (4.2.7)

cuantico. Clasicamente, el movimiento de una particula cargada estd determinado unica-

mente por la segunda ley de Newton junto con la ley de fuerza de Lorentz. En este caso, la
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particula nunca puede ingresar a la region donde el campo B es distinto de cero; la fuerza de
Lorentz es idénticamente nula en todas las regiones donde la funciéon de onda de la particula
es distinta de cero. Sin embargo, se observa un notable patrén de interferencia que depende
de la presencia o ausencia de un campo magnético en el interior del cilindro impenetrable.
Este hecho ha llevado a algunas personas a concluir que, en la mecanica cuantica, el potencial
vectorial A es mas fundamental que el campo B. Cabe senalar, no obstante, que el efecto
observable depende tunicamente de ®p, el cual puede expresarse directamente en términos
de B. Se han realizado experimentos para verificar el efecto Aharonov—Bohm utilizando un

fino filamento de hierro magnetizado, conocido como whisker!.

1Uno de los experimentos més recientes es el realizado por Tonomura et al [28].
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Capitulo 5

El efecto Aharonov-Bohm a la

Schrodinger

5.1. Introduccion

En la fisica clasica, la fuerza sobre una particula con carga e en un campo electromagnético

esta dada por la formula de Lorentz:
F =¢E +ev x B. (5.1.1)

E y B son el campo eléctrico y la induccién magnética, relacionados con el potencial vectorial

A y el potencial escalar ¢ por:

E——%—?—Vqﬁ, B=VxA. (5.1.2)

Como vimos anteriormente, A y ¢ no son unicos; pueden ser cambiados por una transforma-
ciéon de norma bajo la cual E y B son invariantes. En este contexto, es comun afirmar que el
unico efecto fisico de un campo electromagnético sobre una carga es la fuerza de Lorentz, y
esto solo existe en regiones donde E y/o B son distintos de cero. El efecto Aharonov-Bohm
demuestra que esto no es asi en la mecanica cuantica; existen efectos fisicos en regiones donde
E y B son ambos cero, pero A, no lo es. Por lo tanto, A, tiene mas significado fisico del que
se pensaba.

El efecto se refiere al experimento prototipo de la mecanica cuantica: el experimento de

doble rendija con electrones, mostrado en la Figura 5.1. Debido a la naturaleza ondulatoria
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de los electrones, siempre que no se detecte por qué rendija pasan, producen un patrén de
interferencia caracteristico. Si la longitud de onda del electrén es A, la diferencia de fase entre

las ondas de las dos rendijas es:

a a
Si ¢ < L, entonces a = (z/L)d, por lo que:
xd LA
S —— = 4. 1.
) Iy T= J (5.1.3)

Los maximos ocurren en § = 2nm y los minimos en (2n+1)7, por lo que esta férmula describe

el patréon de interferencia.

Trayectoria 1

o,
\
\
\
\
\
\
\
\
\
/!
N
\
\
\
M
v >

Trayectoria 2

o= I =—3

Figura 5.1: El experimento de interferencia de doble rendija con electrones.

La idea de Aharonov y Bohm (1959) fue introducir un pequeno solenoide detrés de la pa-
red entre las rendijas, como se muestra en la Figura 5.2. Hay lineas de induccién magnética B
dentro del solenoide, pero no fuera, por lo que, siempre que el solenoide sea lo suficientemente
pequeno, los electrones siempre se mueven en una regiéon libre de campo. Es facil escribir la
forma de A que produce un campo magnético solenoidal. Se muestra esqueméticamente en

la Figura 5.3. En coordenadas cilindricas polares, A solo tiene una componente ¢, dada por:

B
Dentro: A, =A,=0, Ay= 7T, (5.1.4)
BR?
Fuera: A, =A,=0, A,= 5y (5.1.5)
r
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donde R es el radio del solenoide. Dado que B = V x A, tenemos, en coordenadas cilindricas

polares:
5 _ L[otrAy) 94,
or or oo |’
Trayectoria 1
s
- s
= -
T Q‘)\
~~o P
~7 Trayectoria 2
B

Figura 5.2: El efecto A-B; un solenoide es colocado entre las rendijas.

€

Figura 5.3: A y B en un solenoide

y férmulas similares para B, y By, dando:.

Dentro: B, =By, =0, B,=D0D, (5.1.6)

Fuera: B =0, (5.1.7)
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como se requiere.

Ahora buscamos la solucién de la ecuacion de Schrodinger para una particula cargada
inmersa en un campo electromagnético. Autores como Arfken [4] y Ryder [5] proponen como
tal la solucion, pero no explican como es que surge ésta, a continuacion se desarrolla el como

surge esta expresion.

5.2. Ausencia de B

Como previamente se ha mencionado, sin la presencia del solenoide, tanto el potencial
vectorial A como el campo magnético B son nulos; considerando ademas que el potencial
escalar ¢p(x) =0 (i.e., E(x) = 0 también), la ecuacién de Schrodinger es la de una particula
libre, i.e.,

HoUy(x) = —%v%po(x) = BV (x), (5.2.1)

La ecuacién se resuelve utilizando el método de separacién de variables. Suponemos que la

funcién de onda Wy (x) puede escribirse como:
Wo(x) = Wo(, . 2) = X(2)Y (5)Z(2). (5.2

Sustituyendo en la ecuacion de Schrodinger, obtenemos:

e (Sr ezt + xS P 20+ x@v ) ) = Bx @Y 0)2e)
(5.2.3)
Dividiendo ambos lados por Wo(z,y, z) = X (2)Y (y)Z(z), obtenemos:
R? 1 &*X(z) 1 d*Y(y) 1 d*Z(z)\
2m (X(x) dx? Y(y) dy? Z(z) dz? ) =B (5:24)

Cada término en la ecuacién anterior debe ser igual a una constante, por lo que definimos:

1 &X(x) LdQY(y) Y 1 d*Z(z)

= —k2, (5.2.5)

X(z) dx2 7 Y(y) dy* Y Z(2) dz?

donde k2 + k2 + k2 = 22
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Cada una de estas ecuaciones es una ecuacién diferencial de segundo orden cuya solucién

general es:
X(z) = Aye™* 4 Bye ke, (5.2.6)
Y(y) = Aye*s 4+ Be v, (5.2.7)
Z(z) = A.e™* + Be ", (5.2.8)

donde A,, B,, A, B,, A,, B, son constantes de integracion.
La solucién completa de la funciéon de onda en tres dimensiones es:
\I/()(X) — (Axezkzz + Bxefikzx) (Ayeikyy 4 Byefikyy> (Azeikzz 4 Bzefikzz)
‘ (5.2.9)
= |\P0’€ﬁphx.
En esta solucién la energfa de la particula esta relacionada con los nimeros de onda k;, &,

v k. mediante:

2

h
E=— (K +k+k). 2.1
2m<x+ Y+ k) (5.2.10)

5.3. Presencia de B

Es necesario recordar que al incluir un solenoide el campo magnético B # 0 dentro y
B = 0 fuera del solenoide, sin embargo, A # 0 fuera del solenoide, por lo que es fundamental

considerar esta interaccion. Asi, el operador Hamiltoniano en este caso se expresa como:

-t (p - SA)2 +eg. (5.3.1)

Asi, la ecuacion de Schrodinger para esta H estd dada por:

{L <p - §A>2 + 64 U(x) = B¥(x). (5.3.2)

2m

Proponemos una solucién ¥(x) = ¥y (x)e”’™) donde ¥ es solucién de la ecuacién en ausen-
cia de A (i.e., HyUy = B, ), 7(x) representa una fase, la cual hallaremos directamente sin

suponer su forma (ya conocida). En lo que sigue, consideramos ¢(x) = 0, como es usual.

47



Aplicando el operador Hamiltoniano a la solucién propuesta, tenemos

]:.]‘IJ(X) = QL (p — §A>2 U(x) = — (p _ EA> ] (X)eiv(X)
= % <P - ZA> : (p - EA) Ty(x)e"™ (5.3.3)
1

2m
Consideremos primero sélo la aplicacién del operador (p — EA) sobre ¥(x), i.e.,
. e . . . e .
<—th . EA) Wo(x)e" ) = —ihV [Wo(x)e" M) — S AWy ()€
= —ihiWy(x)Ve"™) — ihe"®V Ty (x) — EA\IJO(x)e”(X)
2 i(x) _ i oiv(x) € iy(x)
= —i"h¥(x)Vy(x)e — the" VW (x) — EA\Ilo(x)e
= 110 (h\po(x)w(x) RV (x) — SA\IJO(x)> L (5.34)
Ahora, se aplica nuevamente el operador (—ihV —< ) en ambos lados de la ecuacién (5.3.4);
se tiene entonces
2 , :
(—mv - EA) Wo(x)e"™) = (—mv - EA) : [eMx) (wo(x)w(x) — RV (x) — 9A\1/0<x)>]
c c c
= —ih’V - [‘IIO(X)VW(X)GMX)} — S [A - Vy(x)] Ty(x)e7™
c
+ 2RV - [V, (x)] + m% [A - VT(x)] 7™
e 2

+ihoV - (AT (x)e) + (E> A2 (x)e "),

ie.,

(—z’hV — SA)Q To(x)e"™) = —iR2V - [Vy(x)] o(x)e"™ — ih? [V (x) - VT(x)] 7
— il [V(x) - Ve Wy (x) = = [A - V7 (x)] o))
— B2V - [V (x)] €7 — h? [Ve ™) . VT (x)]
+ i [A - V()] 1) + ih (V- A) To(x)e" ™
+ zhz A - VT(x)]e0 + m% (A - V™) Ty (x)

() A2y,

C
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Asi,

(—inv - ZA)Q Wo(x)e™) = —iR?V2y(x) o(x)e "™ —ih? [V (x) - Vo (x)] 7™
—i*h* [Vy(x) - Vy(x)] Wo(x)e"™) — h; [A -V (x)] Uo(x)e "™
— WV (x)e"™) — ih? [Vy(x) - Vo(x)] €7
+ mg A - V()] ) 4 mg (V- A) Uy (x)e"™)
+ ihZ[A VW (x)]e" ™ 4 i2h§ [A - V()] Wo(x)e ™)

2 )
+ (E> AT (x)e ),

C

ie.,
e 2 . .

(—mv - —A) Wo(x)e1) = ¢ { (%) VR (x) — iR [V (x) - V¥ (x)]
C

+ F00(x) [Vy(x)]* = A [A - Vy(x)] To(x) = B*V*To(x)

— i [Vy(x) - VT (x)] + zhg A - VT (x)] + mz (V- A) Ty(x)

L€ e eN2 o
+ih= [A - V()] — A= [A - V4(x)] Wo(x) + (£) AW ()
(5.3.5)
Sumando términos semejantes, tenemos:
HY(x) = QLGWW { ~ RV (x) + B (V- A) Uo(x) — il200(x) V(%)
m c
— 212 [VA(x) - VT(x)] + 2@712 A - VT(x)] (5.3.6)

+ (92 APWg(x) + h*Wo(x) [V(x)] — %E A V()] %(X)} '

Para que Woe""™ sea solucién de la ecuacién de Schrodinger (en presencia de A) solo el
primer término de la derecha debera preservarse, i.e., el resto de términos deben sumar cero,
ya que —h2V2U,(x) = EW¥y(x) y solo asi tenemos H¥(x) = "™ EWy(x) = EU(x).
Debemos recordar que aqui la idea es hallar v(x), la cual satisface que la suma de los 7
términos entre llaves en la Ec. (5.3.6) [sin el término —h*V?W(x)] sumen cero. La clave nos
la dan los términos (“cuadréticos”) A%y [Vy(x))* v el término con —2A - V~(x), los cuales

sugieren que Vy(x) oc A.
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Por tanto, para tener

(5) A%wo(x) = P20 () (T2 (0 (5:3.7)
debemos proponer:
VA (x) = hicA. (5.3.8)
Lo cual nos lleva a que:
1) = (o / A-dl, (5.3.9)

porque A es practicamente el gradiente de «y(x). Esta fase v(x) es lo que se conoce en la
literatura como la fase de la holonomia! o fase del factor de fase de Wu-Yang [41].

Es con esta expresion para -y(x) con la cual inician textos como el de Arfken [4] y Ryder
[5] sin mencionar su origen. Aqui vemos que surge claramente de la necesidad de anular los
7 términos en la Ec. (5.3.6). Con la eleccién de la Ec. (5.3.8) los tres términos del ultimo

renglén de la Ec. (5.3.6) suman cero:

(5) A%wo(00) + Ko(x) (V)] — 26 [A - V4 (x)] Wo(x)

=i [(£) At (1) 47 - on (4 o)

S () a0 ()2 (']

= 0.

(5.3.10)

Los otros cuatro términos entre llaves en la Ec. (5.3.6) se anulan por pares, i.e.,
22 [V (x) - VW (x)] + mz A - V(x)] = —2ik? [%A : V\IJO(X)} v 22’71; A - V(x)]
= —2ih° [A - VU(x)] + 2k [A - V(x)]
c c

=0
(5.3.11)

!Fase geométrica adquirida por un sistema al ser transportado a lo largo de un camino cerrado; refleja
la estructura del campo de norma. Una definicién més completa de holonomia para campos de norma no

abelianos puede revisarse en [30].
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y [los términos con el laplaciano de v(x)]
mg (V- A) Ty(x) — 2T (x)V2(x) = mg (V- A) Ty(x) — il2To(x)V - [V (x)]

—ins (V- A) Uy(x) — ih*Ty(x)V - <£A> (5.3.12)

c he
= z'hg (V- A) Ty(x) — mg%(x)(v ‘A)

5.3.1. El efecto Aharonov-Bohm

Tal y como se requiere los 7 términos suman cero y sélo el término —h2V2W(x)e’™) se
conserva en la Ec. (5.3.6) y ¥(x) satisface la Ec. de Schrodinger H¥(x) = EW¥(x) con ¥(x)
dado por ¥(x) = Uy(x)e™ siempre que ¥y(x) satisfaga la Ec. HoWo(x) = EVy(x). Asi de

(5.3.8) tenemos que:

he (5.3.13)

Por lo tanto,

e e
’y(x)—%j{CA-dl—%/S(VxA)-dS

€ (&
—— [ B.-dS=—dn. 5.3.14
he Jg he © ( )

donde hemos considerado una integral cerrada porque el mismo efecto lo requiere, ademas
de aplicar el teorema de Stokes. De la Ec. (5.3.14) tenemos que ®p es el flujo a través del

solenoide. Por lo tanto, el patrén de interferencia se desplaza hacia arriba en una cantidad

L\ LA e

El efecto neto es que la presencia del solenoide causa un desplazamiento en el patron de

interferencia, a pesar de que los electrones solo se mueven a través de regiones donde no hay

campo magnético.
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5.3.2. Relacion entre la fase cuantica y la topologia

La expresion fundamental para la fase adquirida obtenida mediante la ecuacién de Schrodin-
ger [ver Ec. (5.3.14)], revela una conexién profunda entre la mecdnica cudntica y la geo-
metria del espacio. Esta relacién cuantitativa, que muestra la dependencia directa con el
flujo magnético ® g, adquiere su pleno significado al examinar las propiedades del potencial
vectorial en la region exterior al solenoide.

En coordenadas cilindricas, el potencial A presenta una componente ¢ no nula tanto

dentro como fuera del solenoide:

Br

= dentro del solenoide.

Ay =
BR?

5> fuera del solenoide.

Esta configuracién genera un campo magnético B puramente axial dentro del solenoide,
mientras que en el exterior se cumple exactamente B = 0, sin embargo, A # 0, por lo que
el vacio tiene una estructura. Dado que V x A = 0, podemos escribir A = Vyx para alguna
funcion y. Fuera del solenoide, esta funciéon toma la forma:

_ BR?
)

X ®.

La funcién x no es univaluada, ya que aumenta en mR?B cuando ¢ — ¢ + 27, es decir:
cada vuelta completa alrededor del solenoide incrementa y en 7R2B, cantidad directamente
proporcional al flujo magnético encerrado.

Las funciones regulares no univaluadas como y solo pueden existir en espacios no simple-
mente conexos. Un espacio simplemente conexo es aquel en el que todas las curvas cerradas
pueden contraerse continuamente a un punto. El espacio relevante en este problema es el
espacio del vacio, es decir, el espacio fuera del solenoide, y este no es simplemente conexo.
Esta caracteristica topoldgica se manifiesta fisicamente en la fase y(x) de la Ec. (5.3.14),
que resulta ser sensible al nimero de vueltas que la trayectoria del electréon da alrededor del
solenoide.

La invariancia de norma del efecto queda garantizada por la naturaleza cerrada de la

integral en la Ec. (5.3.14), que solo depende del flujo ®p a través del solenoide.
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Capitulo 6

Conclusiones

En este trabajo, se ha obtenido el mismo resultado para el efecto Aharonov-Bohm (A-
B) mediante dos enfoques distintos: la formulacién de integrales de trayectoria de Feynman
y la resolucién de la ecuacion de Schrodinger considerando la interaccién con el campo
magnético B. Este resultado, representado en las ecuaciones (4.2.6) y (5.3.14), no solo valida
la consistencia de ambos métodos, sino que también resalta la profundidad y coherencia de
la mecanica cuantica.

La formulacién de Feynman proporciona una perspectiva particularmente esclarecedora
del efecto A-B, mostrando que surge de la interferencia entre las fases acumuladas por las
particulas al recorrer diferentes trayectorias alrededor de una regiéon con potencial vectorial
A +# 0. Este enfoque subraya la necesidad de considerar todas las trayectorias posibles,
pues el cambio de patron no se puede explicar sin considerar todas las trayectorias y la fase
que cada una acumula, ofreciendo una interpretacion geométrica del efecto en la que la fase
cuantica estd intrinsecamente ligada a la topologia del espacio.

Por otro lado, al resolver la ecuacién de Schrodinger, el efecto A-B se manifiesta a través
del acoplamiento minimo, donde el potencial vectorial A modifica el momento cinematico
de la particula y, como se observo en el capitulo 5, la ecuacién de Schrodinger en presencia
de B se extendié a tal punto que se tuvo que desarrollar detalladamente para justificar la
expresion que nos lleva al efecto. Este enfoque demuestra que la ecuacion de Schrodinger es
invariante bajo transformaciones de norma, lo que implica que el efecto observable depende

tinicamente de cantidades invariantes de norma, como la integral de linea ¢ A - dl. Esta
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invariancia de norma es crucial para entender por qué el potencial vectorial, y no solo los
campos electromagnéticos, desempena un papel fundamental en la mecanica cuantica. En el
lenguaje de la teoria de grupos, las transformaciones de norma corresponden a acciones del
grupo de norma U(1)!, y la invariancia bajo estas transformaciones refleja la simetria del
sistema.

Un aspecto intrigante del efecto A-B es su relacion con la localidad. En su articulo
Significance of Electromagnetic Potentials in the Quantum Theory [1], Aharonov y Bohm
argumentaron que los potenciales electromagnéticos tienen un significado fisico mas profundo
en la teoria cuantica que los propios campos. Esto sugiere que, en el contexto cuantico,
los potenciales no son meros artificios matemaéticos, sino entidades fisicas con las que las
particulas interactuan directamente. En el caso del efecto A-B, el potencial vectorial A
adquiere un significado fisico tangible, ya que es el inico concepto con el que las particulas
parecen interactuar. Sin embargo, esta interpretacién no esta exenta de controversia ya que
al aplicar el teorema de Stokes a la ecuacién (5.3.14), se observa que la particula también
puede interactuar indirectamente con el campo B dentro del solenoide, lo que cuestiona la
idea de localidad estricta y ofrece una perspectiva alternativa sobre el fenémeno.

El efecto A-B nos obliga a reinterpretar el espacio no como un simple fondo vacio, sino
como una estructura con propiedades topoldgicas relevantes: el hecho de que una particula
cargada pueda adquirir una fase observable al rodear una regién inaccesible con campo
magnético (como el interior de un solenoide) implica que el espacio tiene una topologia no
trivial (no es simplemente conexo) ya que permite la existencia de lazos cerrados que no
pueden deformarse continuamente a un punto sin cruzar la regién prohibida. Esto muestra
que el vacio, lejos de ser trivial, tiene una estructura matematica rica que afecta directamente
al comportamiento cuantico de las particulas, y que la electrodinamica, al ser una teoria de
norma, es sensible no solo a la curvatura local (el campo electromagnético), sino también a
las propiedades globales del espacio, codificadas en la holonomia del cuadri potencial A,.

El efecto A-B no solo es fundamental en la comprensién de los fenémenos cuanticos

asociados a potenciales electromagnéticos, sino que también constituye la base tecnolégica de

'El grupo de norma U(1) describe transformaciones de fase locales en electrodindmica cudntica, y es la

simetria de norma detras del electromagnetismo.
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dispositivos como los SQUID “s (superconducting quantum interference devices), empleados
en la medicién precisa de flujos magnéticos [7, 30]. Ademads, una revisién de este efecto
resulta esencial como preludio al estudio de su generalizacién no Abeliana [31], donde entran
en juego teorias de Yang-Mills [32, 33]. En anos recientes, el efecto A-B ha cobrado relevancia
en el estudio de materiales de baja dimensién (como el grafeno) y sistemas con propiedades
topoldgicas, abriendo nuevas perspectivas en materia condensada [35, 36]. Estos avances
reflejan la vigencia del efecto A-B como puente entre la teoria cudntica fundamental y sus
aplicaciones en sistemas fisicos complejos.

Debemos comentar también que, cuando tratamos de eliminar los potenciales en teoria
clésica y cuantica de campos (para manejar cantidades invariantes de norma) nos encon-
tramos con ciertos obstaculos que impiden un tratamiento claro y consistente, como en el
estudio de la relatividad general [42] y las teorias de Yang-Mills [43]. Otro enfoque que per-
mitirfa el tratamiento con cantidades invariantes de norma (fisicos) serfa el uso del grupo
extendido de lazos; sin embargo, su estudio es incompleto (aun) [7].

Finalmente, el hecho de que ambos enfoques conduzcan al mismo resultado refuerza la
coherencia interna de la mecanica cuantica. Este trabajo no solo confirma la validez de
ambas formulaciones, sino que también profundiza en la comprensién del efecto A-B, un
fenémeno que continua desafiando nuestra intuicién y enriqueciendo nuestra comprensién de

la interaccion entre la mecanica cuantica y el electromagnetismo.
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Apéndice A
El oscilador armodnico simple

El oscilador armonico simple es uno de los problemas mas importantes en mecanica
cuantica. No sélo ilustra muchos de los conceptos béasicos y métodos de la mecénica cuanti-
ca, sino que ademas tiene un gran valor practico. Esencialmente, cualquier pozo de potencial
puede aproximarse mediante un oscilador armdnico simple, por lo que describe fenémenos
que van desde vibraciones moleculares hasta la estructura nuclear. Ademéas, dado que el
Hamiltoniano es basicamente la suma de los cuadrados de dos variables canénicamente con-
jugadas, constituye también un punto de partida importante para gran parte de la teoria

cuantica de campos.

A.1. Eigenkets y eigenvalores de energia

Comenzamos nuestro analisis con el elegante método de operadores de Dirac, basado en
trabajos previos de M. Born y N. Wiener, para determinar los eigenkets de energia (esta-
dos propios) y los eigenvalores de energia del oscilador arménico simple. El hamiltoniano
fundamental es:

I TR

H=— 4+ — Al.1
2m—|—2mwx, ( )

donde w representa la frecuencia angular del oscilador clasico, relacionada con la constante
elastica k (Ley de Hooke) mediante w = \/k/m. Los operadores posicién = y momento p

son, evidentemente, hermitianos.
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Resulta conveniente introducir dos operadores no hermitianos:

o jmw p
a= ”_Qii (:c—l— _mw> , (A.1.2)
I LT GV
a o7 (w mw)’ (A.1.3)

denominados respectivamente operador de aniquilacién y operador de creacion. Uti-

lizando las relaciones de conmutacion canénicas, obtenemos directamente:

[mm:(%gcw@m+me:L (A.1.4)

Definimos ademas el operador nimero:
N = a'a, (A.1.5)

que es claramente hermitiano. Un cédlculo directo muestra que:

2

fa= (M) (24 2 SN I R
a'a (2h>(x+ )+2h[a€,p] 5 (A.1.6)

m2w?

Por lo tanto, tenemos una relaciéon importante entre el operador nimero y el operador ha-

miltoniano:

H:M(N+9, (A.1.7)

Dado que H es una funcién lineal de N, N puede diagonalizarse simultaneamente con H.

Denotamos un autoestado de energia de N por su eigenvalor n, asi:
N|n) = n|n). (A.1.8)
Debido a la Ec. (A.1.7) tenemos:
1
H|n) = <n+ 5) huw|n), (A.1.9)
lo que significa que los eigenvalores de energia estan dados por:
1
E, = (n + 5) hw. (A.1.10)
Para apreciar el significado fisico de a, a’ y N, primero observemos que
[N,a] = [a'a,a] = a'[a,a] + [a!, ala = —a, (A.1.11)
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donde hemos usado (A.1.4). De manera similar, podemos derivar

[N,a'] = a. (A.1.12)
Como resultado, tenemos
Na'ln) = ([N, a'] + at N)|n) = (n + 1)a'|n), (A.1.13)
y
Naln) = ([N, a] + aN)[n) = (n — 1)a|n). (A.1.14)

Estas relaciones implican que af|n) (a|n)) es también un eigenestado de N con valor propio
incrementado (decrementado) en uno. Dado que el aumento (disminucién) de n en uno equi-
vale a la creacién (aniquilacién) de una unidad cudntica de energia fw, el término operador
de creacion (operador de aniquilacién) para a' (a) es apropiado.

La ecuacién (A.1.14) implica que a|n) y |n — 1) son iguales salvo por una constante
multiplicativa. Escribimos

alny = c|n — 1), (A.1.15)

donde ¢ es una constante numérica que debe determinarse a partir del requisito de que tanto

|n) como |n — 1) estén normalizados. Primero, observamos que
(n|a’aln) = |c|*. (A.1.16)

Podemos evaluar el lado izquierdo de (A.1.16) observando que a'a es el operador ntimero,
por lo que

n = |c| (A.1.17)
Tomando ¢ como real y positivo por convencion, finalmente obtenemos
aln) = /nln — 1). (A.1.18)
De manera similar, es facil mostrar que
a'ln) = vn + 1|n + 1). (A.1.19)
Supongamos que seguimos aplicando el operador de aniquilacién a a ambos lados de (A.1.18):
a®ln) = /n(n —1)|n — 2), (A.1.20)
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a|n) = v/n(n — 1)(n — 2)|n — 3), (A.1.21)
: (A.1.22)

Podemos obtener eigenestados del operador niimero con valores de n cada vez méas pequenos
hasta que la secuencia termine, lo que debe ocurrir siempre que comencemos con un entero
positivo n. Podria argumentarse que si comenzamos con un n no entero, la secuencia no

terminaria, llevando a eigenestados con valores negativos de n. Pero también tenemos
n = (n|Nn) = ((na)" . (aln)) >0, (A.1.23)

lo que implica que n nunca puede ser negativo. Por lo tanto, concluimos que la secuencia
debe terminar con n = 0 y que los valores permitidos de n son enteros no negativos.
Como el valor mas pequeno posible de n es cero, el estado fundamental del oscilador

armoénico tiene

Ahora podemos aplicar sucesivamente el operador de creacién a' al estado fundamental |0).

Usando (A.1.19), obtenemos:

1) = a'|0), (A.1.25)
2) = <%) 1) = {(f/g} 0), (A.1.26)
3) = (3—;) 2) = {(%] 0), (A1.27)

(A.1.28)

CLJr "
In) = [( ) ]|0>, (A.1.29)

De esta manera hemos logrado construir eigenestados simultaneos de N y H con eigen-

valores de energia:

2
A partir de (A.1.18), (A.1.19) y el requisito de ortonormalidad para {|n)}, obtenemos los

1
E, = (n+—> hw (n=0,1,2,3,...). (A.1.30)

elementos de la matriz:

(n'|aln) = Vo n_1, (n'|a’n) = Vn+ 10, ni1. (A.1.31)
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Usando estos resultados junto con

h

2mw

(a+ad"), p=i @(—a—kcﬂ), (A.1.32)

xr =

derivamos los elementos de matriz de los operadores x y p:
[ h
(n'|x|n> = m(\/ﬁ(sn/m_l +Vvn—+ 15n’,n+1)a (A133)
, . [mhw
(n'|p|n) =i T(_\/ﬁén/’n_l + vV + 10, nt1)- (A.1.34)

El método de operadores también puede usarse para obtener las eigenfunciones de energia

en el espacio de posiciones. Comencemos con el estado fundamental definido por

al0) = 0, (A.1.35)
que, en la representacion de x, se lee:
' _ P —
(2'|al0) = 57 (| (x + mw> |0y = 0. (A.1.36)

Podemos considerar esto como una ecuacién diferencial para la funcion de onda del estado

fundamental (z’|0):

d
donde hemos introducido
h
To =1/ —, (A.1.38)
mw

que establece la escala de longitud del oscilador. Vemos que la soluciéon normalizada a la ec.
1

(A.1.37) es 2
- e —% (:%) ] | (A.1.39)

También podemos obtener las eigenfunciones de energia para estados excitados evaluando:

(2/|1) = (2/]al]0) = <\/;x0> <x —x%%) (2/]0), (A.1.40)

('|0)

)(f\(&)ﬂ@:(%) <\/;x0>2(x/—xgé>2<x’]0>, (ALl
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En general, obtenemos:

(/) = (ijm) (ngm) (x —xg%)nexp [—% <§—0>1 | (A.1.42)

Es instructivo examinar los valores esperados de 2% y p? para el estado fundamental.

Primero, notemos que:

rt = (a4 (a1 4 dla+ aa), (A1.43

Cuando tomamos el valor esperado de %, s6lo el dltimo término en (A.1.43) aporta una

contribucién no nula:

h x3
N=— =2, A.1.44
(@) =5 —=7 ( )
[gualmente,
hew
v = "5 (A.1.45)

Se tiene asi que los valores esperados de las energias cinética y potencial son, respectivamente:

<p_2> _hw _(H) <m“2x2>:@:@ (A.1.46)

2m 4 2 2 4 27
como se espera del teorema del virial. De (A.1.33) y (A.1.34), sigue que:

(z) = (p) =0, (A.1.47)
lo que también se cumple para los estados excitados. Por lo tanto, tenemos:

(A = @) = 5, {(B0)) = %) = "2,

= , A.1.48
2mw ( )
y vemos que la relacién de incertidumbre se satisface en la forma de producto minimo de

incertidumbre:
h2

(Ax))(Ap)) = 7 (A.1.49)

Esto no es sorprendente porque la funcién de onda del estado fundamental tiene forma gaus-

siana. En contraste, los productos de incertidumbre para los estados excitados son mayores:

(dap) @) = (n+3) (A.150)
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A.2. Evolucion temporal del oscilador

Hasta ahora no hemos discutido la evolucién temporal de los kets de estado del oscilador
o de observables como z y p. Todo lo que hemos hecho se supone que es valido en algin
instante de tiempo, digamos en t = 0; los operadores z, p, a y al deben considerarse ya sea
como operadores en la imagen de Schrodinger (para todo t) o como operadores en la imagen
de Heisenberg en ¢t = 0. En la parte restante de esta seccién, trabajaremos exclusivamente en
la imagen de Heisenberg, lo que significa que z, p, a y a' son todos dependientes del tiempo
aunque no escribamos explicitamente ) (t), etcétera.

Las ecuaciones de movimiento de Heisenberg para p y x son, de la Ec. (1.2.24) y la Ec.

(1.2.25):

dp _ 2

o = W, (A.2.1)
y

de p

E — E. (A.2.2)

Este par de ecuaciones diferenciales acopladas es equivalente a dos ecuaciones diferenciales

no acopladas para a y a', a saber:

da mw [ p ) )
i V% (E - zwx) = —iwa, (A.2.3)

dat

E = iwaT, (A24)

cuyas soluciones son:

Q
S
~
SN—
I

a(0) exp(—iwt), (A.2.5)
a'(t) = a'(0) exp(iwt). (A.2.6)
Estas relaciones muestran explicitamente que N y H son operadores independientes del tiem-

po incluso en la imagen de Heisenberg, como debe ser. En términos de = y p, podemos

reescribir (A.2.5) y (A.2.6) como:

z(t) + ip(t) = x(0) exp(—iwt) + i []%] exp(—iwt), (A.2.7)

mw
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= 2(0) exp(iwt) — i {%] exp(iwt). (A.2.8)

[gualando las partes hermitianas y anti-hermitianas de ambos lados por separado, deducimos:

z(t) = x(0) coswt + [%] sinwt, (A.2.9)
y
p(t) = —mwz(0) sinwt 4 p(0) cos wt. (A.2.10)

Estas ecuaciones son idénticas a las ecuaciones clasicas de movimiento. Vemos asi que los
operadores x y p “oscilan” exactamente como sus analogos clasicos.

De (A.2.9) y (A.2.10), uno podria tentarse a concluir que (z) y (p) siempre oscilan
con frecuencia angular w. Sin embargo, esta inferencia no es correcta. Tomemos cualquier
eigenestado de energfa caracterizado por un valor definido de n; el valor esperado (n|z(t)|n)
se anula porque los operadores z(0) y p(0) cambian n por +1, y |n) y |[n£1) son ortogonales.

Para observar oscilaciones que recuerden al oscilador clasico, debemos considerar una

superposicion de eigenestados de energia como:
|a) = ¢o|0) + ¢1|1). (A.2.11)

El valor esperado de x(t) tomado con respecto a (A.2.11) sf oscila.

Hemos visto que un eigenestado de energia no se comporta como el oscilador clasico —
en el sentido de valores esperados oscilantes para x y p — no importa cuan grande sea n.
Légicamente podemos preguntar: ;Como podemos construir una superposicién de eigenes-
tados de energia que imite mas de cerca al oscilador clasico? En lenguaje de funciones de
onda, queremos un paquete de ondas que oscile sin dispersarse en forma. Resulta que un
estado coherente definido por la ecuacién de eigenvalores para el operador de aniquilacién
no-hermitiano a:

al\) = AN, (A.2.12)

con, en general, un eigenvalor complejo A\, cumple este propdsito. El estado coherente tiene

muchas otras propiedades notables:
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1. Cuando se expresa como superposicién de eigenestados de energia (o de N):

A) =D f(n)ln), (A.2.13)

la distribucién de |f(n)]* con respecto a n es de tipo Poisson alrededor de algtin valor

medio 7:

AT

0 = (%) expl-m), e

2. Puede obtenerse trasladando el estado fundamental del oscilador por alguna distancia

finita.

3. Satisface la relacion de producto minimo de incertidumbre en todo tiempo.
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Apéndice B

La ecuacion de onda de Schrodinger

B.1. La ecuaciéon de onda dependiente del tiempo

Regresamos ahora hacia la imagen de Schrodinger y examinamos la evolucion temporal
en la representacién de x. En otras palabras, nuestra tarea es estudiar el comportamiento de

la funcién de onda

U(x, 1) = (x']a, to; 1) (B.1.1)

como funcién del tiempo, donde |, t; t) es un ket de estado en la imagen de Schrodinger en
el tiempo t, y (2/| es un eigenbra de posicién independiente del tiempo con valor propio x'.
El operador Hamiltoniano se toma como:

H= P + V(x) (B.1.2)

2m

El potencial V(x) es un operador hermitiano; ademés, es local en el sentido que en la repre-

sentacion de z tenemos:

X'V(x)x) =VE)ix —x") (B.1.3)

donde V' (x’) es una funcién real de x'.

Ahora derivamos la ecuacién de onda dependiente del tiempo de Schrodinger. Primero
escribimos la ecuacién de Schrodinger para un ket de estado (1.1.21) en la representacion de
x:

ih%(x’\a,tmﬂ = (X'|H|a, to; t) (B.1.4)
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donde hemos usado el hecho de que los eigenbras de posicién en la imagen de Schrodinger
no cambian con el tiempo. También podemos escribir la contribucién de la energia cinética
al lado derecho de (B.1.4) como:
2

% p
2m

h2
a,to;t> = — <%> V2 |a, to; ) (B.1.5)
Para V(x), simplemente usamos
X V(x) = XV,

donde V' (x’) ya no es un operador. Combinando todo, deducimos:

L0, K2 o o
’LFL§<X |Oé,t0§ t> = - (%) \V4 2<X |a,t0; t> + V(X )(x |a’ to; t>’ (B.l.ﬁ)

que reconocemos como la ecuacion de onda dependiente del tiempo de E. Schrodinger, usual-

mente escrita como:

ih%\ll(x’,t) == (;—m) V2U(x, t) + V(X)X 1) (B.1.7)

La mecénica cudntica basada en la ecuacién de onda (B.1.7) se conoce como mecdnica

ondulatoria.

B.2. La ecuacion de onda independiente del tiempo

Ahora derivamos la ecuacién diferencial parcial satisfecha por las eigenfunciones de
energfa. La dependencia temporal de un estado estacionario estd dada por exp(—iFEyt/h).

Esto nos permite escribir su funciéon de onda como:

— 1Bt
(x|, to: ) = (x|) exp ( " ) | (B2.1)

donde se entiende que inicialmente el sistema se prepara en un eigenestado simultdaneo de A
y H con eigenvalores a’ y FE,/, respectivamente. Sustituyamos ahora (B.2.1) en la ecuacién

de Schrodinger dependiente del tiempo (B.1.6). Esto nos lleva a:

_ (%) v/2<xl|a/> + V(X’)(X’|a/> — Ea/<xl|al>‘ (B.2.2)
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Esta ecuacién diferencial parcial es satisfecha por la eigenfuncién de energia (x’|a’) con eigen-
valor de energia E,/. En realidad, en la mecanica ondulatoria donde el operador hamiltoniano
se da como funcién de x y p, como en (B.1.2), no es necesario referirse explicitamente al
observable A que conmuta con H, porque siempre podemos elegir A como aquella funcién de
los observables x y p que coincide con H mismo. Por lo tanto, podemos omitir la referencia
a oy simplemente escribir (B.2.2) como la ecuacién diferencial parcial que debe satisfacer
la eigenfuncién de energia ug(x'):

B (Qh_m> V2up(x) + V(x)up(x) = Bug(x). (B.2.3)

Esta es la ecuacion de onda independiente del tiempo de E. Schrodinger, anunciada
en la primera de cuatro monumentales publicaciones, todas escritas en la primera mitad de

1926, que sentaron los fundamentos de la mecénica ondulatoria.

B.3. Interpretaciones de la funcién de onda

La interpretacién probabilistica de |¥|* se deduce del hecho de que (x|a,tg;t) debe
considerarse como un coeficiente de expansién de |a, t;t) en términos de los eigenkets de

posicién {|x’)}. La cantidad p(x’,t) definida por
P ) = [B(, 1) = | (] o )2 (B3.1)

se considera por tanto como la densidad de probabilidad en la mecanica ondulatoria.
Especificamente, cuando usamos un detector que comprueba la presencia de la particula
dentro de un pequenio elemento de volumen d3x’ alrededor de x/, la probabilidad de registrar
un resultado positivo en el tiempo ¢ viene dada por p(x’, t)d>x’.

En el resto de esta seccion usaremos x en lugar de x’ ya que el operador posiciéon no
aparecera. Usando la ecuacién de onda dependiente del tiempo de Schrodinger, es directo

derivar la ecuacién de continuidad

0 .
E + Vv )= 0, (B32)
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donde p(x, t) representa |¥|? como antes, y j(x, t), conocido como el flujo de probabilidad,

viene dado por

i) = — (;—h) VT — (V)] = (ﬁ) (T VD). (B.3.3)

m m

La realidad del potencial V' (o la hermiticidad del operador V') ha jugado un papel crucial
en la obtencion de este resultado. Por el contrario, un potencial complejo puede dar cuenta
fenomenolégicamente de la desaparicion de una particula; tal potencial se usa a menudo para
reacciones nucleares donde particulas incidentes son absorbidas por nicleos. Podemos intuir
que el flujo de probabilidad j esta relacionado con el momento. Esto es efectivamente cierto

para j integrado sobre todo el espacio. De (B.3.3) obtenemos:
Prj(x,1) = P B.3.4
[ ity =2, (B.3.4)

donde (p); es el valor esperado del operador momento en el tiempo t¢. La ecuacion (B.3.2)
recuerda a la ecuacién de continuidad en dinamica de fluidos que caracteriza el flujo hi-
drodinamico en una region sin fuentes ni sumideros. Historicamente, Schrodinger interpretd
inicialmente |¥|? como la densidad de materia real, o e|¥|? como la densidad de carga eléctri-
ca real. Sin embargo, adoptar esta vision conduce a consecuencias paraddjicas.

Un argumento tipico para una medicion de posicion podria ser: Un electrén atémico se
considera como una distribucién continua de materia que llena una region finita alrededor del
nucleo; sin embargo, al realizar una medicién que localiza el electréon en un punto especifico,
esta distribucién continua colapsa abruptamente a una particula puntual sin extension espa-
cial. La interpretacion estadistica més satisfactoria de |¥|? como densidad de probabilidad
fue propuesta por primera vez por M. Born.

Para entender el significado fisico de la funcién de onda, escribamosla como:

U(x,t) =/ p(x,t)exp {iS(;{, t)} : (B.3.5)

con S real y p > 0, lo que siempre es posible para cualquier funcién compleja de x y ¢. El

significado de p ya se ha dado. ;Cudl es la interpretacién fisica de S?7 Notando que:

1

TV = /pV (V) + ( h) VS, (B.3.6)
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podemos escribir el flujo de probabilidad [ver la ec. (B.3.3)] como:

. pVS
=02

— (B.3.7)

Vemos ahora que la funcién de onda contiene mas informacion que el simple hecho de que
|U|? sea la densidad de probabilidad; el gradiente de la fase S contiene informacién crucial.
De (B.3.7) observamos que la variacion espacial de la fase de la funcién de onda caracteriza
el flujo de probabilidad: cuanto mas fuerte es la variacion de fase, mas intenso es el flujo.
La direccion de j en un punto x es normal a la superficie de fase constante que pasa por ese

punto. En el caso particularmente simple de una onda plana (eigenfuncién del momento):

- it
U(x,t) ox exp pox 2t , (B.3.8)
h h
donde p representa el eigenvalor del operador momento. Esto es evidente porque:
VS =p. (B.3.9)
De manera méas general, resulta tentador definir %S como un tipo de “velocidad”
S
"' = V—, (B.3.10)
m
y escribir la ecuacién de continuidad (B.3.2) como:
0
a_f + V . (p”v”) = 07 (B311)

al igual que en dindmica de fluidos. Sin embargo, es erréneo plantear una interpretacién
demasiado literal de j como p multiplicado por una velocidad definida en cada punto del
espacio, ya que una mediciéon simultanea precisa de posiciéon y velocidad necesariamente

violaria el principio de incertidumbre.
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