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UNA REVISIÓN DEL EFECTO AHARONOV-BOHM (À LA
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DIRECTOR DE TESIS:

DR. RICARDO ROSAS RODRÍGUEZ
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Resumen

El efecto Aharonov-Bohm (A-B) [1] muestra dramáticamente que en la teoŕıa cuántica

los potenciales escalar (ϕ) y vectorial (A) [i.e., el cuadripotencial Aµ = (ϕ,A)] adquieren

significado f́ısico, a diferencia del electromagnetismo clásico, donde éstos se introducen sólo

como entes matemáticos para facilitar la descripción de los campos reales eléctrico (E) y

magnético (B). El efecto fue verificado experimentalmente por primera vez por Chambers

[2].

En este trabajo revisaremos el efecto A-B de dos maneras. La primera es en la forma tra-

dicional, por medio de integrales de trayectoria de Feynman, la cual siguen muchos textos,

como Sakurai [3] por ejemplo. La segunda, y la cual es el resultado de este trabajo, se basa

en resolver directamente la ecuación de Schrödinger. En algunos textos (como Arfken [4]

y Ryder [5]) es común que se proporcione la función de onda solución sin ninguna expli-

cación de cómo se obtiene (sólo se sustituye y satisface la ecuación); aqúı la construimos

expĺıcitamente.
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Abstract

The Aharonov-Bohm (A-B) effect [1] demonstrates that within quantum theory, the

scalar (ϕ) and vector (A) potentials [i.e., the four-potential Aµ = (ϕ,A)] acquire a physical

significance, in contrast to classical electromagnetism, where they are introduced merely as

mathematical entities to facilitate the description of the physical electric (E) and magnetic

(B) fields. The effect was first experimentally verified by Chambers [2].

In this work, we review the A-B effect in two distinct ways. The first is the traditional

approach, employing Feynman path integrals, as followed in many textbooks such as that by

Sakurai [3]. The second, which constitutes a result of the present work, is based on solving

the Schrödinger equation directly. In some texts (e.g., Arfken [4] and Ryder [5]), the solution

wavefunction is often provided without explanation of its derivation (it is merely verified by

substitution); herein, we construct it explicitly.
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Introducción

Considere una bateŕıa del tipo que usted encuentra en la tienda de la esquina. Las letras

sobre una bateŕıa t́ıpica AA establecen que proporciona electricidad a 1.5 Volts. Esto significa

que hay una diferencia de potencial de 1.5V entre las terminales de la bateŕıa (al menos

cuando la bateŕıa está en condiciones normales). En dichas condiciones, si cada terminal

está conectada con un alambre de cobre a una placa conductora y las placas están separadas

1 cm, entonces la bateŕıa dará lugar a un campo eléctrico de 1.5V/cm entre las placas. Pero,

¿cuál será el potencial en cada placa? ¿Estará la terminal positiva a un potencial de +1.5

V, y la negativa a cero? ¿Estará la positiva a cero y la negativa a -1.5V? ¿O qué sucede? Si

estas son preguntas vagas, como parecen ser, es porque tienen una presuposición falsa: que

hay algo como el valor absoluto del potencial eléctrico en un lugar, más allá de las diferencias

de potencial entre tal lugar y otros. Rechazando dicha presuposición, uno es libre de asignar

cualquier número real a una ubicación como su potencial eléctrico en volts, siempre que

uno considere las diferencias de potencial reales entre dicho lugar y otros cuando uno les

asigne potenciales eléctricos también. Las diferentes asignaciones estaŕıan relacionadas por

una simple transformación en el potencial eléctrico, la cual consiste en la adición del mismo

número real al potencial en cada punto. Siguiendo la iniciativa de Weyl, ha llegado a ser una

costumbre llamar a esto una transformación de norma [6].

Al parecer es un accidente histórico el que el término “Norma” 1 (Gauge, en inglés) se

aplique a las teoŕıas que sustentan al Modelo Estándar de Part́ıculas [5, 9, 10, 11]. El término

se originó como una traducción de la palabra alemana “eich”, la cual apareció por prime-

ra vez en el art́ıculo mencionado en el párrafo anterior de Herman Weyl en 1918. En dicho

1Algunos autores sudamericanos como Gambini y Pullin [7, 8] usan el término “calibre” en lugar de

“norma”.
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art́ıculo, publicado después de la Teoŕıa General de la Relatividad de Einstein [12, 13, 14, 15],

Weyl propone una teoŕıa unificada de gravedad y electromagnetismo, la cual resultó inade-

cuada. Las variables fundamentales de la teoŕıa eran la métrica del espacio-tiempo y el

potencial electromagnético. La teoŕıa es invariante bajo ciertas transformaciones lineales que

tienen que ver con un cambio en la escala de longitud y duraciones. El efecto de dichas

transformaciones sobre el potencial electromagnético simplemente heredó el nombre. En un

contexto completamente clásico [16, 17, 18], el electromagnetismo actúa sobre part́ıculas car-

gadas solamente a través de un campo electromagnético que da lugar a la fuerza de Lorentz

[F = e(E + v×B)]: el potencial electromagnético [Aµ = (ϕ,−A)] no tiene manifestaciones

independientes y parece mejor considerarlo como una estructura matemática superflua, en el

sentido de que no representa algo f́ısico [4, 19, 20, 21, 22]. Pero la situación es diferente en

el dominio cuántico. Los fenómenos tales como el efecto Aharonov-Bohm (A-B) propor-

cionan una ilustración real del hecho de que hay algo más para el electromagnetismo clásico

que sólo el campo. Los efectos del electromagnetismo sobre la fase de part́ıculas cargadas (y

el subsecuente comportamiento observable) que pasan a través de una región del espacio no

son siempre determinados completamente por el campo electromagnético en dicha región.

Como lo señalaron Aharonov y Bohm en su art́ıculo original de 1959 2 [1]: en el dominio

cuántico no es el campo B sino el potencial electromagnético mismo A el que parece dar

lugar a estos efectos.

La mecánica cuántica [3, 24, 25, 26, 27] predice que cuando un rayo de part́ıculas cargadas

ha pasado a través de una región del espacio en la cual no hay campo electromagnético, puede

producirse o alterarse el patrón de interferencia por la presencia de un campo magnético

estático. Esto fue confirmado experimentalmente por primera vez por Chambers en 1960

[2], y desde entonces ha sido demostrado repetidamente y de manera más convincente en

una serie de experimentos que incluye el trabajo de Tonomura et al en 1986 [28]; Peskin

y Tonomura proporcionaron en 1989 una revisión útil [29]. De acuerdo con la covarianza

de Lorentz, hay también un efecto Aharonov-Bohm eléctrico. El patrón de interferencia

producido por electrones que han pasado a través de una región en la cual no puede haber

campo electromagnético seŕıa diferente si el campo eléctrico fuera de dicha región se vaŕıa

2Esencialmente el mismo efecto fue discutido diez años antes por W. Ehrenberg y R. E. Siday [23].
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adecuadamente sin afectar el campo electromagnético experimentado por los electrones. Pero

este efecto es más dif́ıcil de demostrar experimentalmente. Más adelante daremos una breve

descripción del efecto A-B magnético en la cual se hace uso de un solenoide muy delgado y

muy largo. Este efecto es la base de la tecnoloǵıa de los SQUID´s (superconducting quantum

interference device) los cuales se usan hoy en d́ıa para medir flujos magnéticos de manera muy

precisa [7, 30]. Una revisión del efecto A-B es necesaria como un preludio para estudiar el

efecto A-B no Abeliano [31], donde son necesarias incluir teoŕıas de Yang-Mills [32, 33, 34],

además de que en años recientes se ha buscado estudiar la relación del efecto A-B con

materiales de baja dimensión (unidimensionales, bidimensionales o cuánticos puntuales) con

caracteŕısticas topológicas (grafeno, por ejemplo) y con la materia condensada [35, 36].

La mecánica cuántica, construida a partir de contribuciones fundamentales de f́ısicos como

Einstein, Planck, Dirac, Heisenberg, Schrödinger, entre otros, encuentra en este trabajo un

enfoque particular en dos formulaciones clave, la mecánica cuántica ondulatoria desarrollada

por Erwin Schrödinger en 1926, y las integrales de trayectoria introducidas por Richard

Feynman en 1948. El objetivo central de esta tesis es analizar el efecto Aharonov-Bohm

desde ambas perspectivas, con dos propósitos espećıficos: establecer si estas formulaciones

conducen a resultados equivalentes, y explorar interpretaciones f́ısicas y geométricas del

fenómeno, en particular el rol del potencial vectorial A.

Este trabajo está organizado de la siguiente manera. El primer caṕıtulo aborda la dinámi-

ca cuántica, centrándose en la evolución temporal de los sistemas cuánticos y la ecuación de

Schrödinger como herramienta fundamental para describir esta evolución. Se explican con-

ceptos clave como la diferencia entre la imagen de Schrödinger, donde los estados cuánticos

evolucionan con el tiempo, y la imagen de Heisenberg, donde son los operadores los que cam-

bian con éste. Además, se introduce la ecuación de movimiento de Heisenberg y se discuten

los kets de estado, las observables y las amplitudes de transición, que son esenciales para

entender cómo se relacionan estas dos imágenes.

El segundo caṕıtulo se enfoca en los propagadores y las integrales de trayectoria de

Feynman. Se explica el concepto de propagador en mecánica ondulatoria y su interpretación

como una amplitud de transición, el cual describe la probabilidad de que un sistema pase

de un estado a otro. Se introduce la idea de sumar sobre todas las trayectorias posibles que
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puede seguir un sistema, lo que lleva a la formulación de Feynman de la mecánica cuántica,

donde la probabilidad de transición se calcula integrando sobre todas las posibles historias

del sistema.

En el tercer caṕıtulo, se exploran los potenciales y las transformaciones de norma, con

un enfoque particular en los potenciales constantes y su impacto en la dinámica cuántica.

Además, se muestran de forma concisa las transformaciones de norma en el contexto del elec-

tromagnetismo, destacando su importancia para entender cómo los campos electromagnéticos

influyen en los sistemas cuánticos y cómo estas transformaciones afectan las ecuaciones que

describen dichos sistemas.

El cuarto caṕıtulo está dedicado al efecto Aharonov-Bohm, analizado desde la perspec-

tiva de la formulación de Feynman, en donde, considerando aspectos vistos en los caṕıtulos

anteriores, se deduce la expresión que describe este efecto puramente cuántico.

Finalmente, el quinto caṕıtulo aborda lo que es el núcleo de esta tesis, el efecto Aharonov-

Bohm desde la perspectiva de la ecuación de Schrödinger; en primer lugar se resuelve la

ecuación sin la presencia del solenoide para posteriormente considerar la presencia de éste y

cómo se crea una interacción campo-part́ıcula, llegando a una expresión que describa de la

misma manera el efecto A-B y que nos brinde una comprensión mejor y quizá más completa

del fenómeno.

En el último caṕıtulo se presentan las conclusiones y se desarrolla un análisis que refuerza

la idea de que los potenciales, y no sólo los campos, tienen un significado f́ısico profundo en

la mecánica cuántica, y proporciona una comprensión más completa de este efecto intrigan-

te, además de las diferentes aplicaciones que tiene este (efecto) en áreas como la geometŕıa

diferencial, la topoloǵıa y la teoŕıa de grupos.

Conceptos tales como topoloǵıa, grupo fundamental, holonomı́a, etc., se pueden revisar

en las referencias [37, 38].
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Planteamiento del problema

La idea general de este trabajo de tesis es hacer una revisión del efecto A-B a partir de

dos enfoques y notar que, en efecto, se obtienen los mismos resultados. El primer enfoque

es utilizando el método de integrales de trayectoria de Feynman [39]. El segundo enfoque es

comparar las soluciones de la ecuación de Schrödinger en presencia y ausencia de un campo

magnético B.

Justificación

Este trabajo de tesis está justificado porque hasta el momento no existe un estudio sis-

temático que aborde los dos puntos de vista del tratamiento del efecto A-B. Por ejemplo,

Sakurai [3] hace el estudio mediante integrales de trayectoria de Feynman y solamente men-

ciona que puede hacerse también mediante la ecuación de Schrödinger. Otra justificación de

esta revisión del efecto A-B es que es necesaria como un preludio para estudiar el efecto A-B

no Abeliano [31], donde son necesarias incluir teoŕıas de Yang-Mills [32, 33], y el cual al

parecer, tiene aplicaciones en cómputo cuántico [34], lo cual están desarrollando los páıses

más avanzados desde que Feynman propuso la posibilidad de construir una computadora de

este tipo [40].

Además de que en años recientes se ha buscado estudiar la relación del efecto A-B con

materiales de baja dimensión(unidimensionales, bidimensionales o cuánticos puntuales) con

caracteŕısticas topológicas (grafeno, por ejemplo) y con la materia condensada [35, 36].

Hipótesis

Partiremos del hecho de que existen dos enfoques para la explicación del efecto A-B, el

de comparar soluciones de la ecuación de Schrödinger y el de integrales de trayectoria de

Feynman. En base a lo anterior veremos que ambos enfoques conducen al mismo resultado.

5



Objetivo General

El objetivo general es verificar que los dos enfoques mencionados (à la Schrödinger y

à la Feynman) conducen al mismo efecto A-B, donde se deduce que a nivel cuántico es

el potencial vectorial magnético (A) quien juega un papel más fundamental que el propio

campo magnético (B).

Objetivos espećıficos

1. Revisar y desarrollar el primer enfoque mencionado (integrales de trayectoria de Feyn-

man).

2. Desarrollar el segundo enfoque mencionado (ecuación de Schrödinger) y mostrar que

conduce al mismo efecto A-B dado por el primer enfoque.

3. Lograr un mejor entendimiento de lo que realmente significa el potencial vectorial A.

Metas

Las metas son las siguientes:

1. Fortalecer conceptos vistos en mecánica cuántica y teoŕıa electromagnética.

2. Desarrollar conocimientos nuevos sobre la electrodinámica, geometŕıa diferencial, to-

poloǵıa y teoŕıa de grupos, los cuales son necesarios para la resolución del problema

propuesto.

3. Solucionar el problema propuesto (i.e., mostrar expĺıcitamente que tanto el enfoque de

Schrödinger como el de Feynman conducen al mismo efecto A-B).

4. Realizar la redacción, revisión y defensa de la tesis.
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Caṕıtulo 1

Dinámica cuántica

1.1. Evolución temporal y la ecuación de Schrödinger

En la mecánica cuántica, el tiempo es un parámetro, no un operador; no tiene sentido

hablar del operador de tiempo de la misma manera en que hablamos del operador de posición.

Irónicamente, en el desarrollo histórico de la mecánica ondulatoria, tanto L. de Broglie

como E. Schrödinger fueron guiados por una especie de analoǵıa covariante entre enerǵıa y

tiempo, por un lado, y momento y posición (coordenada espacial) por otro. Sin embargo,

cuando observamos la mecánica cuántica en su forma final, no hay rastro de un tratamiento

simétrico entre espacio y tiempo.

1.1.1. Operador de evolución temporal

¿Cómo cambia un ket de estado con el tiempo? Supongamos que tenemos un sistema

f́ısico cuyo ket de estado en t0 está representado por |α⟩. En tiempos posteriores, en ge-

neral, no esperamos que el sistema permanezca en el mismo estado |α⟩. Denotemos el ket

correspondiente al estado en algún momento posterior por:

|α, t0; t⟩, (t > t0), (1.1.1)

donde hemos escrito α, t0 para recordar que el sistema soĺıa estar en el estado |α⟩ en algún

tiempo de referencia anterior t0. Dado que se supone que el tiempo es un parámetro continuo,
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esperamos que

ĺım
t→t0

|α, t0; t⟩ = |α⟩, (1.1.2)

y también podemos usar una notación abreviada,

|α, t0; t0⟩ = |α, t0⟩. (1.1.3)

La idea básica es estudiar la evolución temporal de un ket de estado, es decir, cómo cambia

el ket de estado bajo un desplazamiento temporal t0 → t:

|α, t0⟩
evolución temporal−−−−−−−−−−→ |α, t⟩. (1.1.4)

Como en el caso de la traslación, los dos kets están relacionados por un operador al que

llamamos operador de evolución temporal U (t, t0):

|α, t0; t⟩ = U (t, t0)|α, t0⟩. (1.1.5)

Tenemos un par de propiedades que se deben atribuir al operador de evolución temporal:

1. La unitariedad,

U †(t, t0)U (t, t0) = 1. (1.1.6)

2. La propiedad de composición:

U (t2, t0) = U (t2, t1)U (t1, t0), (t2 > t1 > t0). (1.1.7)

Consideremos también un operador de evolución temporal infinitesimal U (t0 + dt, t0):

|α, t0; t0 + dt⟩ = U (t0 + dt, t0)|α, t0⟩, (1.1.8)

Debido a la continuidad [véase la ec. (1.1.2)], el operador infinitesimal de evolución temporal

debe reducirse al operador identidad cuando dt tiende a cero, i.e.,

ĺım
dt→0

U (t0 + dt, t0) = 1, (1.1.9)

y, al igual que en el caso de la traslación, esperamos que la diferencia entre U (t0 + dt, t0) y

1 sea de primer orden en dt.
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Suponemos que todos estos requisitos se satisfacen mediante

U (t0 + dt, t0) = 1− iΩdt, (1.1.10)

donde Ω es un operador hermitiano,

Ω† = Ω. (1.1.11)

Con la Ec. (1.1.10), el operador de desplazamiento temporal infinitesimal satisface la

propiedad de composición

U (t0 + dt1 + dt2, t0) = U (t0 + dt1 + dt2, t0 + dt1)U (t0 + dt1, t0), (1.1.12)

la cual difiere del operador identidad por un término de orden dt.

La propiedad de unitariedad también se puede verificar de la siguiente manera:

U †(t0 + dt, t0)U (t0 + dt, t0) = (1 + iΩ†dt)(1− iΩdt) ≈ 1, (1.1.13)

donde los términos de orden (dt)2 o superiores pueden despreciarse.

En la antigua teoŕıa cuántica se postula que la frecuencia angular ω está relacionada con

la enerǵıa mediante la relación de Planck-Einstein:

E = ℏω. (1.1.14)

donde ℏ = h
2π

es la constante de Dirac (h es la constante de Planck). Ahora, tomemos prestado

de la mecánica clásica la idea de que el Hamiltoniano es el generador de la evolución temporal

(Goldstein 2002 [17]). Entonces, es natural relacionar Ω con el operador Hamiltoniano H:

Ω =
H

ℏ
. (1.1.15)

Finalmente, el operador infinitesimal de evolución temporal se escribe como:

U (t0 + dt, t0) = 1− i

ℏ
Hdt, (1.1.16)

donde se supone que H, el operador Hamiltoniano, es hermitiano.
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1.1.2. La ecuación de Schrödinger

Ahora estamos en posición de derivar la ecuación diferencial fundamental para el operador

de evolución temporal U (t, t0). Usamos la propiedad de composición de U (t, t0) cambiando

t1 → t y t2 → t+ dt en la Ec. (1.1.7):

U (t+ dt, t0) = U (t+ dt, t)U (t, t0) =

(
1− i

ℏ
Hdt

)
U (t, t0), (1.1.17)

donde hemos usado, además, la igualdad (1.1.16).

Aśı,

U (t+ dt, t0)− U (t, t0) = − i

ℏ
HdtU (t, t0), (1.1.18)

lo cual se puede escribir en forma de ecuación diferencial:

∂

∂t
U (t, t0) = − i

ℏ
HU (t, t0). (1.1.19)

Esta es la ecuación de Schrödinger para el operador de evolución temporal.

Ahora, si multiplicamos ambos lados de la Ec. (1.1.19) por |α, t0⟩ a la derecha, obtenemos:

iℏ
∂

∂t
U (t, t0)|α, t0⟩ = HU (t, t0)|α, t0⟩. (1.1.20)

Pero |α, t0⟩ no depende de t, por lo que esto es equivalente a:

iℏ
∂

∂t
|α, t0; t⟩ = H|α, t0; t⟩, (1.1.21)

donde se ha utilizado la Ec. (1.1.5). Esta es la ecuación de Schrödinger para un ket de

estado.

1.2. La imagen de Schrödinger vs la imagen de Heisen-

berg

Previamente se introdujo el concepto de desarrollo temporal al considerar el operador de

evolución temporal que afecta a los kets de estado; este enfoque de la dinámica cuántica se

conoce como la imagen de Schrödinger. Existe otra formulación de la dinámica cuántica
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en la que los observables, en lugar de los ket de estado, vaŕıan con el tiempo; este segundo

enfoque se conoce como la imagen de Heisenberg.

1.2.1. Kets de estado y observables en las imágenes de Schrödin-

ger y Heisenberg

En la imagen de Schrödinger, los operadores correspondientes a observables como x, py

y Sz están fijos en el tiempo, mientras que los kets de estado vaŕıan con el tiempo. En

contraste, en la imagen de Heisenberg los operadores correspondientes a observables vaŕıan

con el tiempo; los kets de estado están fijos en lo que eran en t0. Es conveniente establecer

t0 en U (t, t0) como cero por simplicidad y trabajar con U (t), que se define por

U (t, t0 = 0) = U (t) = exp

(
−iHt

ℏ

)
. (1.2.1)

Definimos la observable en la imagen de Heisenberg por:

AH(t) = U †(t)ASU(t), (1.2.2)

donde los supeŕındices H y S representan Heisenberg y Schrödinger respectivamente.

En t = 0, la observable en la imagen de Heisenberg y la correspondiente observable en la

imagen de Schrödinger coinciden:

AH(t = 0) = AS. (1.2.3)

Los kets de estado también coinciden en las dos imágenes en t = 0; en tiempos posteriores,

el ket de estado en la imagen de Heisenberg está “congelado” en lo que era en t = 0:

|α, t0 = 0; t⟩H = |α, t0 = 0⟩, (1.2.4)

independiente de t. Esto contrasta con el ket de estado en la imagen de Schrödinger:

|α, t0 = 0; t⟩S = U (t)|α, t0 = 0⟩. (1.2.5)
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El valor esperado ⟨A⟩ es obviamente el mismo en ambas imágenes:

S⟨α, t0 = 0; t|AS|α, t0 = 0; t⟩S = ⟨α, t0 = 0|U †ASU |α, t0 = 0⟩

=H ⟨α, t0 = 0; t|AH(t)|α, t0 = 0; t⟩H . (1.2.6)

1.2.2. La ecuación de movimiento de Heisenberg

En lo que sigue suponemos que AS no depende expĺıcitamente del tiempo; al diferenciar

la ec. (1.2.2) obtenemos:

dAH

dt
=
∂U †

∂t
ASU + U †AS ∂U

∂t
= − i

ℏ
U †HU U †ASU +

i

ℏ
U †ASU U †HU , (1.2.7)

donde hemos usado [véase la Ec. (1.1.19)]

∂U t

∂t
= − i

ℏ
HU t, (1.2.8)

∂U t

∂t
= − i

ℏ
U †H. (1.2.9)

Dado que H fue introducido originalmente en la imagen de Schrödinger, podŕıamos estar

tentados a definir:

H(H) = U †HU . (1.2.10)

de acuerdo con (1.2.2). Pero en aplicaciones elementales donde U viene dado por (1.2.1), U

y H obviamente conmutan; como resultado,

U †HU = H, (1.2.11)

por lo que es correcto escribir la ec. (1.2.7) como

dA(H)

dt
=
i

ℏ
[A(H), H]. (1.2.12)

Esta ecuación se conoce como la ecuación de movimiento de Heisenberg (aunque fue

Dirac quién la derivó por primera vez).
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Es instructivo comparar la Ec. (1.2.12) con la ecuación de movimiento clásica en forma

de paréntesis de Poisson. En la f́ısica clásica, para una función A de q′s y p′s que no involucra

expĺıcitamente el tiempo, tenemos:

dA

dt
= [A,H]clásico. (2.2.20)

Nuevamente, vemos que la regla de cuantización de Dirac conduce a la ecuación correcta en

mecánica cuántica.

Para cantidades que poseen partes clásicas, la ecuación clásica correcta puede obtenerse

a partir de la ecuación mecánico-cuántica correspondiente a través del ansatz

[ , ]

iℏ
→ [ , ]clásico. (1.2.13)

En general, podemos decir que la mecánica clásica puede ser derivada de la mecánica cuántica

pero lo opuesto no es cierto.

1.2.3. Part́ıculas libres; el teorema de Ehrenfest

Tanto si trabajamos en la imagen de Schrödinger como en la de Heisenberg, para po-

der utilizar las ecuaciones de movimiento primero debemos aprender a construir el operador

Hamiltoniano apropiado. Para un sistema f́ısico con análogos clásicos, asumimos que el Ha-

miltoniano tiene la misma forma que en la f́ısica clásica; simplemente reemplazamos las

variables clásicas xi y pi por los correspondientes operadores en mecánica cuántica. Con este

supuesto, podemos reproducir las ecuaciones clásicas correctas en el ĺımite clásico.

Cuando surge una ambigüedad debido a observables que no conmutan, intentamos resol-

verla requiriendo que H sea hermitiano; por ejemplo, escribimos el análogo mecánico-cuánti-

co del producto clásico xp como 1
2
(xp + px). Cuando el sistema f́ısico en cuestión no tiene

análogos clásicos, solo podemos postular la estructura del operador Hamiltoniano. Proba-

mos varias formas hasta obtener el Hamiltoniano que produce resultados consistentes con

observaciones emṕıricas.

En aplicaciones prácticas, es frecuente necesitar evaluar el conmutador de xi (o pi) con
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funciones de xj y pj. Para este fin, son útiles las siguientes fórmulas:

[xi, F (p)] = iℏ
∂F

∂pi
, (1.2.14)

y

[pi, G(x)] = −iℏ∂G
∂xi

, (1.2.15)

donde F y G son funciones que pueden expandirse en potencias de pj y xj respectivamente.

Ahora estamos en condiciones de aplicar la ecuación de movimiento de Heisenberg a una

part́ıcula libre de masa m. Tomamos el Hamiltoniano con la misma forma que en mecánica

clásica:

H =
p2

2m
=

(p2x + p2y + p2z)

2m
. (1.2.16)

Vemos las observables pi y xi, las cuales entendemos como los operadores momento y posición

en la imagen de Heisenberg aunque omitimos el supeŕındice (H). Dado que pi conmuta con

cualquier función de pj
1, tenemos:

dpi
dt

=
1

iℏ
[pi, H] = 0. (1.2.17)

Por lo tanto, para una part́ıcula libre, el operador momento es una constante del movi-

miento, lo que significa que pi(t) es igual a pi(0) para todo tiempo. En general, es evidente

de la ecuación de movimiento de Heisenberg [Ec. (1.2.12)] que cuando A(H) conmuta con el

Hamiltoniano, A(H) es una constante del movimiento. Además,

dxi
dt

=
1

iℏ
[xi, H] =

pi(0)

m
=

1

iℏ
1

2m
iℏ

∂

∂pi

(
3∑

j=1

p2j

)
=
pi
m

=
pi(0)

m
, (1.2.18)

donde hemos aprovechado (1.2.14), por lo que obtenemos la solución:

xi(t) = xi(0) +

(
pi(0)

m

)
t, (1.2.19)

que recuerda la ecuación clásica de trayectoria para movimiento rectiĺıneo uniforme. Es

importante notar que, aunque se cumple:

1Recuerde que la relaciones de conmutación fundamentales son [xi, pj ] = iℏδij .
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[xi(0), xj(0)] = 0. (1.2.20)

para tiempos iguales, el conmutador de las xi’s en tiempos diferentes no se anula; espećıfi-

camente:

[xi(t), xi(0)] =

[
pi(0)t

m
, xi(0)

]
= −iℏt

m
. (1.2.21)

Aplicando la relación de incertidumbre a este conmutador, obtenemos:

⟨(∆xi)2⟩t⟨(∆xi)2⟩t=0 ≥
ℏ2t2

4m2
. (1.2.22)

Entre otras cosas, esta relación implica que incluso si la part́ıcula está bien localizada en

t = 0, su posición se vuelve cada vez más incierta con el tiempo, conclusión que también puede

obtenerse estudiando la evolución temporal de paquetes de onda en mecánica ondulatoria.

Ahora añadimos un potencial V (x) a nuestro Hamiltoniano de part́ıcula libre:

H =
p2

2m
+ V (x). (1.2.23)

Aqúı V (x) debe entenderse como función de los operadores x, y y z. Usando (1.2.15) obte-

nemos:
dpi
dt

=
1

iℏ
[pi, V (x)] = −∂V (x)

∂xi
. (1.2.24)

Por otro lado, vemos que:
dxi
dt

=
pi
m
, (1.2.25)

puesto que xi conmuta con el nuevo término V (x). Podemos usar nuevamente la ecuación

de movimiento de Heisenberg para deducir:

d2xi
dt2

=
1

iℏ

[
dxi
dt
,H

]
=
[pi
m
,H
]
=

1

m

dpi
dt
. (1.2.26)

Combinando esto con la ec. (1.2.24), obtenemos finalmente en forma vectorial:

m
d2x

dt2
= −∇V (x). (1.2.27)

Esta es la versión mecánico-cuántica de la segunda ley de Newton. Tomando los valores

esperados de ambos lados respecto a un ket de estado de Heisenberg que no evoluciona en

el tiempo, obtenemos:
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m
d2

dt2
⟨x⟩ = d⟨p⟩

dt
= −⟨∇V (x)⟩. (1.2.28)

Este resultado se conoce como el teorema de Ehrenfest, en honor a P. Ehrenfest, quien lo

derivó en 1927 usando el formalismo de la mecánica ondulatoria. Cuando el teorema se escribe

en esta forma de valores esperados, su validez es independiente de si usamos la imagen de

Heisenberg o la de Schrödinger; después de todo, los valores esperados son iguales en ambas

imágenes. En contraste, la forma operacional (1.2.27) solo tiene sentido si entendemos x y p

como operadores en la imagen de Heisenberg.

Notemos que en la Ec. (1.2.28) la ℏ ha desaparecido completamente. Por lo tanto, no

es sorprendente que el centro de un paquete de ondas se mueva como una part́ıcula clásica

sujeta a V (x).

1.2.4. Kets base y amplitudes de transición

Una concepción errónea sobre cómo evolucionan los kets base con el tiempo es pensar

que a medida que pasa el tiempo, todos los kets se mueven en la imagen de Schrödinger y

son estacionarios en la imagen de Heisenberg, lo cual no es propiamente correcto; el punto

importante es distinguir el comportamiento de los kets de estado del de los kets base.

Los eigenkets de observables deben usarse como kets base. ¿Qué sucede con el tiempo al

definir la ecuación de eigenvalores

A|a′⟩ = a′|a′⟩? (1.2.29)

En la imagen de Schrödinger, A no cambia, por lo que los kets base, obtenidos como soluciones

a esta ecuación de eigenvalores en t = 0, por ejemplo, deben permanecer sin cambios. A

diferencia de los kets de estado, los kets base no cambian en la imagen de Schrödinger.

La situación es muy diferente en la imagen de Heisenberg, donde la ecuación de eigenva-

lores que debemos estudiar es para el operador dependiente del tiempo:

AH(t) = U †A(0)U . (1.2.30)

A partir de la Ec. (1.2.29) evaluado en t = 0, cuando ambas imágenes coinciden, deducimos
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U †A(0)U U †|a′⟩ = a′U †|a′⟩. (1.2.31)

lo que implica una ecuación de eigenvalores para AH :

AH(U †|a′⟩) = a′(U †|a′⟩). (1.2.32)

Si seguimos manteniendo la visión de que los eigenkets de observables forman los kets base,

entonces {U (t)|a′⟩} deben usarse como kets base en la imagen de Heisenberg. A medida que

pasa el tiempo, los kets base en la imagen de Heisenberg, denotados por |a′, t⟩H , se mueven

de la siguiente manera:

|a′, t⟩H = U †|a′⟩. (1.2.33)

Debido a la aparición de U † en lugar de U en (1.2.33), los kets base en la imagen de Hei-

senberg giran en sentido opuesto en comparación con los kets de estado en la imagen de

Schrödinger; espećıficamente, |a′, t⟩H satisface la “ecuación de Schrödinger con signo inver-

tido”.

i
∂

∂t
|a′, t⟩H = −H|a′, t⟩H . (1.2.34)

En cuanto a los eigenvalores en śı, vemos en (1.2.32) que permanecen inalterados con el

tiempo. Observamos también la siguiente expansión para AH(t) en términos de los kets y

bras base de la imagen de Heisenberg:

AH(t) =
∑
a′

|a′, t⟩Ha′⟨a′, t| =
∑
a′

U †|a′⟩a′⟨a′|U = U †A(S)U . (1.2.35)

lo que muestra que todo es bastante consistente, siempre que los kets base en la imagen

de Heisenberg cambien como en (1.2.33). Vemos que los coeficientes de expansión de un ket

de estado en términos de kets base son los mismos en ambas imágenes:

Ca′(t) = ⟨a′| · (U |α, t0 = 0⟩) (Img. Schrödinger), (1.2.36)

Ca′(t) = (⟨a′|U ) · |α, t0 = 0⟩ (Img. Heisenberg). (1.2.37)
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De manera pictórica, podŕıamos decir que el coseno del ángulo entre el ket de estado y el ket

base es el mismo, ya sea que rotemos el ket de estado en sentido antihorario o el ket base en

sentido horario. Estas consideraciones se aplican igualmente a los kets base que exhiben un

espectro continuo; en particular, la función de onda ⟨x′|α⟩ puede interpretarse ya sea como

(1) el producto interno del eigenbra de posición estacionaria con el ket de estado móvil (la

imagen de Schrödinger) o como (2) el producto interno del eigenbra de posición móvil con

el ket de estado estacionario (la imagen de Heisenberg).

Para ilustrar aún más la equivalencia entre las dos imágenes, estudiamos las amplitudes

de transición, que desempeñarán un papel fundamental en el caṕıtulo 2. Supongamos que

hay un sistema f́ısico preparado en t = 0 para estar en un eigenestado del observable A

con eigenvalor a′. En algún tiempo posterior t podŕıamos preguntar: ¿cuál es la amplitud

de probabilidad, conocida como amplitud de transición, para que el sistema se encuentre

en un eigenestado del observable B con eigenvalor b′? Aqúı A y B pueden ser iguales o

diferentes. En la imagen de Schrödinger, el ket de estado en t está dado por U (t, 0)|a′⟩,

mientras que los kets base |a′⟩ y |b′⟩ no vaŕıan con el tiempo; aśı que tenemos

⟨b′|︸︷︷︸
bra base

· (U |a′⟩)︸ ︷︷ ︸
ket de estado

(1.2.38)

para esta amplitud de transición. En contraste, en la imagen de Heisenberg el ket de estado es

estacionario, es decir, permanece como |a′⟩ en todo momento, pero los kets base evolucionan

de manera opuesta. Aśı que la amplitud de transición es

(⟨b′|U )︸ ︷︷ ︸
bra base

· |a′⟩︸︷︷︸
ket de estado

. (1.2.39)

Obviamente, (1.2.38) y (1.2.39) son iguales. Ambos pueden escribirse como

⟨b′|U (t, 0)|a′⟩. (1.2.40)

En un sentido vago, esta es la amplitud de transición para “ir”del estado |a′⟩ al estado |b′⟩.
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Caṕıtulo 2

Propagadores e integrales de

trayectoria de Feynman

2.1. Propagadores en mecánica ondulatoria

El problema de evolución temporal más general con un Hamiltoniano H independiente

del tiempo puede resolverse una vez que expandemos el ket inicial |α, t0⟩ en términos de

los eigenkets |a′⟩ de una observable que conmuta con H. Si trasladamos este enunciado al

lenguaje de la mecánica ondulatoria, tenemos

|α, t0; t⟩ = exp

[
−iH(t− t0)

ℏ

]
|α, t0⟩

=
∑
a′

|a′⟩⟨a′|α, t0⟩ exp
[
−iEa′(t− t0)

ℏ

]
, (2.1.1)

donde Ea′ denota los eigenvalores de los eigenkets de enerǵıa de H en la base de |a′⟩.

Multiplicando ambos lados por ⟨x′| a la izquierda, tenemos

⟨x′|α, t0; t⟩ =
∑
a′

⟨x′|a′⟩⟨a′|α, t0⟩ exp
[
−iEa′(t− t0)

ℏ

]
, (2.1.2)

lo cual es de la forma

Ψ(x′, t) =
∑
a′

ca′(t0)ua′(x
′) exp

[
−iEa′(t− t0)

ℏ

]
, (2.1.3)

donde

ua′(x
′) = ⟨x′|a′⟩ (2.1.4)
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representa la eigenfunción del operador A con eigenvalor a′. Notese también que

⟨a′|α, t0⟩ =
∫
d3x ⟨a′|x′⟩⟨x′|α, t0⟩, (2.1.5)

lo cual reconocemos como la regla usual en mecánica ondulatoria para obtener los coeficientes

de expansión del estado inicial:

ca′ =

∫
d3xu∗a′(x

′)ψ(x′, t0). (2.1.6)

Ahora (2.1.2) junto con (2.1.5) pueden visualizarse también como algún tipo de operador

integral que actúa sobre la función de onda inicial para llevar a la función de onda final:

Ψ(x′′, t) =

∫
d3x′K(x′′, t;x′, t0)Ψ(x′, t0). (2.1.7)

Aqúı el kernel (núcleo) del operador integral, conocido como el propagador en mecánica

ondulatoria, está dado por

K(x′′, t;x′, t0) =
∑
a′

⟨x′′|a′⟩⟨a′|x′⟩ exp
[
−iEa′(t− t0)

ℏ

]
. (2.1.8)

En cualquier problema dado, el propagador depende solamente del potencial y es indepen-

diente de la función de onda inicial. Puede construirse una vez que se dan las eigenfunciones

de enerǵıa y sus eigenvalores.

Hay dos propiedades del propagador que vale la pena mencionar aqúı:

I. Para t > t0, K(x′′, t;x′, t0) satisface la ecuación de onda dependiente del tiempo de

Schrödinger en las variables x′′ y t, con x′ y t0 fijos.

II.

ĺım
t→t0

K(x′′, t;x′, t0) = δ3(x′′ − x). (2.1.9)

Por estas dos propiedades, el propagador (2.1.8), considerado como una función de x′′,

es simplemente la función de onda en t de una part́ıcula que estaba localizada precisamente

en x′ en un tiempo anterior t0. En realidad, esta interpretación sigue, quizás de manera más

elegante, de notar que (2.1.8) también puede escribirse como:

K(x′′, t;x′, t0) = ⟨x′′| exp
[
−iH(t− t0)

ℏ

]
|x′⟩, (2.1.10)
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donde el operador de evolución temporal que actúa sobre |x′⟩ da sólo el ket de estado en t de

un sistema que estaba localizado precisamente en x′ al tiempo t0(< t). Si deseamos resolver

un problema más general donde la función de onda inicial se extiende sobre una región

finita del espacio, todo lo que debemos hacer es multiplicar Ψ(x′, t0) por el propagador

K(x′′, t;x′, t0) e integrar sobre todo el espacio (esto es, sobre x′). De esta manera podemos

sumar las diferentes contribuciones desde diferentes posiciones (x′).

2.2. Propagador como una amplitud de transición

Recordando que la función de onda es el producto interno del bra de posición fijo ⟨x′| con

el ket de estado que se mueve |α, t0; t⟩ puede considerarse también como el producto interno

del bra de posición en la imagen de Heisenberg ⟨x′, t|, el cual se mueve “opuestamente” en el

tiempo, con el ket de estado |α, t0⟩ en la imagen de Heisenberg, el cual está fijo en el tiempo.

De esa manera, el propagador puede escribirse también como

K(x′′, t;x′, t0) =
∑
a′

⟨x′′|a′⟩⟨a′|x′⟩ exp
[
−iEa′(t− t0)

ℏ

]
=

∑
a′

⟨x′′| exp
(
−iHt
ℏ

)
|a′⟩⟨a′| exp

(
iHt0
ℏ

)
|x′⟩

= ⟨x′′, t|x′, t0⟩, (2.2.1)

donde |x′, t0⟩ y ⟨x′′, t| deben entenderse como un eigenket y un eigenbra del operador de

posición en la imagen de Heisenberg. En la notación de la imagen de Heisenberg, ⟨b′, t|a′⟩ es la

amplitud de probabilidad para que un sistema originalmente preparado como un eigenestado

de A con eigenvalor a′ en algún tiempo inicial t0 = 0 se encuentre más tarde en el tiempo t

en un eigenestado de B con eigenvalor b′, y se denomina la amplitud de transición para

ir del estado |a′⟩ al estado |b′⟩. En términos generales,⟨x′′, t|x′, t0⟩ es la amplitud para que la

part́ıcula vaya del punto del espacio-tiempo (x′, t0) a otro punto del espacio-tiempo (x′′, t),

por lo que el término amplitud de transición para esta expresión es muy apropiado.

Resulta ser conveniente usar una notación que trata las coordenadas de espacio y tiempo

de manera más simétrica. Para este fin se escribe ⟨x′′, t′′|x′, t′⟩ en lugar de ⟨x′′, t|x′, t0⟩. Ya
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que en cualquier tiempo dado los kets de posición en la imagen de Heisenberg forman un

conjunto completo, podemos insertar el operador identidad escrito como:∫
d3x′′ |x′′, t′′⟩⟨x′′, t′′| = 1 (2.2.2)

en cualquier lugar que deseemos. Por ejemplo, considérese la evolución temporal de t′ a t′′′;

dividiendo el intervalo temporal (t′, t′′′) en dos partes, (t′, t′′) y (t′′, t′′′), tenemos

⟨x′′′, t′′′|x′, t′⟩ =
∫
d3x′′ ⟨x′′′, t′′′|x′′, t′′⟩⟨x′′, t′′|x′, t′⟩, (t′′′ > t′′ > t′). (2.2.3)

Ésta es la propiedad de composición de la amplitud de transición. Claramente, podemos

dividir el intervalo temporal en muchos subintervalos más pequeños tanto como deseemos.

Tenemos

⟨x′′′′, t′′′′|x′, t′⟩ =

∫
d3x′′′

∫
d3x′′ ⟨x′′′′, t′′′′|x′′′, t′′′⟩⟨x′′′, t′′′|x′′, t′′⟩

×⟨x′′, t′′|x′, t′⟩, (t′′′′ > t′′′ > t′′ > t′), (2.2.4)

etc. Si de algún modo se obtiene la forma de ⟨x′′, t′′|x′, t′⟩ para un intervalo de tiempo infini-

tesimal (entre t′ y t′′ = t′ + dt), se puede obtener la amplitud ⟨x′′, t′′|x′, t′⟩ para un intervalo

temporal finito componiendo las amplitudes de transición apropiadas para intervalos tem-

porales infinitesimales de una manera análoga a (2.2.4).

2.3. Integrales de trayectoria y la suma sobre trayec-

torias

Sin pérdida de generalidad nos restringimos a problemas unidimensionales. También,

evitamos expresiones inconvenientes como

x′′′′ · · ·
N veces

x′′′

usando la notación xN . Con esta notación consideramos la amplitud de transición para una

part́ıcula que va del punto de espacio-tiempo inicial (x1, t1) al punto de espacio-tiempo final

(xN , tN). El intervalo temporal entero entre t1 y tN se divide en N − 1 partes iguales:

tj − tj−1 = ∆t =
(tN − t1)

N − 1
. (2.3.1)
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Explotando la propiedad de composición, se obtiene

⟨xN , tN |x1, t1⟩ =

∫
dxN−1

∫
dxN−2 · · ·

∫
dx2 ⟨xN , tN |xN−1, tN−1⟩

×⟨xN−1, tN−1|xN−2, tN−2⟩ · · · ⟨x2, t2|x1, t1⟩. (2.3.2)

Para visualizar esto gráficamente, considerese un plano de espacio-tiempo, como se muestra

en la Figura 2.1. Los puntos de espacio-tiempo inicial y final se fijan como (x1, t1) y (xN , tN),

respectivamente. Para cada segmento de tiempo, digamos entre tn−1 y tn, se nos instruye a

considerar la amplitud de transición que va de (xn−1, tn−1) a (xn, tn); entonces integramos

sobre x2, x3, . . . , xN−1. Esto significa que debemos sumar sobre todas las posibles trayectorias

en el plano de espacio-tiempo con los puntos extremos fijos.

Figura 2.1: Trayectorias en el plano xt.

2.4. Formulación de Feynman

En mecánica clásica se asocia una trayectoria definida en el plano xt con el movimiento de

la part́ıcula; en contraste, en mecánica cuántica todas las trayectorias posibles deben jugar

roles que incluyen aquellos que no tienen alguna semejanza con la trayectoria clásica. A pesar

de todo debemos de algún modo poder reproducir la mecánica clásica de una manera suave

en el ĺımite ℏ → 0. ¿Cómo vamos a lograr esto?

Como un joven estudiante graduado en la Universidad de Princeton, R. P. Feynman

trató de atacar este problema. Al buscar una posible pista, él dijo que estaba intrigado por
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una misteriosa nota en el libro de Dirac el cual, en nuestra notación, equivale al siguiente

enunciado:

exp

[
i

∫ t2

t1

dt Lclásico(x, ẋ)

ℏ

]
corresponde a ⟨x2, t2|x1, t1⟩,

donde Lclásico se refiere al Lagrangiano clásico.

Feynman intentó buscarle sentido a esta nota. ¿“Corresponde a” es lo mismo que “es igual

a” o que “es proporcional a” ? Al hacerlo él fue llevado a formular un enfoque de espacio-

tiempo para la mecánica cuántica basado en integrales de trayectoria.

En la formulación de Feynman la acción clásica juega un rol muy importante. Para

abreviar, se introduce una nueva notación:

S(n, n− 1) ≡
∫ tn

tn−1

dt Lclásico(x, ẋ). (2.4.1)

Ya que Lclásico es una función de x y ẋ, S(n, n−1) está definida solo después de que se especi-

fica una trayectoria definida a lo largo de la cual se lleva a cabo la integración. Considerando

un pequeño segmento a lo largo de una trayectoria preescrita, supóngase entre (xn−1, tn−1)

y (xn, tn). De acuerdo a Dirac, se instruye asociar exp[iS(n, n− 1)/ℏ] con dicho segmento.

Al ir a lo largo de la trayectoria definida a seguir, se multiplican sucesivamente expresiones

de este tipo para obtener

N∏
n=2

exp

[
iS(n, n− 1)

ℏ

]
= exp

[(
i

ℏ

) N∑
n=2

S(n, n− 1)

]
= exp

[
iS(N, 1)

ℏ

]
. (2.4.2)

Esto no da aún ⟨xN , tN |x1, t1⟩; más bien, esta ecuación es la contribución a ⟨xN , tN |x1, t1⟩

que surge de la trayectoria particular que se ha considerado, aún se debe integrar sobre

x2, x3, . . . , xN . Al mismo tiempo, explotando la propiedad de composición, se permite que

el intervalo temporal entre tn−1 y tn sea infinitesimalmente pequeño. Aśı nuestra expresión

candidata para ⟨xN , tN |x1, t1⟩ puede escribirse, en cierto sentido aproximado, como:

⟨xN , tN |x1, t1⟩ ∼
∑

todas las trayectorias

exp

[
iS(N, 1)

ℏ

]
, (2.4.3)

donde la suma debe tomarse sobre un conjunto de trayectorias inumerablemente infinito.
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Para formular la conjetura de Feynman de manera más precisa, tenemos que regresar a

⟨xn, tn|xn−1, tn−1⟩, donde se supone que la diferencia temporal tn− tn−1 es infinitesimalmente

pequeña. Sea,

⟨xn, tn|xn−1, tn−1⟩ =
[

1

w(∆t)

]
exp

[
iS(n, n− 1)

ℏ

]
, (2.4.4)

donde S(n, n−1) es evaluada en un momento en el ĺımite ∆t→ 0 y donde se ha insertado un

factor de peso, 1/w(∆t), el cual se supone que depende sólo del intervalo temporal tn − tn−1

y no de V (x).

Debido a que el intervalo temporal es muy pequeño, es leǵıtimo hacer una aproximación

de ĺınea recta para la trayectoria que une (xn−1, tn−1) y (xn, tn) como sigue:

S(n, n− 1) =

∫ tn

tn−1

dt

[
mẋ2

2
− V (x)

]
= ∆t

{(m
2

)[(xn − xn−1)

∆t

]2
− V

(
(xn + xn−1)

2

)}
. (2.4.5)

Como el factor de peso 1/w(∆t) que aparece en (2.4.4) es independiente de V (x), y

notando la ortonormalidad en el sentido de la función δ, de los eigenkets de posición en la

imagen de Heisenberg a tiempos iguales,

⟨xn, tn|xn−1, tn−1⟩|tn=tn−1 = δ(xn − xn−1), (2.4.6)

obtenemos
1

w(∆t)
=

√
m

2πiℏ∆t
, (2.4.7)

Aśı, conforme ∆t→ 0, obtenemos:

⟨xn, tn|xn−1, tn−1⟩ =
√

m

2πiℏ∆t
exp

[
iS(n, n− 1)

ℏ

]
. (2.4.8)

La expresión final para la amplitud de transición con tN − t1 finito es
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⟨xN , tN |x1, t1⟩ = ĺım
N→∞

( m

2πiℏ∆t

)(N−1)/2

×
∫
dxN−1

∫
dxN−2 · · ·

∫
dx2

N∏
n=2

exp

[
iS(n, n− 1)

ℏ

]
, (2.4.9)

donde el ĺımite N → ∞ se toma con xN y tN fijos. Se define ahora un nuevo tipo de operador

integral multidimensional (de hecho, infinito-dimensional)

∫ xn

x1

D[x(t)] ≡ ĺım
N→∞

( m

2πiℏ∆t

)(N−1)/2
∫
dxN−1

∫
dxN−2 · · ·

∫
dx2 (2.4.10)

Aśı (2.4.9) se puede reescribir como:

⟨xN , tN |x1, t1⟩ =
∫ xn

x1

D[x(t)] exp

[
i

∫ t2

t1

dt
Lclásico(x, ẋ)

ℏ

]
. (2.4.11)

Esta expresión se conoce como la integral de trayectoria de Feynman. Su significado

como suma sobre todas las trayectorias posibles debeŕıa ser evidente a partir de la ecuación

(2.4.9).

Los pasos que nos condujeron a la ecuación (2.4.9) no deben interpretarse como una

derivación formal. Más bien, nosotros (o Feynman) hemos intentado una nueva formulación

de la mecánica cuántica basada en el concepto de trayectorias, motivados por el enigmático

comentario de Dirac. Las únicas ideas que tomamos prestadas de la formulación convencio-

nal de la mecánica cuántica son: (1) el principio de superposición (utilizado al sumar las

contribuciones de las diversas trayectorias alternativas), (2) la propiedad de composición de

la amplitud de transición, y (3) la correspondencia con la f́ısica clásica en el ĺımite ℏ → 0.

Los métodos que emplean integrales de trayectoria han resultado ser herramientas suma-

mente poderosas en diversas áreas de la f́ısica moderna, como la teoŕıa cuántica de campos

y la mecánica estad́ıstica. En el caṕıtulo 4, retomaremos este enfoque para deducir el efecto

Aharonov–Bohm.
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Caṕıtulo 3

Potenciales y transformaciones de

norma

3.1. Potencial constante

En mecánica clásica es bien conocido que el punto cero de la enerǵıa potencial no tiene

significado f́ısico. El desarrollo temporal de variables dinámicas como x(t) y L(t) es inde-

pendiente de si usamos V (x) o V (x) + V0 con V0 constante en el espacio y en el tiempo.

La fuerza que aparece en la segunda ley de Newton depende únicamente del gradiente del

potencial, una constante aditiva es claramente irrelevante. ¿Cuál es la situación análoga en

mecánica cuántica? Para entenderlo hay que ver la evolución temporal del ket de estado (en

la imagen de Schrödinger) sujeto a un potencial.

Sea |α, t0; t⟩ un ket de estado en presencia de V (x) y sea ˜|α, t0; t⟩ el ket de estado apropiado

para

Ṽ (x) = V (x) + V0. (3.1.1)

Las condiciones iniciales son tales que ambos kets coinciden con |α⟩ en t = t0. Recordando que

el ket de estado en t puede obtenerse aplicando el operador de evolución temporal U (t, t0)

al ket de estado en t0, obtenemos:

˜|α, t0; t⟩ = exp

[
−i
(
p2

2m
+ V (x) + V0

)
(t− t0)

ℏ

]
|α⟩ = exp

[
−iV0(t− t0)

ℏ

]
|α, t0; t⟩, (3.1.2)
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i.e., el ket calculado bajo la influencia de Ṽ tiene una dependencia del tiempo sólo por un

factor de fase exp
[
−iV0(t−t0)

ℏ

]
. Para estados estacionarios esto significa que si la dependencia

del tiempo calculada con V (x) es exp
[
−iE(t−t0)

ℏ

]
, entonces la correspondiente dependencia

temporal calculada con V (x) + V0 es exp
[
−i(E+V0)(t−t0)

ℏ

]
, es decir, el uso de Ṽ en lugar de V

sólo nos lleva al cambio:

E → E + V0. (3.1.3)

Los efectos observables tales como la evolución temporal de los valores esperados de ⟨x⟩ y ⟨S⟩

dependen siempre de diferencias de enerǵıa; las frecuencias de Bohr que caracterizan la de-

pendencia sinusoidal en el tiempo de los valores esperados son las mismas, ya sea que usemos

V (x) o V (x) + V0. En general, no hay diferencia en los valores esperados de las observables

si cada ket de estado es multiplicado por un factor común exp
[
−iV0(t−t0)

ℏ

]
. Este es un primer

ejemplo de una clase de transformaciones conocidas como transformaciones de norma.

El cambio en nuestra convención para el punto cero de la enerǵıa potencial

V (x) → V (x) + V0 (3.1.4)

debe acompañarse de un cambio en el ket de estado:

|α, t0; t⟩ → exp

[
−iV0(t− t0)

ℏ

]
|α, t0; t⟩. (3.1.5)

Por supuesto, este cambio implica un cambio en la función de onda:

Ψ(x′, t) → exp

[
−iV0(t− t0)

ℏ

]
Ψ(x′, t). (3.1.6)

Ahora, considérese un V0 que es espacialmente uniforme pero dependiente del tiempo. En

este caso, el análogo de la ecuación (3.1.5) es:

|α, t0; t⟩ → exp

(
−i
∫ t

t0

dt′
V0(t

′)

ℏ

)
|α, t0; t⟩. (3.1.7)

F́ısicamente, usar V (x)+V0(t) en lugar de V (x) significa simplemente que estamos eligiendo

un nuevo punto cero de la escala de enerǵıa en cada instante de tiempo. Aunque la elección

de la escala absoluta del potencial es arbitraria, las diferencias de potencial tienen una
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Figura 3.1: Interferencia cuántica para detectar una diferencia de potencial

importancia f́ısica no trivial y, de hecho, pueden detectarse de manera sorprendente. Para

ilustrar este punto, consideremos el arreglo mostrado en la Figura 3.1

Un haz de part́ıculas cargadas se divide en dos partes, cada una de las cuales entra en una

jaula metálica. Si lo deseamos, podemos mantener una diferencia de potencial finita entre

las dos jaulas activando un interruptor, como se muestra. Una part́ıcula en el haz puede

visualizarse como un paquete de ondas cuya dimensión es mucho menor que la dimensión

de la jaula. Supongamos que activamos la diferencia de potencial sólo después de que los

paquetes de ondas entren en las jaulas y la desactivamos antes de que los paquetes de ondas

salgan de las jaulas.

La part́ıcula dentro de la jaula no experimenta ninguna fuerza porque, dentro de la jaula,

el potencial es espacialmente uniforme; por lo tanto, no hay un campo eléctrico presente.

Ahora, recombinemos los dos componentes del haz de tal manera que se encuentren en la

región de interferencia de la Figura 3.1. Debido a la existencia del potencial, cada componente

sufre un cambio de fase, como se indica en la ecuación (3.1.7). Como resultado, hay un

término observable de interferencia en la intensidad del haz en la región de interferencia, a

saber:

cos(ϕ1 − ϕ2), sin(ϕ1 − ϕ2), (3.1.8)

donde

ϕ1 − ϕ2 =

(
1

ℏ

)∫ t

t0

[V2(t
′)− V1(t

′)] dt′. (3.1.9)
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Por lo tanto, a pesar de que la part́ıcula no experimenta ninguna fuerza, hay un efecto

observable que depende de si se ha aplicado o no V2(t) − V1(t). Obsérvese que este efecto

es puramente cuántico; en el ĺımite ℏ → 0, el efecto de interferencia desaparece porque la

oscilación del coseno se vuelve infinitamente rápida.

3.2. Transformaciones de norma en electromagnetismo

Pasemos ahora a los potenciales que aparecen en electromagnetismo. Consideramos un

campo eléctrico y un campo magnético derivables del potencial escalar ϕ(x) y del potencial

vectorial A(x), independientes del tiempo :

E = −∇ϕ, B = ∇×A. (3.2.1)

El Hamiltoniano para una part́ıcula con carga eléctrica e (e < 0 para el electrón) sometida

a un campo electromagnético se toma de la f́ısica clásica como:

H =
1

2m

(
p− e

c
A
)2

+ eϕ. (3.2.2)

En mecánica cuántica, ϕ y A se entienden como funciones del operador de posición x de

la part́ıcula cargada. Dado que p y A no conmutan, es necesario interpretar (3.2.2) con

cuidado. Lo más seguro es escribir:(
p− e

c
A
)2

→ p2 − e

c
(p ·A+A · p) + e2

c2
A2. (3.2.3)

En esta forma el Hamiltoniano es obviamente hermitiano.

Para estudiar la dinámica de una part́ıcula cargada sometida a ϕ y A, procedemos en la

representación de Heisenberg. Podemos evaluar la derivada temporal de x de manera directa:

dxi
dt

=
[xi, H]

iℏ
=

1

m

(
pi −

e

c
Ai

)
. (3.2.4)

Esto muestra que el operador p, definido como el generador de traslaciones, no es lo mismo

que mdx
dt
. A menudo, p se llama momento canónico, para distinguirlo del momento

cinemático (o mecánico), denotado por Π:
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Π = m
dx

dt
= p− e

c
A. (3.2.5)

Aunque tenemos

[pi, pj] = 0 (3.2.6)

para el momento canónico, el conmutador análogo no se anula para el momento mecánico.

En su lugar, obtenemos

[Πi,Πj] =

[
pi −

eAi

c
, pj −

eAj

c

]
=

[
pi, pj −

eAj

c

]
+

[
−eAi

c
, pj −

eAj

c

]
= −

[
pi,

eAi

c

]
−
[
eAi

c
, pj

]
= −pi

eAj

c
+
eAj

c
pi −

eAi

c
pj + pj

eAi

c
,

(3.2.7)

donde se ha usado (3.2.6) y que [Ai, Aj] = 0.

Aplicando a una función Ψ, ordenando, y recordando que p = −iℏ∇ tenemos:

[Πi,Πj]Ψ =

(
−pi

eAj

c
+ pj

eAi

c
−+

eAj

c
pi −

eAi

c
pj

)
Ψ

=
iℏe
c

(∂iAjΨ− ∂jAiΨ)− iℏe
c

(Aj∂iΨ− Ai∂jΨ)

=
iℏe
c

(Ψ∂iAj + Aj∂iΨ−Ψ∂jAi − Ai∂jΨ)− iℏe
c

(Aj∂iΨ− Ai∂jΨ)

=
iℏe
c

(Ψ∂iAj −Ψ∂jAi) .

(3.2.8)

Ya que Bi = ϵijk∂jAk, tenemos:

iℏe
c

(∂iAj − ∂jAi)Ψ =

(
iℏe
c

)
ϵijkBkΨ. (3.2.9)

Por lo tanto,

[Πi,Πj] =

(
iℏe
c

)
ϵijkBk. (3.2.10)

Además, reescribiendo el hamiltoniano como:

H =
Π2

2m
+ eϕ, (3.2.11)
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y usando la relación de conmutación fundamental, podemos derivar la versión cuántica de

la fuerza de Lorentz:

m
d2x

dt2
=
dΠ

dt
= e

[
E+

1

2c

(
dx

dt
×B−B× dx

dt

)]
. (3.2.12)

Este es el teorema de Ehrenfest, escrito en la representación de Heisenberg, para una part́ıcula

cargada en presencia de E y B.

Ahora discutimos las transformaciones de norma en electromagnetismo. Considérese pri-

mero:

ϕ→ ϕ+ λ, A → A, (3.2.13)

con λ constante, es decir, independiente de x y t. Tanto E como B permanecen sin cam-

bios, obviamente. Esta transformación simplemente equivale a un cambio en el punto cero

de la escala de enerǵıa, una posibilidad tratada al comienzo de este caṕıtulo; simplemente

reemplazamos V por eϕ.

Es mucho más interesante la transformación:

ϕ→ ϕ, A → A+∇Λ, (3.2.14)

donde Λ es una función de x. Los campos electromagnéticos estáticos E y B no cambian

bajo (3.2.14). Tanto (3.2.13) como (3.2.14) son casos especiales de:

ϕ→ ϕ− 1

c

∂Λ

∂t
, A → A+∇Λ, (3.2.15)

los cuales dejan E y B, dados por:

E = −∇ϕ− 1

c

∂A

∂t
, B = ∇×A, (3.2.16)

sin cambios, pero en lo que sigue no consideramos campos ni potenciales dependientes del

tiempo. En el resto de este caṕıtulo, el término transformación de norma se refiere a (3.2.14).

En f́ısica clásica, los efectos observables como la trayectoria de una part́ıcula cargada son

independientes de la norma utilizada, es decir, de la elección particular de Λ que adoptemos.

Consideremos una part́ıcula cargada en un campo magnético uniforme en la dirección z,

B = Bẑ. Este campo magnético puede derivarse de:

Ax = −1

2
By, Ay =

1

2
Bx, Az = 0 (3.2.17)
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o también de:

Ax = −By, Ay = 0, Az = 0 (3.2.18)

La segunda forma se obtiene de la primera mediante:

A′ = A−∇
(
Bxy

2

)
(3.2.19)

que corresponde precisamente a la forma de (3.2.14). Independientemente de qué A usemos,

la trayectoria de la part́ıcula cargada con un conjunto dado de condiciones iniciales es la

misma: simplemente una hélice (movimiento circular uniforme cuando se proyecta en el plano

xy superpuesto con un movimiento rectiĺıneo uniforme en la dirección z). Sin embargo, si

examinamos px y py, los resultados son muy diferentes. En particular, px es una constante

de movimiento cuando se usa (3.2.18) pero no cuando se usa (3.2.17).

Recordemos las ecuaciones de movimiento de Hamilton:

dpx
dt

= −∂H
∂x

,
dpy
dt

= −∂H
∂y

,
dpz
dt

= −∂H
∂z

. (3.2.20)

En general, el momento canónico p no es una cantidad invariante bajo transformaciones

de norma; su valor numérico depende de la norma particular utilizada, incluso cuando nos

referimos a la misma situación f́ısica. En contraste, el momento cinemático Π, o mdx
dt
, que

traza la trayectoria de la part́ıcula, es una cantidad invariante bajo transformaciones de

norma.

En la mecánica cuántica es razonable exigir que los valores esperados se comporten de

manera similar a las cantidades clásicas correspondientes bajo transformaciones de norma,

de modo que ⟨x⟩ y ⟨Π⟩ no cambien bajo transformaciones de norma, mientras que se espera

que ⟨p⟩ cambie.

Denotemos por |α⟩ el ket de estado en presencia de A; el ket de estado para la misma

situación f́ısica cuando se utiliza:

Ã = A+∇Λ (3.2.21)

en lugar de A se denota por |α̃⟩. Aqúı Λ, al igual que A, es una función del operador de

posición x. Los requisitos básicos son:

⟨α|x|α⟩ = ⟨α̃|x|α̃⟩ (3.2.22)
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y

⟨α|Π|α⟩ = ⟨α̃|Π̃|α̃⟩. (3.2.23)

Además, requerimos, como es habitual, que la norma del ket de estado se preserve:

⟨α|α⟩ = ⟨α̃|α̃⟩. (3.2.24)

Debemos construir un operador G que relacione |α̃⟩ con |α⟩:

|α̃⟩ = G|α⟩. (3.2.25)

Las propiedades de invariancia (3.2.22) y (3.2.23) están garantizadas si:

G†xG = x (3.2.26)

y

G†
(
p− eA

c
− e∇Λ

c

)
G = p− eA

c
. (3.2.27)

Afirmamos que:

G = exp

(
ieΛ(x)

ℏc

)
(3.2.28)

hará el trabajo. Primero, G es unitario, por lo que la Ec. (3.2.24) es correcta. Segundo,

(3.2.26) se satisface obviamente porque x conmuta con cualquier función de x. En cuanto a

(3.2.27), basta notar que:

exp

(
−ieΛ

ℏc

)
p exp

(
ieΛ

ℏc

)
= exp

(
−ieΛ

ℏc

)[
p, exp

(
ieΛ

ℏc

)]
+ p

= − exp

(
−ieΛ

ℏc

)
iℏ∇

[
exp

(
ieΛ

ℏc

)]
+ p

= p+
e∇Λ

c
,

(3.2.29)

donde hemos usado [pi, G(x)] = −iℏ∂iG.

La invariancia de la mecánica cuántica bajo transformaciones de norma también puede

demostrarse directamente mirando la ecuación de Schrödinger. Sea |α, t0; t⟩ una solución a

la ecuación de Schrödinger en presencia de A:[
(p− eA/c)2

2m
+ eϕ

]
|α, t0; t⟩ = iℏ

∂

∂t
|α, t0; t⟩. (3.2.30)
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La solución correspondiente en presencia de Ã debe satisfacer:[
(p− eA/c− e∇Λ/c)2

2m
+ eϕ

]
˜|α, t0; t⟩ = iℏ

∂

∂t
˜|α, t0; t⟩. (3.2.31)

Vemos que si el nuevo ket se toma como:

˜|α, t0; t⟩ = exp

(
ieΛ

ℏc

)
|α, t0; t⟩, (3.2.32)

de acuerdo con (3.2.28), entonces la nueva ecuación de Schrödinger (3.2.31) se satisface; todo

lo que debemos notar es que:

exp

(
−ieΛ

ℏc

)(
p− eA

c
− e∇Λ

c

)2

exp

(
ieΛ

ℏc

)
=

(
p− eA

c

)2

, (3.2.33)

lo cual sigue de aplicar (3.2.29) dos veces.

La ecuación (3.2.32) también implica que las correspondientes funciones de onda están

relacionadas mediante:

Ψ̃(x′, t) = exp

(
ieΛ(x′)

ℏc

)
Ψ(x′, t), (3.2.34)

donde Λ(x′) es ahora una función real del valor propio del operador de posición x′. Esto

puede, por supuesto, verificarse también sustituyendo directamente (3.2.34) en la ecuación

de onda de Schrödinger con A reemplazado por A+∇Λ.

Cuando se utilizan potenciales vectoriales en diferentes normas para la misma situación

f́ısica, los correspondientes kets de estado (o funciones de onda) deben ser necesariamente

diferentes. Sin embargo, solo se necesita un cambio simple; podemos pasar de una norma

especificada por A a otra especificada por A+∇Λ simplemente multiplicando el ket antiguo

(o la función de onda antigua) por exp
(
ieΛ
ℏc

)
. El momento canónico, definido como el

generador de traslaciones, es manifiestamente dependiente de la norma en el sentido de

que su valor esperado depende de la norma particular elegida, mientras que el momento

cinemático y el flujo de probabilidad son invariantes de norma.

Es natural preguntarse por qué la invariancia bajo (3.2.28) se llama invariancia de nor-

ma (gauge en inglés). Esta palabra es la traducción del alemán Eichinvarianz, donde Eich

significa “norma” y cuyo origen se comenta en lo que sigue.

Consideremos primero alguna función de posición en x: F (x). En un punto vecino, ob-

viamente tenemos:

F (x+ dx) ≃ F (x) + (∇F ) · dx. (3.2.35)
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Pero suponga que aplicamos un cambio de escala a medida que pasamos de x a x+ dx:

1

∣∣∣∣
en x

→ [1 +Σ(x) · dx]
∣∣∣∣
en x+dx.

. (3.2.36)

Entonces debemos reescalar F (x) de la siguiente manera:

F (x+ dx)reescalado ≃ F (x) + [(∇+Σ)F ] · dx. (3.2.37)

en lugar de (3.2.35). La combinación ∇+Σ es similar a la combinación invariante de norma:

∇− ieA

ℏc
, (3.2.38)

Históricamente, en 1918 H. Weyl propuso una teoŕıa en la que el electromagnetismo y la

gravitación podŕıan unificarse mediante una simetŕıa local de cambio de escala, que llamó

Eichinvarianz [6]. En su teoŕıa, el potencial vectorial electromagnético A estaba relacionado

con un cambio de escala local en la métrica del espacio-tiempo. Sin embargo, esta idea

fue criticada por Einstein (en el mismo art́ıculo) y otros f́ısicos, ya que predećıa efectos no

observados, como cambios en las ĺıneas espectrales de los átomos. Con el nacimiento de la

mecánica cuántica, V. Fock y F. London se dieron cuenta de la importancia de la combinación

invariante de norma (3.2.38), y recordaron el trabajo anterior de Weyl comparando Σ con

i veces A. Estamos atascados con el término invariancia de norma aunque el análogo en

mecánica cuántica de (3.2.36),

1

∣∣∣∣
enx

→
[
1−

(
ie

ℏc

)
A · dx

] ∣∣∣∣
en x+dx

(3.2.39)

correspondeŕıa en realidad a un “cambio de fase” y no a un “cambio de escala”.
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Caṕıtulo 4

El efecto Aharonov-Bohm à la

Feynman

4.1. Introducción

El uso del potencial vectorial A en mecánica cuántica tiene consecuencias profundas,

algunas de las cuales exploraremos a continuación. Comenzamos con un problema que, a

primera vista, parece relativamente inofensivo. Consideremos primero una situación aparen-

temente sencilla: una part́ıcula cargada confinada en el interior de una cáscara ciĺındrica

hueca, cuyas paredes son ŕıgidas, como se muestra en la Figura 4.1a. La función de onda

debe anularse en las superficies interna y externa del cilindro, aśı como en sus extremos. Este

es un problema t́ıpico de valores en la frontera, donde se pueden obtener los eigenestados de

enerǵıa de forma directa.

Ahora bien, si introducimos un campo magnético confinado en la región interior inaccesi-

ble, como se muestra en la Figura 4.1b (espećıficamente, podemos imaginar un solenoide muy

largo insertado en el orificio central, de tal forma que ningún campo magnético se filtre hacia

la región ρ ≥ ρa. ). Las condiciones de frontera para la función de onda se toman iguales

que antes; se asume que las paredes siguen siendo igualmente ŕıgidas. De manera intuitiva,

podŕıamos conjeturar que el espectro de enerǵıa no cambia, ya que la región con B = 0

es completamente inaccesible para la part́ıcula cargada confinada dentro de la cáscara. Sin

embargo, la mecánica cuántica nos indica que esta conjetura es incorrecta. Esto se debe a
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que la función de onda adquiere un factor de fase dependiente del potencial vectorial A, a

pesar de que la part́ıcula no experimenta fuerza de Lorentz.

Figura 4.1: Cascara ciĺındrica hueca: (a) sin campo magnético, (b) con un campo magnético

uniforme.

4.2. El efecto Aharonov-Bohm

Consideremos una part́ıcula de carga e que pasa por encima o por debajo de un cilindro

muy largo e impenetrable, como se muestra en la Figura 4.2. Dentro del cilindro hay un

campo magnético paralelo al eje del cilindro, tomado como normal al plano de la Figura

4.2. Por lo tanto, las trayectorias de la part́ıcula por encima y por debajo encierran un flujo

magnético. Nuestro objetivo es estudiar cómo la probabilidad de encontrar a la part́ıcula en

la región de interferencia B depende del flujo magnético.

Sean x1 y xn puntos t́ıpicos en la región fuente A y la región de interferencia B, respec-

tivamente; recordamos de la mecánica clásica que el Lagrangiano en presencia del campo

magnético se puede obtener a partir del Lagrangiano en ausencia del campo magnético,

denominado como L0
clásico, de la siguiente manera:

L
(0)
clásico =

m

2

(
dx

dt

)2

−→ L
(0)
clásico +

e

c

dx

dt
·A. (4.2.1)
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Figura 4.2: Efecto Aharonov-Bohm.

El correspondiente cambio en la acción para algún segmento de trayectoria definido que va

desde (xn−1, tn−1) hasta (xn, tn) se expresa de la siguiente manera:

S(0)(n, n− 1) −→ S(0)(n, n− 1) +
e

c

∫ tn

tn−1

dt

(
dx

dt

)
·A. (4.2.2)

Pero esta última integral puede expresarse como:

e

c

∫ tn

tn−1

dt

(
dx

dt

)
·A =

e

c

∫ xn

xn−1

A · dl, (4.2.3)

donde dl es el elemento de ĺınea diferencial a lo largo del segmento de la trayectoria, por lo

que cuando consideramos la contribución completa desde x1 hasta xn, tenemos el siguiente

cambio:∏
exp

[
iS(0)(n, n− 1)

ℏ

]
−→

{∏
exp

[
iS(0)(n, n− 1)

ℏ

]}
exp

(∫ xn

xn−1

A · dl
)
. (4.2.4)

Esto es válido para una trayectoria espećıfica, como la que va por encima del cilindro.

Aún debemos sumar sobre todas las trayectorias posibles, lo cual puede parecer una tarea

formidable. Afortunadamente, sabemos por la teoŕıa de electromagnetismo que la integral

de ĺınea
∫ xn

xn−1
A · dl es independiente de las trayectorias; es decir, depende sólo de los puntos

extremos, siempre y cuando el búcle formado por un par de trayectorias diferentes no encierre

un flujo magnético.

Como resultado, las contribuciones debidas a A ̸= 0 para todas las trayectorias que pasan
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por encima del cilindro están dadas por un factor de fase común; de manera similar, las

contribuciones de todas las trayectorias que pasan por debajo del cilindro se multiplican por

otro factor de fase común. En la notación de la integral de trayectoria, tenemos, para la

amplitud de transición completa:

∫
encima

D[x(t)] exp

[
iS(0)(n, n− 1)

ℏ

]
+

∫
debajo

D[x(t)] exp

[
iS(0)(n, n− 1)

ℏ

]

−→
∫
encima

D[x(t)] exp

[
iS(0)(n, n− 1)

ℏ

]{
exp

[(
ie

ℏc

)∫ xn

xn−1

A · dl
]}

+

∫
debajo

D[x(t)] exp

[
iS(0)(n, n− 1)

ℏ

]{
exp

[(
ie

ℏc

)∫ xn

xn−1

A · dl
]}

.

(4.2.5)

La probabilidad de encontrar la part́ıcula en la región de interferencia B depende del módulo

al cuadrado de la amplitud de transición completa y, por lo tanto, de la diferencia de fase

entre la contribución de las trayectorias que van por encima y por debajo. La diferencia de

fase debido a la presencia de B es simplemente:

[( e
ℏc

)∫ xn

xn−1

A · dl
]
encima

−
[( e

ℏc

)∫ xn

xn−1

A · dl
]
debajo

=
( e
ℏc

)∮
C

A · dl

=
( e
ℏc

)
ΦB.

(4.2.6)

donde ΦB representa el flujo magnético dentro del cilindro impenetrable. Esto significa que,

al variar la intensidad del campo magnético, aparece una componente sinusoidal en la proba-

bilidad de observar la part́ıcula en la región B, con un peŕıodo determinado por una unidad

fundamental de flujo magnético, a saber:

2πℏc
|e|

= 4,135× 10−7 Gauss · cm2. (4.2.7)

Debemos enfatizar que el efecto de interferencia discutido aqúı es puramente mecánico-

cuántico. Clásicamente, el movimiento de una part́ıcula cargada está determinado única-

mente por la segunda ley de Newton junto con la ley de fuerza de Lorentz. En este caso, la
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part́ıcula nunca puede ingresar a la región donde el campo B es distinto de cero; la fuerza de

Lorentz es idénticamente nula en todas las regiones donde la función de onda de la part́ıcula

es distinta de cero. Sin embargo, se observa un notable patrón de interferencia que depende

de la presencia o ausencia de un campo magnético en el interior del cilindro impenetrable.

Este hecho ha llevado a algunas personas a concluir que, en la mecánica cuántica, el potencial

vectorial A es más fundamental que el campo B. Cabe señalar, no obstante, que el efecto

observable depende únicamente de ΦB, el cual puede expresarse directamente en términos

de B. Se han realizado experimentos para verificar el efecto Aharonov–Bohm utilizando un

fino filamento de hierro magnetizado, conocido como whisker 1.

1Uno de los experimentos más recientes es el realizado por Tonomura et al [28].
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Caṕıtulo 5

El efecto Aharonov-Bohm à la

Schrödinger

5.1. Introducción

En la f́ısica clásica, la fuerza sobre una part́ıcula con carga e en un campo electromagnético

está dada por la fórmula de Lorentz:

F = eE+ ev ×B. (5.1.1)

E y B son el campo eléctrico y la inducción magnética, relacionados con el potencial vectorial

A y el potencial escalar ϕ por:

E = −∂A
∂t

−∇ϕ, B = ∇×A. (5.1.2)

Como vimos anteriormente, A y ϕ no son únicos; pueden ser cambiados por una transforma-

ción de norma bajo la cual E y B son invariantes. En este contexto, es común afirmar que el

único efecto f́ısico de un campo electromagnético sobre una carga es la fuerza de Lorentz, y

esto solo existe en regiones donde E y/o B son distintos de cero. El efecto Aharonov-Bohm

demuestra que esto no es aśı en la mecánica cuántica; existen efectos f́ısicos en regiones donde

E y B son ambos cero, pero Aµ no lo es. Por lo tanto, Aµ tiene más significado f́ısico del que

se pensaba.

El efecto se refiere al experimento prototipo de la mecánica cuántica: el experimento de

doble rendija con electrones, mostrado en la Figura 5.1. Debido a la naturaleza ondulatoria
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de los electrones, siempre que no se detecte por qué rendija pasan, producen un patrón de

interferencia caracteŕıstico. Si la longitud de onda del electrón es λ, la diferencia de fase entre

las ondas de las dos rendijas es:

δ = 2π
a

λ
=
a

λ–
.

Si x≪ L, entonces a = (x/L)d, por lo que:

δ =
x

L

d

λ–
; x =

Lλ–

d
δ. (5.1.3)

Los máximos ocurren en δ = 2nπ y los mı́nimos en (2n+1)π, por lo que esta fórmula describe

el patrón de interferencia.

Figura 5.1: El experimento de interferencia de doble rendija con electrones.

La idea de Aharonov y Bohm (1959) fue introducir un pequeño solenoide detrás de la pa-

red entre las rendijas, como se muestra en la Figura 5.2. Hay ĺıneas de inducción magnética B

dentro del solenoide, pero no fuera, por lo que, siempre que el solenoide sea lo suficientemente

pequeño, los electrones siempre se mueven en una región libre de campo. Es fácil escribir la

forma de A que produce un campo magnético solenoidal. Se muestra esquemáticamente en

la Figura 5.3. En coordenadas ciĺındricas polares, A solo tiene una componente ϕ, dada por:

Dentro: Ar = Az = 0, Aϕ =
Br

2
, (5.1.4)

Fuera: Ar = Az = 0, Aϕ =
BR2

2r
, (5.1.5)
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donde R es el radio del solenoide. Dado que B = ∇×A, tenemos, en coordenadas ciĺındricas

polares:

Bz =
1

r

[
∂(rAϕ)

∂r
− ∂Ar

∂ϕ

]
,

Figura 5.2: El efecto A-B; un solenoide es colocado entre las rendijas.

Figura 5.3: A y B en un solenoide

y fórmulas similares para Br y Bϕ, dando:.

Dentro: Br = Bϕ = 0, Bz = B, (5.1.6)

Fuera: B = 0, (5.1.7)

45



como se requiere.

Ahora buscamos la solución de la ecuación de Schrödinger para una part́ıcula cargada

inmersa en un campo electromagnético. Autores como Arfken [4] y Ryder [5] proponen como

tal la solución, pero no explican cómo es que surge ésta, a continuación se desarrolla el cómo

surge esta expresión.

5.2. Ausencia de B

Como previamente se ha mencionado, sin la presencia del solenoide, tanto el potencial

vectorial A como el campo magnético B son nulos; considerando además que el potencial

escalar ϕ(x) = 0 (i.e., E(x) = 0 también), la ecuación de Schrödinger es la de una part́ıcula

libre, i.e.,

Ĥ0Ψ0(x) = − ℏ2

2m
∇2Ψ0(x) = EΨ0(x), (5.2.1)

La ecuación se resuelve utilizando el método de separación de variables. Suponemos que la

función de onda Ψ0(x) puede escribirse como:

Ψ0(x) = Ψ0(x, y, z) = X(x)Y (y)Z(z). (5.2.2)

Sustituyendo en la ecuación de Schrödinger, obtenemos:

− ℏ2

2m

(
d2X(x)

dx2
Y (y)Z(z) +X(x)

d2Y (y)

dy2
Z(z) +X(x)Y (y)

d2Z(z)

dz2

)
= EX(x)Y (y)Z(z).

(5.2.3)

Dividiendo ambos lados por Ψ0(x, y, z) = X(x)Y (y)Z(z), obtenemos:

− ℏ2

2m

(
1

X(x)

d2X(x)

dx2
+

1

Y (y)

d2Y (y)

dy2
+

1

Z(z)

d2Z(z)

dz2

)
= E. (5.2.4)

Cada término en la ecuación anterior debe ser igual a una constante, por lo que definimos:

1

X(x)

d2X(x)

dx2
= −k2x,

1

Y (y)

d2Y (y)

dy2
= −k2y,

1

Z(z)

d2Z(z)

dz2
= −k2z , (5.2.5)

donde k2x + k2y + k2z =
2mE
ℏ2 .
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Cada una de estas ecuaciones es una ecuación diferencial de segundo orden cuya solución

general es:

X(x) = Axe
ikxx +Bxe

−ikxx, (5.2.6)

Y (y) = Aye
ikyy +Bye

−ikyy, (5.2.7)

Z(z) = Aze
ikzz +Bze

−ikzz, (5.2.8)

donde Ax, Bx, Ay, By, Az, Bz son constantes de integración.

La solución completa de la función de onda en tres dimensiones es:

Ψ0(x) =
(
Axe

ikxx +Bxe
−ikxx

) (
Aye

ikyy +Bye
−ikyy

) (
Aze

ikzz +Bze
−ikzz

)
= |Ψ0|e

i
ℏp·x.

(5.2.9)

En esta solución la enerǵıa de la part́ıcula está relacionada con los números de onda kx, ky

y kz mediante:

E =
ℏ2

2m

(
k2x + k2y + k2z

)
. (5.2.10)

5.3. Presencia de B

Es necesario recordar que al incluir un solenoide el campo magnético B ̸= 0 dentro y

B = 0 fuera del solenoide, sin embargo, A ̸= 0 fuera del solenoide, por lo que es fundamental

considerar esta interacción. Aśı, el operador Hamiltoniano en este caso se expresa como:

Ĥ =
1

2m

(
p− e

c
A
)2

+ eϕ. (5.3.1)

Aśı, la ecuación de Schrödinger para esta Ĥ está dada por:[
1

2m

(
p− e

c
A
)2

+ eϕ

]
Ψ(x) = EΨ(x). (5.3.2)

Proponemos una solución Ψ(x) = Ψ0(x)e
iγ(x), donde Ψ0 es solución de la ecuación en ausen-

cia de A (i.e., Ĥ0Ψ0 = EΨ0 ), γ(x) representa una fase, la cual hallaremos directamente sin

suponer su forma (ya conocida). En lo que sigue, consideramos ϕ(x) = 0, como es usual.
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Aplicando el operador Hamiltoniano a la solución propuesta, tenemos

ĤΨ(x) =
1

2m

(
p− e

c
A
)2

Ψ(x) =
1

2m

(
p− e

c
A
)2

Ψ0(x)e
iγ(x)

=
1

2m

(
p− e

c
A
)
·
(
p− e

c
A
)
Ψ0(x)e

iγ(x)

=
1

2m

(
−iℏ∇− e

c
A
)
·
(
−iℏ∇− e

c
A
)
Ψ0(x)e

iγ(x).

(5.3.3)

Consideremos primero sólo la aplicación del operador
(
p− e

c
A
)
sobre Ψ(x), i.e.,(

−iℏ∇− e

c
A
)
Ψ0(x)e

iγ(x) = −iℏ∇
[
Ψ0(x)e

iγ(x)
]
− e

c
AΨ0(x)e

iγ(x)

= −iℏΨ0(x)∇eiγ(x) − iℏeiγ(x)∇Ψ0(x)−
e

c
AΨ0(x)e

iγ(x)

= −i2ℏΨ0(x)∇γ(x)eiγ(x) − iℏeiγ(x)∇Ψ0(x)−
e

c
AΨ0(x)e

iγ(x)

= eiγ(x)
(
ℏΨ0(x)∇γ(x)− iℏ∇Ψ0(x)−

e

c
AΨ0(x)

)
. (5.3.4)

Ahora, se aplica nuevamente el operador
(
−iℏ∇− e

c
A
)
en ambos lados de la ecuación (5.3.4);

se tiene entonces(
−iℏ∇− e

c
A
)2

Ψ0(x)e
iγ(x) =

(
−iℏ∇− e

c
A
)
·
[
eiγ(x)

(
ℏΨ0(x)∇γ(x)− iℏ∇Ψ0(x)−

e

c
AΨ0(x)

)]
= −iℏ2∇ ·

[
Ψ0(x)∇γ(x)eiγ(x)

]
− ℏ

e

c
[A · ∇γ(x)] Ψ0(x)e

iγ(x)

+ i2ℏ2∇ ·
[
eiγ(x)∇Ψ0(x)

]
+ iℏ

e

c
[A · ∇Ψ0(x)] e

iγ(x)

+ iℏ
e

c
∇ · (AΨ0(x)e

iγ(x)) +
(e
c

)2
A2Ψ0(x)e

iγ(x),

i.e.,

(
−iℏ∇− e

c
A
)2

Ψ0(x)e
iγ(x) = −iℏ2∇ · [∇γ(x)] Ψ0(x)e

iγ(x) − iℏ2 [∇γ(x) · ∇Ψ0(x)] e
iγ(x)

− iℏ2
[
∇γ(x) · ∇eiγ(x)

]
Ψ0(x)− ℏ

e

c
[A · ∇γ (x)] Ψ0(x)e

iγ(x)

− ℏ2∇ · [∇Ψ0(x)] e
iγ(x) − ℏ2

[
∇eiγ(x) · ∇Ψ0(x)

]
+ iℏ

e

c
[A · ∇Ψ0(x)] e

iγ(x) + iℏ
e

c
(∇ ·A)Ψ0(x)e

iγ(x)

+ iℏ
e

c
[A · ∇Ψ0(x)]e

iγ(x) + iℏ
e

c

(
A · ∇eiγ(x)

)
Ψ0(x)

+
(e
c

)2
A2Ψ0(x)e

iγ(x).
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Aśı,

(
−iℏ∇− e

c
A
)2

Ψ0(x)e
iγ(x) = −iℏ2∇2γ(x)Ψ0(x)e

iγ(x) − iℏ2 [∇γ(x) · ∇Ψ0(x)] e
iγ(x)

− i2ℏ2 [∇γ(x) · ∇γ(x)] Ψ0(x)e
iγ(x) − ℏ

e

c
[A · ∇γ (x)] Ψ0(x)e

iγ(x)

− ℏ2∇2Ψ0(x)e
iγ(x) − iℏ2 [∇γ(x) · ∇Ψ0(x)] e

iγ(x)

+ iℏ
e

c
[A · ∇Ψ0(x)] e

iγ(x) + iℏ
e

c
(∇ ·A)Ψ0(x)e

iγ(x)

+ iℏ
e

c
[A · ∇Ψ0(x)]e

iγ(x) + i2ℏ
e

c
[A · ∇γ(x)] Ψ0(x)e

iγ(x)

+
(e
c

)2
A2Ψ0(x)e

iγ(x),

i.e.,

(
−iℏ∇− e

c
A
)2

Ψ0(x)e
iγ(x) = eiγ(x)

{
− iℏ2Ψ0(x)∇2γ(x)− iℏ2 [∇γ(x) · ∇Ψ0(x)]

+ ℏ2Ψ0(x) [∇γ(x)]2 − ℏ
e

c
[A · ∇γ(x)] Ψ0(x)− ℏ2∇2Ψ0(x)

− iℏ2 [∇γ(x) · ∇Ψ0(x)] + iℏ
e

c
[A · ∇Ψ0(x)] + iℏ

e

c
(∇ ·A)Ψ0(x)

+ iℏ
e

c
[A · ∇Ψ0(x)]− ℏ

e

c
[A · ∇γ(x)] Ψ0(x) +

(e
c

)2
A2Ψ0(x)

}
.

(5.3.5)

Sumando términos semejantes, tenemos:

ĤΨ(x) =
1

2m
eiγ(x)

{
− ℏ2∇2Ψ0(x) + iℏ

e

c
(∇ ·A)Ψ0(x)− iℏ2Ψ0(x)∇2γ(x)

− 2iℏ2 [∇γ(x) · ∇Ψ0(x)] + 2iℏ
e

c
[A · ∇Ψ0(x)]

+
(e
c

)2
A2Ψ0(x) + ℏ2Ψ0(x) [∇γ(x)]2 − 2ℏ

e

c
[A · ∇γ(x)] Ψ0(x)

}
.

(5.3.6)

Para que Ψ0e
iγ(x) sea solución de la ecuación de Schrödinger (en presencia de A) solo el

primer término de la derecha deberá preservarse, i.e., el resto de términos deben sumar cero,

ya que −ℏ2∇2Ψ0(x) = EΨ0(x) y solo aśı tenemos ĤΨ(x) = eiγ(x)EΨ0(x) = EΨ(x).

Debemos recordar que aqúı la idea es hallar γ(x), la cual satisface que la suma de los 7

términos entre llaves en la Ec. (5.3.6) [sin el término −ℏ2∇2Ψ0(x)] sumen cero. La clave nos

la dan los términos (“cuadráticos”) A2 y [∇γ(x)]2 y el término con −2A · ∇γ(x), los cuales

sugieren que ∇γ(x) ∝ A.
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Por tanto, para tener (e
c

)2
A2Ψ0(x) = ℏ2Ψ0(x) [∇γ(x)]2 , (5.3.7)

debemos proponer:

∇γ(x) = e

ℏc
A. (5.3.8)

Lo cual nos lleva a que:

γ(x) =
( e
ℏc

)∫
C

A · dl, (5.3.9)

porque A es prácticamente el gradiente de γ(x). Esta fase γ(x) es lo que se conoce en la

literatura como la fase de la holonomı́a1 o fase del factor de fase de Wu-Yang [41].

Es con esta expresión para γ(x) con la cual inician textos como el de Arfken [4] y Ryder

[5] sin mencionar su origen. Aqúı vemos que surge claramente de la necesidad de anular los

7 términos en la Ec. (5.3.6). Con la elección de la Ec. (5.3.8) los tres términos del último

renglón de la Ec. (5.3.6) suman cero:

(e
c

)2
A2Ψ0(x) + ℏ2Ψ0(x) [∇γx)]2 − 2ℏ

e

c
[A · ∇γ(x)] Ψ0(x)

= Ψ0(x)

[(e
c

)2
A2 + ℏ2

( e
ℏc

)2
A2 − 2ℏ

e

c

(
A · e

ℏc
A
)]

= Ψ0(x)

[(e
c

)2
A2 +

(e
c

)2
A2 − 2

(e
c

)2
A2

]
= 0.

(5.3.10)

Los otros cuatro términos entre llaves en la Ec. (5.3.6) se anulan por pares, i.e.,

−2iℏ2 [∇γ(x) · ∇Ψ0(x)] + 2iℏ
e

c
[A · ∇Ψ0(x)] = −2iℏ2

[ e
ℏc

A · ∇Ψ0(x)
]
+ 2iℏ

e

c
[A · ∇Ψ0(x)]

= −2iℏ
e

c
[A · ∇Ψ0(x)] + 2iℏ

e

c
[A · ∇Ψ0(x)]

= 0

(5.3.11)

1Fase geométrica adquirida por un sistema al ser transportado a lo largo de un camino cerrado; refleja

la estructura del campo de norma. Una definición más completa de holonomı́a para campos de norma no

abelianos puede revisarse en [30].
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y [los términos con el laplaciano de γ(x)]

iℏ
e

c
(∇ ·A)Ψ0(x)− iℏ2Ψ0(x)∇2γ(x) = iℏ

e

c
(∇ ·A)Ψ0(x)− iℏ2Ψ0(x)∇ · [∇γ(x)]

= iℏ
e

c
(∇ ·A)Ψ0(x)− iℏ2Ψ0(x)∇ ·

( e
ℏc

A
)

= iℏ
e

c
(∇ ·A)Ψ0(x)− iℏ

e

c
Ψ0(x)(∇ ·A)

= 0.

(5.3.12)

5.3.1. El efecto Aharonov-Bohm

Tal y como se requiere los 7 términos suman cero y sólo el término −ℏ2∇2Ψ0(x)e
iγ(x) se

conserva en la Ec. (5.3.6) y Ψ(x) satisface la Ec. de Schrödinger ĤΨ(x) = EΨ(x) con Ψ(x)

dado por Ψ(x) = Ψ0(x)e
iγ(x) siempre que Ψ0(x) satisfaga la Ec. Ĥ0Ψ0(x) = EΨ0(x). Aśı de

(5.3.8) tenemos que:

∇γ(x) = e

ℏc
A.

(5.3.13)

Por lo tanto,

γ(x) =
e

ℏc

∮
C

A · dl = e

ℏc

∫
S

(∇×A) · dS

=
e

ℏc

∫
S

B · dS =
e

ℏc
ΦB. (5.3.14)

donde hemos considerado una integral cerrada porque el mismo efecto lo requiere, además

de aplicar el teorema de Stokes. De la Ec. (5.3.14) tenemos que ΦB es el flujo a través del

solenoide. Por lo tanto, el patrón de interferencia se desplaza hacia arriba en una cantidad

∆x =
Lλ

2πd
δ =

Lλ–

d

e

ℏc
ΦB. (5.3.15)

El efecto neto es que la presencia del solenoide causa un desplazamiento en el patrón de

interferencia, a pesar de que los electrones solo se mueven a través de regiones donde no hay

campo magnético.
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5.3.2. Relación entre la fase cuántica y la topoloǵıa

La expresión fundamental para la fase adquirida obtenida mediante la ecuación de Schrödin-

ger [ver Ec. (5.3.14)], revela una conexión profunda entre la mecánica cuántica y la geo-

metŕıa del espacio. Esta relación cuantitativa, que muestra la dependencia directa con el

flujo magnético ΦB, adquiere su pleno significado al examinar las propiedades del potencial

vectorial en la región exterior al solenoide.

En coordenadas ciĺındricas, el potencial A presenta una componente ϕ no nula tanto

dentro como fuera del solenoide:

Aϕ =


Br
2
, dentro del solenoide.

BR2

2r
, fuera del solenoide.

Esta configuración genera un campo magnético B puramente axial dentro del solenoide,

mientras que en el exterior se cumple exactamente B = 0, sin embargo, A ̸= 0, por lo que

el vaćıo tiene una estructura. Dado que ∇×A = 0, podemos escribir A = ∇χ para alguna

función χ. Fuera del solenoide, esta función toma la forma:

χ =
BR2

2
ϕ.

La función χ no es univaluada, ya que aumenta en πR2B cuando ϕ → ϕ + 2π, es decir:

cada vuelta completa alrededor del solenoide incrementa χ en πR2B, cantidad directamente

proporcional al flujo magnético encerrado.

Las funciones regulares no univaluadas como χ solo pueden existir en espacios no simple-

mente conexos. Un espacio simplemente conexo es aquel en el que todas las curvas cerradas

pueden contraerse continuamente a un punto. El espacio relevante en este problema es el

espacio del vaćıo, es decir, el espacio fuera del solenoide, y este no es simplemente conexo.

Esta caracteŕıstica topológica se manifiesta f́ısicamente en la fase γ(x) de la Ec. (5.3.14),

que resulta ser sensible al número de vueltas que la trayectoria del electrón da alrededor del

solenoide.

La invariancia de norma del efecto queda garantizada por la naturaleza cerrada de la

integral en la Ec. (5.3.14), que solo depende del flujo ΦB a través del solenoide.
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Caṕıtulo 6

Conclusiones

En este trabajo, se ha obtenido el mismo resultado para el efecto Aharonov-Bohm (A-

B) mediante dos enfoques distintos: la formulación de integrales de trayectoria de Feynman

y la resolución de la ecuación de Schrödinger considerando la interacción con el campo

magnético B. Este resultado, representado en las ecuaciones (4.2.6) y (5.3.14), no solo valida

la consistencia de ambos métodos, sino que también resalta la profundidad y coherencia de

la mecánica cuántica.

La formulación de Feynman proporciona una perspectiva particularmente esclarecedora

del efecto A-B, mostrando que surge de la interferencia entre las fases acumuladas por las

part́ıculas al recorrer diferentes trayectorias alrededor de una región con potencial vectorial

A ̸= 0. Este enfoque subraya la necesidad de considerar todas las trayectorias posibles,

pues el cambio de patrón no se puede explicar sin considerar todas las trayectorias y la fase

que cada una acumula, ofreciendo una interpretación geométrica del efecto en la que la fase

cuántica está intŕınsecamente ligada a la topoloǵıa del espacio.

Por otro lado, al resolver la ecuación de Schrödinger, el efecto A-B se manifiesta a través

del acoplamiento mı́nimo, donde el potencial vectorial A modifica el momento cinemático

de la part́ıcula y, como se observó en el caṕıtulo 5, la ecuación de Schrödinger en presencia

de B se extendió a tal punto que se tuvo que desarrollar detalladamente para justificar la

expresión que nos lleva al efecto. Este enfoque demuestra que la ecuación de Schrödinger es

invariante bajo transformaciones de norma, lo que implica que el efecto observable depende

únicamente de cantidades invariantes de norma, como la integral de ĺınea
∮
A · dl. Esta
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invariancia de norma es crucial para entender por qué el potencial vectorial, y no solo los

campos electromagnéticos, desempeña un papel fundamental en la mecánica cuántica. En el

lenguaje de la teoŕıa de grupos, las transformaciones de norma corresponden a acciones del

grupo de norma U(1)1, y la invariancia bajo estas transformaciones refleja la simetŕıa del

sistema.

Un aspecto intrigante del efecto A-B es su relación con la localidad. En su art́ıculo

Significance of Electromagnetic Potentials in the Quantum Theory [1], Aharonov y Bohm

argumentaron que los potenciales electromagnéticos tienen un significado f́ısico más profundo

en la teoŕıa cuántica que los propios campos. Esto sugiere que, en el contexto cuántico,

los potenciales no son meros artificios matemáticos, sino entidades f́ısicas con las que las

part́ıculas interactúan directamente. En el caso del efecto A-B, el potencial vectorial A

adquiere un significado f́ısico tangible, ya que es el único concepto con el que las part́ıculas

parecen interactuar. Sin embargo, esta interpretación no está exenta de controversia ya que

al aplicar el teorema de Stokes a la ecuación (5.3.14), se observa que la part́ıcula también

puede interactuar indirectamente con el campo B dentro del solenoide, lo que cuestiona la

idea de localidad estricta y ofrece una perspectiva alternativa sobre el fenómeno.

El efecto A-B nos obliga a reinterpretar el espacio no como un simple fondo vaćıo, sino

como una estructura con propiedades topológicas relevantes: el hecho de que una part́ıcula

cargada pueda adquirir una fase observable al rodear una región inaccesible con campo

magnético (como el interior de un solenoide) implica que el espacio tiene una topoloǵıa no

trivial (no es simplemente conexo) ya que permite la existencia de lazos cerrados que no

pueden deformarse continuamente a un punto sin cruzar la región prohibida. Esto muestra

que el vaćıo, lejos de ser trivial, tiene una estructura matemática rica que afecta directamente

al comportamiento cuántico de las part́ıculas, y que la electrodinámica, al ser una teoŕıa de

norma, es sensible no solo a la curvatura local (el campo electromagnético), sino también a

las propiedades globales del espacio, codificadas en la holonomı́a del cuadri potencial Aµ.

El efecto A-B no solo es fundamental en la comprensión de los fenómenos cuánticos

asociados a potenciales electromagnéticos, sino que también constituye la base tecnológica de

1El grupo de norma U(1) describe transformaciones de fase locales en electrodinámica cuántica, y es la

simetŕıa de norma detrás del electromagnetismo.
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dispositivos como los SQUID´s (superconducting quantum interference devices), empleados

en la medición precisa de flujos magnéticos [7, 30]. Además, una revisión de este efecto

resulta esencial como preludio al estudio de su generalización no Abeliana [31], donde entran

en juego teoŕıas de Yang-Mills [32, 33]. En años recientes, el efecto A-B ha cobrado relevancia

en el estudio de materiales de baja dimensión (como el grafeno) y sistemas con propiedades

topológicas, abriendo nuevas perspectivas en materia condensada [35, 36]. Estos avances

reflejan la vigencia del efecto A-B como puente entre la teoŕıa cuántica fundamental y sus

aplicaciones en sistemas f́ısicos complejos.

Debemos comentar también que, cuando tratamos de eliminar los potenciales en teoŕıa

clásica y cuántica de campos (para manejar cantidades invariantes de norma) nos encon-

tramos con ciertos obstáculos que impiden un tratamiento claro y consistente, como en el

estudio de la relatividad general [42] y las teoŕıas de Yang-Mills [43]. Otro enfoque que per-

mitiŕıa el tratamiento con cantidades invariantes de norma (f́ısicos) seŕıa el uso del grupo

extendido de lazos; sin embargo, su estudio es incompleto (aún) [7].

Finalmente, el hecho de que ambos enfoques conduzcan al mismo resultado refuerza la

coherencia interna de la mecánica cuántica. Este trabajo no solo confirma la validez de

ambas formulaciones, sino que también profundiza en la comprensión del efecto A-B, un

fenómeno que continúa desafiando nuestra intuición y enriqueciendo nuestra comprensión de

la interacción entre la mecánica cuántica y el electromagnetismo.
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Apéndice A

El oscilador armónico simple

El oscilador armónico simple es uno de los problemas más importantes en mecánica

cuántica. No sólo ilustra muchos de los conceptos básicos y métodos de la mecánica cuánti-

ca, sino que además tiene un gran valor práctico. Esencialmente, cualquier pozo de potencial

puede aproximarse mediante un oscilador armónico simple, por lo que describe fenómenos

que van desde vibraciones moleculares hasta la estructura nuclear. Además, dado que el

Hamiltoniano es básicamente la suma de los cuadrados de dos variables canónicamente con-

jugadas, constituye también un punto de partida importante para gran parte de la teoŕıa

cuántica de campos.

A.1. Eigenkets y eigenvalores de enerǵıa

Comenzamos nuestro análisis con el elegante método de operadores de Dirac, basado en

trabajos previos de M. Born y N. Wiener, para determinar los eigenkets de enerǵıa (esta-

dos propios) y los eigenvalores de enerǵıa del oscilador armónico simple. El hamiltoniano

fundamental es:

H =
p2

2m
+

1

2
mω2x2, (A.1.1)

donde ω representa la frecuencia angular del oscilador clásico, relacionada con la constante

elástica k (Ley de Hooke) mediante ω =
√
k/m. Los operadores posición x y momento p

son, evidentemente, hermitianos.
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Resulta conveniente introducir dos operadores no hermitianos:

a =

√
mω

2ℏ

(
x+

ip

mω

)
, (A.1.2)

a† =

√
mω

2ℏ

(
x− ip

mω

)
, (A.1.3)

denominados respectivamente operador de aniquilación y operador de creación. Uti-

lizando las relaciones de conmutación canónicas, obtenemos directamente:

[a, a†] =
(mω
2ℏ

)
(−i[x, p] + i[p, x]) = 1. (A.1.4)

Definimos además el operador número:

N = a†a, (A.1.5)

que es claramente hermitiano. Un cálculo directo muestra que:

a†a =
(mω
2ℏ

)(
x2 +

p2

m2ω2

)
+

i

2ℏ
[x, p] =

H

ℏω
− 1

2
. (A.1.6)

Por lo tanto, tenemos una relación importante entre el operador número y el operador ha-

miltoniano:

H = ℏω
(
N +

1

2

)
, (A.1.7)

Dado que H es una función lineal de N , N puede diagonalizarse simultáneamente con H.

Denotamos un autoestado de enerǵıa de N por su eigenvalor n, aśı:

N |n⟩ = n|n⟩. (A.1.8)

Debido a la Ec. (A.1.7) tenemos:

H|n⟩ =
(
n+

1

2

)
ℏω|n⟩, (A.1.9)

lo que significa que los eigenvalores de enerǵıa están dados por:

En =

(
n+

1

2

)
ℏω. (A.1.10)

Para apreciar el significado f́ısico de a, a† y N , primero observemos que

[N, a] = [a†a, a] = a†[a, a] + [a†, a]a = −a, (A.1.11)
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donde hemos usado (A.1.4). De manera similar, podemos derivar

[N, a†] = a†. (A.1.12)

Como resultado, tenemos

Na†|n⟩ = ([N, a†] + a†N)|n⟩ = (n+ 1)a†|n⟩, (A.1.13)

y

Na|n⟩ = ([N, a] + aN)|n⟩ = (n− 1)a|n⟩. (A.1.14)

Estas relaciones implican que a†|n⟩ (a|n⟩) es también un eigenestado de N con valor propio

incrementado (decrementado) en uno. Dado que el aumento (disminución) de n en uno equi-

vale a la creación (aniquilación) de una unidad cuántica de enerǵıa ℏω, el término operador

de creación (operador de aniquilación) para a† (a) es apropiado.

La ecuación (A.1.14) implica que a|n⟩ y |n − 1⟩ son iguales salvo por una constante

multiplicativa. Escribimos

a|n⟩ = c|n− 1⟩, (A.1.15)

donde c es una constante numérica que debe determinarse a partir del requisito de que tanto

|n⟩ como |n− 1⟩ estén normalizados. Primero, observamos que

⟨n|a†a|n⟩ = |c|2. (A.1.16)

Podemos evaluar el lado izquierdo de (A.1.16) observando que a†a es el operador número,

por lo que

n = |c|2. (A.1.17)

Tomando c como real y positivo por convención, finalmente obtenemos

a|n⟩ =
√
n|n− 1⟩. (A.1.18)

De manera similar, es fácil mostrar que

a†|n⟩ =
√
n+ 1|n+ 1⟩. (A.1.19)

Supongamos que seguimos aplicando el operador de aniquilación a a ambos lados de (A.1.18):

a2|n⟩ =
√
n(n− 1)|n− 2⟩, (A.1.20)
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a3|n⟩ =
√
n(n− 1)(n− 2)|n− 3⟩, (A.1.21)

... (A.1.22)

Podemos obtener eigenestados del operador número con valores de n cada vez más pequeños

hasta que la secuencia termine, lo que debe ocurrir siempre que comencemos con un entero

positivo n. Podŕıa argumentarse que si comenzamos con un n no entero, la secuencia no

terminaŕıa, llevando a eigenestados con valores negativos de n. Pero también tenemos

n = ⟨n|N |n⟩ = (⟨n|a)† . (a|n⟩) ≥ 0, (A.1.23)

lo que implica que n nunca puede ser negativo. Por lo tanto, concluimos que la secuencia

debe terminar con n = 0 y que los valores permitidos de n son enteros no negativos.

Como el valor más pequeño posible de n es cero, el estado fundamental del oscilador

armónico tiene

E0 =
1

2
ℏω. (A.1.24)

Ahora podemos aplicar sucesivamente el operador de creación a† al estado fundamental |0⟩.

Usando (A.1.19), obtenemos:

|1⟩ = a†|0⟩, (A.1.25)

|2⟩ =
(
a†√
2

)
|1⟩ =

[
(a†)2√

2

]
|0⟩, (A.1.26)

|3⟩ =
(
a†√
3

)
|2⟩ =

[
(a†)3√

3!

]
|0⟩, (A.1.27)

... (A.1.28)

|n⟩ =

[(
a†
)n

√
n!

]
|0⟩, (A.1.29)

De esta manera hemos logrado construir eigenestados simultáneos de N y H con eigen-

valores de enerǵıa:

En =

(
n+

1

2

)
ℏω (n = 0, 1, 2, 3, . . .). (A.1.30)

A partir de (A.1.18), (A.1.19) y el requisito de ortonormalidad para {|n⟩}, obtenemos los

elementos de la matriz:

⟨n′|a|n⟩ =
√
nδn′,n−1, ⟨n′|a†|n⟩ =

√
n+ 1δn′,n+1. (A.1.31)
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Usando estos resultados junto con

x =

√
ℏ

2mω
(a+ a†), p = i

√
mℏω
2

(−a+ a†), (A.1.32)

derivamos los elementos de matriz de los operadores x y p:

⟨n′|x|n⟩ =
√

ℏ
2mω

(
√
nδn′,n−1 +

√
n+ 1δn′,n+1), (A.1.33)

⟨n′|p|n⟩ = i

√
mℏω
2

(−
√
nδn′,n−1 +

√
n+ 1δn′,n+1). (A.1.34)

El método de operadores también puede usarse para obtener las eigenfunciones de enerǵıa

en el espacio de posiciones. Comencemos con el estado fundamental definido por

a|0⟩ = 0, (A.1.35)

que, en la representación de x, se lee:

⟨x′|a|0⟩ =
√
mω

2ℏ
⟨x′|

(
x+

ip

mω

)
|0⟩ = 0. (A.1.36)

Podemos considerar esto como una ecuación diferencial para la función de onda del estado

fundamental ⟨x′|0⟩: (
x′ + x20

d

dx′

)
⟨x′|0⟩ = 0, (A.1.37)

donde hemos introducido

x0 =

√
ℏ
mω

, (A.1.38)

que establece la escala de longitud del oscilador. Vemos que la solución normalizada a la ec.

(A.1.37) es

⟨x′|0⟩ = 1
4
√
π
√
x0

exp

[
−1

2

(
x′

x0

)2
]
. (A.1.39)

También podemos obtener las eigenfunciones de enerǵıa para estados excitados evaluando:

⟨x′|1⟩ = ⟨x′|a†|0⟩ =
(

1√
2x0

)(
x′ − x20

d

dx′

)
⟨x′|0⟩, (A.1.40)

⟨x′|2⟩ =
(

1√
2

)
⟨x′|(a†)2|0⟩ =

(
1√
2!

)(
1√
2x0

)2(
x′ − x20

d

dx′

)2

⟨x′|0⟩, . . . (A.1.41)
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En general, obtenemos:

⟨x′|n⟩ =
(

1

π1/4
√
2nn!

)(
1

x
n+1/2
0

)(
x′ − x20

d

dx′

)n

exp

[
−1

2

(
x′

x0

)2
]
. (A.1.42)

Es instructivo examinar los valores esperados de x2 y p2 para el estado fundamental.

Primero, notemos que:

x2 =
ℏ

2mω
(a2 + (a†)2 + a†a+ aa†). (A.1.43)

Cuando tomamos el valor esperado de x2, sólo el último término en (A.1.43) aporta una

contribución no nula:

⟨x2⟩ = ℏ
2mω

=
x20
2
. (A.1.44)

Igualmente,

⟨p2⟩ = mℏω
2

. (A.1.45)

Se tiene aśı que los valores esperados de las enerǵıas cinética y potencial son, respectivamente:

〈
p2

2m

〉
=

ℏω
4

=
⟨H⟩
2

y

〈
mω2x2

2

〉
=

ℏω
4

=
⟨H⟩
2
, (A.1.46)

como se espera del teorema del virial. De (A.1.33) y (A.1.34), sigue que:

⟨x⟩ = ⟨p⟩ = 0, (A.1.47)

lo que también se cumple para los estados excitados. Por lo tanto, tenemos:

⟨(∆x)2⟩ = ⟨x2⟩ = ℏ
2mω

, ⟨(∆p)2⟩ = ⟨p2⟩ = mℏω
2

, (A.1.48)

y vemos que la relación de incertidumbre se satisface en la forma de producto mı́nimo de

incertidumbre:

⟨(∆x)2⟩⟨(∆p)2⟩ = ℏ2

4
. (A.1.49)

Esto no es sorprendente porque la función de onda del estado fundamental tiene forma gaus-

siana. En contraste, los productos de incertidumbre para los estados excitados son mayores:

⟨(∆x)2⟩⟨(∆p)2⟩ =
(
n+

1

2

)2

ℏ2. (A.1.50)
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A.2. Evolución temporal del oscilador

Hasta ahora no hemos discutido la evolución temporal de los kets de estado del oscilador

o de observables como x y p. Todo lo que hemos hecho se supone que es válido en algún

instante de tiempo, digamos en t = 0; los operadores x, p, a y a† deben considerarse ya sea

como operadores en la imagen de Schrödinger (para todo t) o como operadores en la imagen

de Heisenberg en t = 0. En la parte restante de esta sección, trabajaremos exclusivamente en

la imagen de Heisenberg, lo que significa que x, p, a y a† son todos dependientes del tiempo

aunque no escribamos expĺıcitamente x(H)(t), etcétera.

Las ecuaciones de movimiento de Heisenberg para p y x son, de la Ec. (1.2.24) y la Ec.

(1.2.25):

dp

dt
= −mω2x, (A.2.1)

y

dx

dt
=

p

m
. (A.2.2)

Este par de ecuaciones diferenciales acopladas es equivalente a dos ecuaciones diferenciales

no acopladas para a y a†, a saber:

da

dt
=

√
mω

2ℏ

( p
m

− iωx
)
= −iωa, (A.2.3)

y

da†

dt
= iωa†, (A.2.4)

cuyas soluciones son:

a(t) = a(0) exp(−iωt), (A.2.5)

a†(t) = a†(0) exp(iωt). (A.2.6)

Estas relaciones muestran expĺıcitamente que N y H son operadores independientes del tiem-

po incluso en la imagen de Heisenberg, como debe ser. En términos de x y p, podemos

reescribir (A.2.5) y (A.2.6) como:

x(t) +
ip(t)

mω
= x(0) exp(−iωt) + i

[
p(0)

mω

]
exp(−iωt), (A.2.7)
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y

x(t)− ip(t)

mω
= x(0) exp(iωt)− i

[
p(0)

mω

]
exp(iωt). (A.2.8)

Igualando las partes hermitianas y anti-hermitianas de ambos lados por separado, deducimos:

x(t) = x(0) cosωt+

[
p(0)

mω

]
sinωt, (A.2.9)

y

p(t) = −mωx(0) sinωt+ p(0) cosωt. (A.2.10)

Estas ecuaciones son idénticas a las ecuaciones clásicas de movimiento. Vemos aśı que los

operadores x y p “oscilan” exactamente como sus análogos clásicos.

De (A.2.9) y (A.2.10), uno podŕıa tentarse a concluir que ⟨x⟩ y ⟨p⟩ siempre oscilan

con frecuencia angular ω. Sin embargo, esta inferencia no es correcta. Tomemos cualquier

eigenestado de enerǵıa caracterizado por un valor definido de n; el valor esperado ⟨n|x(t)|n⟩

se anula porque los operadores x(0) y p(0) cambian n por ±1, y |n⟩ y |n±1⟩ son ortogonales.

Para observar oscilaciones que recuerden al oscilador clásico, debemos considerar una

superposición de eigenestados de enerǵıa como:

|α⟩ = c0|0⟩+ c1|1⟩. (A.2.11)

El valor esperado de x(t) tomado con respecto a (A.2.11) śı oscila.

Hemos visto que un eigenestado de enerǵıa no se comporta como el oscilador clásico −

en el sentido de valores esperados oscilantes para x y p − no importa cuán grande sea n.

Lógicamente podemos preguntar: ¿Cómo podemos construir una superposición de eigenes-

tados de enerǵıa que imite más de cerca al oscilador clásico? En lenguaje de funciones de

onda, queremos un paquete de ondas que oscile sin dispersarse en forma. Resulta que un

estado coherente definido por la ecuación de eigenvalores para el operador de aniquilación

no-hermitiano a:

a|λ⟩ = λ|λ⟩, (A.2.12)

con, en general, un eigenvalor complejo λ, cumple este propósito. El estado coherente tiene

muchas otras propiedades notables:
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1. Cuando se expresa como superposición de eigenestados de enerǵıa (o de N):

|λ⟩ =
∞∑
n=0

f(n)|n⟩, (A.2.13)

la distribución de |f(n)|2 con respecto a n es de tipo Poisson alrededor de algún valor

medio n̄:

|f(n)|2 =
(
n̄n

n!

)
exp(−n̄). (A.2.14)

2. Puede obtenerse trasladando el estado fundamental del oscilador por alguna distancia

finita.

3. Satisface la relación de producto mı́nimo de incertidumbre en todo tiempo.
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Apéndice B

La ecuación de onda de Schrödinger

B.1. La ecuación de onda dependiente del tiempo

Regresamos ahora hacia la imagen de Schrödinger y examinamos la evolución temporal

en la representación de x. En otras palabras, nuestra tarea es estudiar el comportamiento de

la función de onda

Ψ(x′, t) = ⟨x′|α, t0; t⟩ (B.1.1)

como función del tiempo, donde |α, t0; t⟩ es un ket de estado en la imagen de Schrödinger en

el tiempo t, y ⟨x′| es un eigenbra de posición independiente del tiempo con valor propio x′.

El operador Hamiltoniano se toma como:

H =
p2

2m
+ V (x) (B.1.2)

El potencial V (x) es un operador hermitiano; además, es local en el sentido que en la repre-

sentación de x tenemos:

⟨x′′|V (x)|x′⟩ = V (x′)δ(x′ − x′′) (B.1.3)

donde V (x′) es una función real de x′.

Ahora derivamos la ecuación de onda dependiente del tiempo de Schrödinger. Primero

escribimos la ecuación de Schrödinger para un ket de estado (1.1.21) en la representación de

x:

iℏ
∂

∂t
⟨x′|α, t0; t⟩ = ⟨x′|H|α, t0; t⟩ (B.1.4)
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donde hemos usado el hecho de que los eigenbras de posición en la imagen de Schrödinger

no cambian con el tiempo. También podemos escribir la contribución de la enerǵıa cinética

al lado derecho de (B.1.4) como:〈
x′
∣∣∣∣ p2

2m

∣∣∣∣α, t0; t〉 = −
(

ℏ2

2m

)
∇′2⟨x′|α, t0; t⟩ (B.1.5)

Para V (x), simplemente usamos

⟨x′|V (x) = ⟨x′|V (x′),

donde V (x′) ya no es un operador. Combinando todo, deducimos:

iℏ
∂

∂t
⟨x′|α, t0; t⟩ = −

(
ℏ2

2m

)
∇′2⟨x′|α, t0; t⟩+ V (x′)⟨x′|α, t0; t⟩, (B.1.6)

que reconocemos como la ecuación de onda dependiente del tiempo de E. Schrödinger, usual-

mente escrita como:

iℏ
∂

∂t
Ψ(x′, t) = −

(
ℏ2

2m

)
∇′2Ψ(x′, t) + V (x′)Ψ(x′, t). (B.1.7)

La mecánica cuántica basada en la ecuación de onda (B.1.7) se conoce como mecánica

ondulatoria.

B.2. La ecuación de onda independiente del tiempo

Ahora derivamos la ecuación diferencial parcial satisfecha por las eigenfunciones de

enerǵıa. La dependencia temporal de un estado estacionario está dada por exp(−iEa′t/ℏ).

Esto nos permite escribir su función de onda como:

⟨x′|a′, t0; t⟩ = ⟨x′|a′⟩ exp
(
−iEa′t

ℏ

)
, (B.2.1)

donde se entiende que inicialmente el sistema se prepara en un eigenestado simultáneo de A

y H con eigenvalores a′ y Ea′ , respectivamente. Sustituyamos ahora (B.2.1) en la ecuación

de Schrödinger dependiente del tiempo (B.1.6). Esto nos lleva a:

−
(

ℏ2

2m

)
∇′2⟨x′|a′⟩+ V (x′)⟨x′|a′⟩ = Ea′⟨x′|a′⟩. (B.2.2)
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Esta ecuación diferencial parcial es satisfecha por la eigenfunción de enerǵıa ⟨x′|a′⟩ con eigen-

valor de enerǵıa Ea′ . En realidad, en la mecánica ondulatoria donde el operador hamiltoniano

se da como función de x y p, como en (B.1.2), no es necesario referirse expĺıcitamente al

observable A que conmuta con H, porque siempre podemos elegir A como aquella función de

los observables x y p que coincide con H mismo. Por lo tanto, podemos omitir la referencia

a a′ y simplemente escribir (B.2.2) como la ecuación diferencial parcial que debe satisfacer

la eigenfunción de enerǵıa uE(x
′):

−
(

ℏ2

2m

)
∇′2uE(x

′) + V (x′)uE(x
′) = EuE(x

′). (B.2.3)

Esta es la ecuación de onda independiente del tiempo de E. Schrödinger, anunciada

en la primera de cuatro monumentales publicaciones, todas escritas en la primera mitad de

1926, que sentaron los fundamentos de la mecánica ondulatoria.

B.3. Interpretaciones de la función de onda

La interpretación probabiĺıstica de |Ψ|2 se deduce del hecho de que ⟨x′|α, t0; t⟩ debe

considerarse como un coeficiente de expansión de |α, t0; t⟩ en términos de los eigenkets de

posición {|x′⟩}. La cantidad ρ(x′, t) definida por

ρ(x′, t) = |Ψ(x′, t)|2 = |⟨x′|α, t0; t⟩|2. (B.3.1)

se considera por tanto como la densidad de probabilidad en la mecánica ondulatoria.

Espećıficamente, cuando usamos un detector que comprueba la presencia de la part́ıcula

dentro de un pequeño elemento de volumen d3x′ alrededor de x′, la probabilidad de registrar

un resultado positivo en el tiempo t viene dada por ρ(x′, t)d3x′.

En el resto de esta sección usaremos x en lugar de x′ ya que el operador posición no

aparecerá. Usando la ecuación de onda dependiente del tiempo de Schrödinger, es directo

derivar la ecuación de continuidad

∂ρ

∂t
+∇ · j = 0, (B.3.2)
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donde ρ(x, t) representa |Ψ|2 como antes, y j(x, t), conocido como el flujo de probabilidad,

viene dado por

j(x, t) = −
(
iℏ
2m

)
[Ψ∗∇Ψ− (∇Ψ∗)Ψ] =

(
ℏ
m

)
Im(Ψ∗∇Ψ). (B.3.3)

La realidad del potencial V (o la hermiticidad del operador V ) ha jugado un papel crucial

en la obtención de este resultado. Por el contrario, un potencial complejo puede dar cuenta

fenomenológicamente de la desaparición de una part́ıcula; tal potencial se usa a menudo para

reacciones nucleares donde part́ıculas incidentes son absorbidas por núcleos. Podemos intuir

que el flujo de probabilidad j está relacionado con el momento. Esto es efectivamente cierto

para j integrado sobre todo el espacio. De (B.3.3) obtenemos:∫
d3x j(x, t) =

⟨p⟩t
m

, (B.3.4)

donde ⟨p⟩t es el valor esperado del operador momento en el tiempo t. La ecuación (B.3.2)

recuerda a la ecuación de continuidad en dinámica de fluidos que caracteriza el flujo hi-

drodinámico en una región sin fuentes ni sumideros. Históricamente, Schrödinger interpretó

inicialmente |Ψ|2 como la densidad de materia real, o e|Ψ|2 como la densidad de carga eléctri-

ca real. Sin embargo, adoptar esta visión conduce a consecuencias paradójicas.

Un argumento t́ıpico para una medición de posición podŕıa ser: Un electrón atómico se

considera como una distribución continua de materia que llena una región finita alrededor del

núcleo; sin embargo, al realizar una medición que localiza el electrón en un punto espećıfico,

esta distribución continua colapsa abruptamente a una part́ıcula puntual sin extensión espa-

cial. La interpretación estad́ıstica más satisfactoria de |Ψ|2 como densidad de probabilidad

fue propuesta por primera vez por M. Born.

Para entender el significado f́ısico de la función de onda, escribámosla como:

Ψ(x, t) =
√
ρ(x, t) exp

[
iS(x, t)

ℏ

]
, (B.3.5)

con S real y ρ > 0, lo que siempre es posible para cualquier función compleja de x y t. El

significado de ρ ya se ha dado. ¿Cuál es la interpretación f́ısica de S? Notando que:

Ψ∗∇Ψ =
√
ρ∇ (

√
ρ) +

(
i

ℏ

)
ρ∇S, (B.3.6)
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podemos escribir el flujo de probabilidad [ver la ec. (B.3.3)] como:

j =
ρ∇S
m

. (B.3.7)

Vemos ahora que la función de onda contiene más información que el simple hecho de que

|Ψ|2 sea la densidad de probabilidad; el gradiente de la fase S contiene información crucial.

De (B.3.7) observamos que la variación espacial de la fase de la función de onda caracteriza

el flujo de probabilidad: cuanto más fuerte es la variación de fase, más intenso es el flujo.

La dirección de j en un punto x es normal a la superficie de fase constante que pasa por ese

punto. En el caso particularmente simple de una onda plana (eigenfunción del momento):

Ψ(x, t) ∝ exp

[
ip · x
ℏ

− iEt

ℏ

]
, (B.3.8)

donde p representa el eigenvalor del operador momento. Esto es evidente porque:

∇S = p. (B.3.9)

De manera más general, resulta tentador definir ∇S
m

como un tipo de “velocidad”

′′v′′ =
∇S
m

, (B.3.10)

y escribir la ecuación de continuidad (B.3.2) como:

∂ρ

∂t
+∇ · (ρ′′v′′) = 0, (B.3.11)

al igual que en dinámica de fluidos. Sin embargo, es erróneo plantear una interpretación

demasiado literal de j como ρ multiplicado por una velocidad definida en cada punto del

espacio, ya que una medición simultánea precisa de posición y velocidad necesariamente

violaŕıa el principio de incertidumbre.
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