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Resumen 

En este trabajo de tesis se propone el diseño teórico de un dispositivo absorbedor de vibraciones 

basado en la red mecánica C3 llamado NIDVA-C3, para el control de vibración armónica de 

una estructura tipo viga. Para cumplir con el propósito de éste trabajo se utilizaron la técnica 

de los puntos fijos extendida y el criterio 𝐻∞, en ambos casos se obtuvieron resultados 

satisfactorios, sin embargo al utilizar la técnica de los puntos fijos solo se obtiene una 

aproximación de la respuesta exacta que se obtiene al utilizar el criterio 𝐻∞, esto se observa 

más claramente al comparar las gráficas de las respuestas del sistema con ambas técnicas. Una 

vez obtenidos los parámetros óptimos para el sistema se comparó la respuesta del sistema 

optimizado con la respuesta del sistema al utilizar el absorbedor de vibración dinámico (DVA) 

clásico. Al realizar la comparación se observó que al utilizar el NIDVA-C3 la amplitud de la 

vibración se reduce en un 48.1% que para casos prácticos significa una mayor durabilidad de 

las estructuras y máquinas sujetas a vibración y para el área de ingeniería mecánica automotriz 

se traduce en una mejor experiencia de manejo ya que se tendría una trayectoria más suave y 

fluida, lo cual brinda mayor confort. 
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Capítulo 1: Introducción 

 

En diversas áreas de la ingeniería el daño generado a estructuras y maquinaria por vibraciones 

es una de las principales preocupaciones. Es por ello que, durante los últimos años, el desarrollo 

de dispositivos de control de vibraciones ha sido una de las principales áreas de investigación. 

Debido a este crecimiento del área de estudio, se ha implementado el uso de nuevos dispositivos 

de control de vibraciones. 

 

En el 2001 un nuevo dispositivo para el control de vibraciones fue introducido el cual desde 

entonces se ha convertido en uno de los tres principales dispositivos de control pasivo utilizados 

en los sistemas de suspensión de vehículos de motor de alto rendimiento [1], esto hace que el 

conocimiento adquirido al desarrollar esta tesis también tenga aplicación en el área automotriz. 

En su artículo “The inerter: A retrospective” [1], Smith cita una analogía entre los elementos 

de las redes mecánicas con los elementos de las redes eléctricas, la cual es llamada la analogía 

Fuerza-Corriente, la cual se muestra en la Figura 1.1. 

 

   

   

Figura 1. 1: Asignación estándar de los elementos de circuitos en la analogía Fuerza-

Corriente donde, k (rigidez), m (masa), c (coeficiente de amortiguamiento), I (inductancia), 

C (capacitancia) y R (resistencia), son constantes positivas 
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Sin embargo, la masa no es un dispositivo para la ingeniería que se pudiera manufacturar en 

comparación con los otros 5 dispositivos de esta analogía, es por ello que con la invención del 

inersor esta analogía cobra un poco más de sentido ya que puede ser el equivalente mecánico 

de un capacitor eléctrico. 

 

Existe un fenómeno llamado Resonancia el cual se da siempre que la frecuencia natural de la 

vibración de una máquina o de una estructura coincide con la frecuencia de la excitación 

externa [2], este fenómeno puede llegar a producir deflexiones y fallas excesivas en cualquier 

sistema, es por ello que es importante buscar la manera de reducir las amplitudes de vibración 

que las fuerzas externas producen en los sistemas. Una de las técnicas de reducción de 

vibraciones más investigadas es el uso de absorbedores de vibración dinámicos. Este sistema 

denominado DVA por sus siglas en inglés, es un sistema de masa auxiliar acoplado a un sistema 

primario, el cual ayuda reduciendo la amplitud de la vibración no deseada, para ello utiliza el 

equilibrio dinámico entre los desplazamientos de la estructura principal y el absorbedor. 

También, existe una configuración llamada absorbedor de vibración no tradicional, cuya 

característica es la conexión a tierra del amortiguador viscoso lineal del sistema secundario. El 

absorbedor de vibración dinámico se diseña de modo que las frecuencias naturales del sistema 

resultante se alejen de la frecuencia de excitación. 

 

Actualmente las investigaciones relacionadas con el control pasivo de vibraciones se central en 

la implementación del DVA en conjunto con las redes mecánicas basadas en inersor. En [3] 

mediante la propuesta de dos sistemas de control pasivo de vibraciones basados en inersores se 

comprobó que el uso de éstos sistemas resulta más eficiente que usar solo el DVA clásico. 
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1.1  Planteamiento del problema  

La vida útil de muchos elementos estructurales y maquinaria se ve reducida en gran manera 

debido a las vibraciones generadas por alguna fuerza externa muchas veces generadas por los 

efectos del viento o mala alineación de componentes conectados a motores, por ésta razón el 

desarrollo de sistemas de control de vibraciones para minimizar las amplitudes de vibración es 

de gran importancia en la ingeniería. Existen muchas variedades de sistemas mecánicos que 

han sido modelados matemáticamente y que han demostrado ser muy efectivos, ahora bien, 

desde el desarrollo del inersor, la síntesis de redes mecánicas pasivas se ha popularizado ya que 

se ha demostrado una ventaja superior cuando se emplean los inersores. Es por ello que en éste 

trabajo de tesis se propone el sistema mostrado en la Figura 1.2 en donde, considerando el 

modelo dinámico de la estructura, se realizarán las actividades planteadas en la sección de 

objetivos y metas. 

 

En la propuesta mostrada en la Figura 1.2 se observa una configuración de una viga de Euler-

Bernoulli de longitud L y sujeta a una fuerza de excitación armónica la cual está definida por 

la función f(x)g(t) donde f(x) es una función espacial y g(t) es una función determinística de 

tiempo. Esta viga está acoplada en serie con un absorbedor de vibración no tradicional el cual 

utiliza la red mecánica basada en inersor C3 [4], la cual emplea un resorte, un inersor y 

amortiguador en serie. Los coeficientes de rigidez y amortiguamiento para el absorbedor y la 

red mecánica quedan definidos como 𝑐𝑛y 𝑘𝑛 (n=1,2) respectivamente, ambos, están conectados 

a la masa 𝑚1. La configuración del absorbedor de vibración se localiza en el punto 𝑥 = 𝑎. Para 

el diseño óptimo del absorbedor de vibración se utilizarán tanto la técnica de los puntos fijos, 

como el índice de rendimiento 𝐻∞, ambas técnicas de optimización tienen como propósito 

obtener parámetros óptimos para el diseño de los absorbedores de vibración, sin embargo, la 

técnica de los puntos fijos extendida emplea los puntos invariantes para obtener soluciones 

aproximadas, mientras que con el índice de rendimiento  𝐻∞ se utilizan las frecuencias de 

resonancia para obtener soluciones exactas, sin embargo, las ecuaciones resultantes en el 

tratamiento matemático son más complejas. Es por ello que es importante considerar ambas 

técnicas de optimización. 

 



 
 

9 
 

 

Figura 1. 2: Esquema de la viga Euler-Bernoulli con el absorbedor de vibración no 

tradicional utilizando la red mecánica C3 

1.2  Justificación 

Según la teoría de vibraciones, si un cuerpo tiene masa y elasticidad tiene la capacidad de 

vibrar, en estructuras, esta vibración muchas veces es ocasionada por la intervención de una 

fuerza dinámica externa, la cual puede ser causada por efectos del viento, olas, terremotos o 

incluso explosiones. Si la vibración generada por las fuerzas dinámicas externas tiene una 

frecuencia equiparable a las frecuencias naturales de la estructura se da un fenómeno llamado 

resonancia, este fenómeno hace que las amplitudes de las vibraciones tengan un incremento 

peligroso, comprometiendo la integridad de la estructura. Por esta razón es necesario el 

desarrollo de métodos para la mitigación de las vibraciones, ya que de no hacer esto, la vida 

útil de las estructuras se reduce. Con el fin de mitigar las vibraciones en estructuras tipo viga 

este trabajo se propone el control pasivo de vibraciones mediante el diseño óptimo de un 

absorbedor de vibración dinámico no tradicional basado en inersor conectado a tierra mecánica 

por una red mecánica C3.  
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1.3  Hipótesis 

La implementación del absorbedor de vibración dinámico no tradicional NIDVA-C3 a una 

estructura tipo viga, producirá un mayor rendimiento dinámico en comparación con el DVA 

clásico. 

 

1.4 Objetivos 

 

1.4.1  Objetivo General 

Diseñar teóricamente un absorbedor de vibración no tradicional sintonizado para minimizar la 

vibración armónica de la estructura tipo viga 

 

1.4.2 Objetivos Específicos 

 

● Obtener el modelo dinámico adimensional de la estructura tipo viga con el absorbedor 

de vibración no tradicional NIDVA-C3.  

 

● Aplicar la técnica de optimización de los puntos fijos extendida con el objetivo de 

obtener soluciones de forma cerrada para el diseño óptimo del absorbedor dinámico 

propuesto. 

 

● Obtener numéricamente soluciones óptimas mediante el criterio de rendimiento 𝐻∞ con 

el objetivo de minimizar las amplitudes de vibración de la estructura tipo viga sujeta a 

vibración armónica. 

    

1.5  Metas 

 Desarrollo del modelado de la viga con el absorbedor de vibración no tradicional 

NIDVA-C3 mediante la implementación del formulismo de Euler-Lagrange. 
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 Obtención de las ecuaciones algebraicas simplificadas para el cálculo de los parámetros 

óptimos del sistema mediante la técnica de los puntos fijos extendida. 

 

 

 Obtención de los valores numéricos de los parámetros óptimos del sistema mediante el 

criterio 𝐻∞. 

 

 Comparación gráfica las funciones de respuesta en frecuencia considerando los 

parámetros óptimos obtenidos con ambas técnicas de optimizacion. 

 

 Comparación los resultados obtenidos con el criterio 𝐻∞ con la respuesta del sistema 

al implementar el DVA clásico. 

 

 Escribir una tesis con los resultados obtenidos. 

 

1.6  Metodología. 

La metodología que se utilizó en éste trabajo fue la propuesta por Canales [5] ya que según el 

autor este método responde a la necesidad de las diferentes escuelas de ingeniería.  La 

estructura de la metodología se muestra en la Figura 1.3: 

 

Figura 1. 3: Esquema de la estructura de la metodología propuesta por Canales. 
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Donde cada etapa consiste en: 

 

Etapa 0: Documentación. En esta etapa, se recopila información relevante acerca de la 

tecnología, metodologías empleadas, entre otros aspectos relacionados con el tema de 

investigación. Es común que antes de comenzar un desarrollo o investigación, sea necesario 

documentarse sobre el dominio específico del producto o tema a abordar. La documentación 

puede incluir bibliografías, textos, artículos, normas, reglamentos, entre otros recursos que 

proporcionen información necesaria para el proceso de investigación.  

Para el caso particular de éste trabajo de tesis fue necesario recopilar información sobre 

métodos de optimización de absorbedores de vibración, además de obtener un panorama 

general acerca de estudios previos a éste trabajo en los cuales se haya implementado el control 

de vibraciones y todo el conocimiento teórico necesario para el desarrollo del modelo 

matemático del sistema. 

 

Etapa 1: Determinación del problema.  Esta consiste en realizar la captura de requerimientos, 

lo que permite realizar un análisis del problema y delimitar los aspectos concretos que se 

tendrán en cuenta para el futuro objeto de investigación.  

Para éste trabajo se considera una estructura tipo viga sujeta a carga armónica externa a la cual 

es necesario mitigar la vibración mediante el uso del NIDVA-C3, para ello es necesario el uso 

de dos técnicas de optimización para la obtención de los parámetros óptimos que reduzcan de 

mejor manera las amplitudes de vibración del sistema. 

 

Etapa 2: Creación de la hipótesis. En la creación de la hipótesis, se formula una descripción 

del nuevo objeto que se desea construir o desarrollar en el contexto de la investigación. Esta 

hipótesis se basa en el objeto de estudio y tiene como objetivo principal guiar el proceso de 

investigación y proporcionar una dirección clara para la resolución del problema planteado.  

La hipótesis planteada en éste trabajo es la siguiente:  

 La implementación del absorbedor de vibración dinámico no tradicional NIDVA-C3 a 

una estructura tipo viga, producirá un mayor rendimiento dinámico en comparación con 

el DVA clásico. 
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Etapa 3: Definición del método de trabajo. En esta etapa se toman decisiones importantes 

relacionadas con la investigación, lo cual implica elegir el paradigma metodológico general de 

abordamiento, el método concreto y la metodología técnica ingenieril. 

En éste trabajo se utilizan las ecuaciones de equilibrio de Newton y el formulismo de Euler-

Lagrange para desarrollar el modelo matemático, además se utiliza el análisis modal para 

obtener la función de respuesta en frecuencia de la estructura. Una vez obtenida la función de 

respuesta en frecuencia se utilizan la técnica de los puntos fijos extendida y el criterio 𝐻∞ para 

obtener los parámetros óptimos que minimicen la vibración del sistema. 

 

Etapa 4: Resolución, validación y verificación. En primer lugar, se realiza la resolución del 

problema identificado mediante herramientas matemáticas y consideraciones físicas.  

Luego, se procede a la validación y verificación de la solución propuesta. La validación implica 

comprobar si la solución es adecuada y cumple con los requerimientos establecidos. Por otro 

lado, la verificación implica probar la solución en casos de prueba para asegurarse de que 

funcione correctamente. Una vez obtenidos los parámetros óptimos del sistema se realizó la 

validación de los mismos al realizar gráficas de la función de respuesta en frecuencia 

considerando distintos valores para los parámetros. A partir las gráficas se observó que los 

parámetros obtenidos mediante las técnicas de optimización resultan en la mejor respuesta del 

sistema, validando así los resultados obtenidos en éste trabajo de tesis. 

 

Etapa 5: Una vez obtenidos los resultados analíticos o numéricos se comparan detalladamente 

con los reportados en la literatura y se plantea si los resultados obtenidos afirman o refutan la 

hipótesis. También se evalúa si se cumplieron con los objetivos y metas propuestas al inicio de 

la tesis. Cuando no se cumplen en su totalidad los objetivos o metas se plantean posibles 

soluciones al problema y se responde a la interrogante del por qué no fue posible su resolución 

total. De manera breve, se formulan ideas que enriquecen al tema de investigación para trabajos 

a futuro y cómo continuar con la investigación. Al realizar la comparación de los resultados 

obtenidos al realizar la optimización del sistema NIDVA-C3 con los resultados mostrados en 

la literatura para el sistema con el DVA clásico con lo cual se corrobora la hipótesis planteada 

al principio de la investigación. 

 

Etapa 6: Redacción del informe final. En esta etapa, se redacta el informe final de la 

investigación. En dicho informe se debe dar una explicación clara y coherente del 

procedimiento y los resultados obtenidos.  
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Capítulo 2: Estado del arte 

 

2.1 Breve historia de los absorbedores de vibración 

A finales del siglo XIX, durante la era industrial, surgieron los primeros estudios y desarrollos 

relacionados con el control de vibraciones. Uno de los primeros dispositivos utilizados para 

reducir las vibraciones fue el amortiguador de masa, que consistía en agregar una masa 

adicional a un sistema vibratorio para cambiar su frecuencia natural y reducir las vibraciones 

no deseadas. 

El primer absorbedor de vibración (DVA por sus siglas en inglés) fue desarrollado por Frahm 

en 1909 [37], este sistema es un dispositivo de control pasivo el cual consiste en un resorte 

lineal y una masa (𝑚2), este sistema se acopla a un sistema principal el cual puede ser una 

estructura o maquinaria, Figura 2.1, y es utilizado para suprimir la vibración de banda estrecha. 

A partir de este modelo los investigadores han desarrollado nuevas configuraciones en busca 

de mejorar su rendimiento dinámico y superar su limitante obteniendo una absorción de 

vibraciones de banda ancha. 

 

Figura 2. 1: Absorbedor de vibración dinámico de Frahm. (6) 

 

Basado en este sistema en 1928 Ormondroyd [27] propuso un arreglo en el cual agrega un 

amortiguador al sistema, dicho amortiguador fue puesto en paralelo con el resorte del sistema 

de Frahm lo cual resulta en que el ancho de banda operativo del sistema se amplía 

considerablemente. A éste sistema es el que se le llama en la literatura DVA clásico. Gracias a 
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esta propuesta se descubrió también que existen frecuencias llamadas puntos fijos en donde las 

amplitudes de vibración son independientes del factor de amortiguamiento, a partir de estos 

puntos se puede obtener el valor óptimo de rigidez y amortiguamiento. Esa técnica de 

optimización sigue usándose hoy en día y es conocida como la técnica de los puntos fijos. 

 

Una de las primeras aplicaciones prácticas de los sistemas de absorbedores de vibración 

dinámicos es el DAVI (Dynamic Antirresonant Vibration Isolator) utilizado por la armada de 

Estados Unidos para modificar un Helicóptero UH-1H [6] con la intención de reducir las 

vibraciones y daños que estas producen a los componentes de este vehículo, para ello se 

llevaron a cabo varias pruebas haciendo una comparación entre las del vehículo estándar y el 

mejorado con el DAVI, los resultados de esta prueba mostraron que para el caso del  vehículo 

modificado con el DAVI la vibración vertical se redujo a ½ - ¼ de la vibración del vehículo 

estándar, esto a una velocidad de 20-30 nudos. A velocidades más altas se redujo solo a la 

mitad. 

 

En [7] se propone un modo de análisis para obtener los parámetros óptimos de los absorbedores 

de vibración dinámicos, el cual es útil para varios tipos de vigas. En este método se utiliza la 

primera forma modal como la función de expansión para la viga, esto hace que dichos 

parámetros estén en función de las condiciones de frontera de la viga, además de la ubicación 

del absorbedor de vibración dinámico. Además de que se llegó a la conclusión de que si la 

frecuencia de excitación es menor a cuatro veces la frecuencia de resonancia de la viga la 

solución aproximada que se obtiene de este método es muy cercana a la respuesta exacta 

amortiguada. Adicionalmente, este método no solo se puede utilizar para sintonizar el 

absorbedor a altas frecuencias de resonancia, ya que también resulta útil en casos en los cuales 

sea necesario utilizar más de un absorbedor de vibración y cada uno de ellos estén sintonizados 

a diferentes frecuencias resonantes. 

  

En el año 1985 B.P. Wang en [8] propuso un método para el desarrollo de absorbedores de 

vibración dinámicos en el cual se utiliza la creación de antirresonancias en puntos específicos 

del sistema, donde, a partir de la respuesta dinámica de la viga a la excitación externa 

(receptancia) es posible obtener los parámetros del absorbedor, que, en este caso, son la rigidez 

del resorte y la masa del absorbedor. Sin embargo, también se considera la adición de un 

amortiguador del cual se puede calcular su constante a partir de un rango de amortiguamiento. 

Los pasos a seguir en este método son los siguientes: 
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 Elegir el grado de libertad antirresonante deseado 

 Elegir la ubicación de el/los absorbedores. 

 Calcular las fuerzas internas  

 Calcular la receptancia para cada absorbedor 

 Para un rango admisible de valores para la masa del absorbedor, calcular las constantes 

del resorte. Si esta constante es positiva, los valores de la masa y rigidez del resorte son 

una solución físicamente posible al problema de diseño. 

 

Debido a que en este método la estructura y el o los absorbedores se analizan por separado, se 

pueden utilizar otros tipos de absorbedores además del sistema de masa-resorte. De la misma 

manera, la libertad de elegir el número de absorbedores y su ubicación, permite evadir algunas 

limitaciones del diseño. 

 

En el año 1992 Tadayashi Aida [9] publicó un artículo en el cual se utiliza un sistema de 

absorbedor de vibración dinámico compuesto por una viga un resorte de conexión y un 

amortiguador. Este sistema es colocado en la viga principal bajo las mismas condiciones de 

frontera que la viga principal. Así mismo, se discute la importancia del amortiguamiento en el 

absorbedor de vibración dinámico, ya que se demuestra que sin el amortiguamiento la respuesta 

de la viga principal se reduce a excepción de la respuesta del segundo modo. Ahora, si se utiliza 

el amortiguamiento la respuesta de la viga principal se reduce notablemente, mostrando así que 

el absorbedor de vibración dinámico de tipo viga es efectivo para reducir la respuesta de la viga 

principal a la carga periódica y que el amortiguamiento es un factor importante a considerar en 

el diseño del absorbedor para lograr una reducción efectiva de las amplitudes de vibracion de 

la viga. 

 

En 2001 se propuso un nuevo diseño basado en el llamado absorbedor de vibración dinámico 

clásico, dicho diseño consiste en un sistema compuesto por una masa, un resorte y un 

amortiguador, el cual se conecta a una estructura primaria sujeta a vibraciones (Figura 2.2). El 

principio de funcionamiento de este DVA se basa en la capacidad del amortiguador para disipar 

la energía vibracional. 
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En el diseño propuesto [10], el elemento amortiguador se conecta a la tierra en lugar de a la 

estructura que se desea controlar (Figura 2.3). Éste tipo de configuración es conocido como 

DVA no tradicional. Se demostró que para una misma relación de masas el DVA no tradicional 

reduce de manera más efectiva el nivel de vibración que el diseño clásico, lo cual significa que 

se puede lograr una mejor reducción de la vibración sin aumentar la masa adicional. Además, 

se encontró que el amortiguamiento óptimo para el DVA no tradicional es mayor que el 

amortiguamiento óptimo del DVA clásico. 

 

 

 

   

Figura 2. 2:  Diseño de DVA clásico. Figura 2. 3: Diseño DVA no tradicional. 

 

 

2.2 Implementación del inersor 

 

Como se mencionó anteriormente, Smith [31] introdujo el concepto de “inersor” el cual es un 

dispositivo de dos terminales el cual cuenta con ciertas propiedades las cuales están definidas 

por la aceleración relativa entre ambas terminales de dicho dispositivo. En ese mismo artículo 

se propone el uso del inersor en el diseño de puntales de suspensiones que, tradicionalmente, 

solo emplean amortiguadores y resortes. Al considerar la suspensión con arreglos 

convencionales de resortes y amortiguadores resulta en un comportamiento muy oscilatorio, en 
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cambio sí se implementan redes mecánicas basadas en inersor reduce significativamente dicha 

oscilación. 

 

Las primeras aplicaciones exitosas del inersor se dieron en sistemas de suspensión de 

vehículos, Smith y Wang [11] fueron de los primeros investigadores en realizar la publicación 

de un artículo sobre la implementación de los inersores en suspensiones de vehículos, en dicho 

artículo, se menciona que debido a que las suspensiones de vehículos en las cuales solo se 

utilizan resortes y amortiguadores y que, además, se evita tener un elemento masa tienen 

características dinámicas limitadas, existe un rango de mejora de las dinámicas del vehículo si 

se utilizan sistemas de  suspensiones en las cuales no solo se utilizan los dispositivos mecánicos 

mencionados anteriormente, sino que también se utilizan inersores, es por ello que se 

propusieron ocho configuraciones de sistemas de suspensión empleando estos tres dispositivos 

las cuales se muestran en la Figura 2.4. Adicionalmente, se utilizaron modelos simplificados 

de la suspensión de un cuarto de vehículo y de vehículo completo, para hacer un estudio de 

optimización preliminar tomando en cuenta ciertos requerimientos prácticos para el diseño 

tales como el confort del pasajero, cargas normales de los neumáticos, manejo, etc. Después 

de la optimización se obtuvieron mejoras de un 10% o más para mediciones como las cargas 

normales a los neumáticos o el manejo, esto para el caso del cuarto de vehículo, sin embargo, 

para el caso del vehículo completo también se obtuvieron mejoras. Por último, se creó un 

prototipo de un inersor con la finalidad de realizar pruebas experimentales.  

 

 

Figura 2. 4:  Configuraciones de suspensiones empleando inersores propuestas 
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Otro de los usos que se le dio al inersor fue en el diseño de un compensador mecánico de 

dirección para motocicletas de alto rendimiento [12] en el cual se introdujo la idea de remplazar 

el amortiguador de dirección de una motocicleta de alto rendimiento por una red mecánica, esta 

idea fue incitada debido a los reportes del bajo desempeño de las motocicletas de alto 

rendimiento a altas velocidades y así buscar un mejor desempeño en la repuesta de los modos 

de vibración “wobble and weave” de la motocicleta a altas velocidades. Los resultados 

obtenidos mediante el procedimiento de diseño de respuesta en frecuencia muestran que la 

implementación de la red mecánica basada en inersor mejora significativamente las 

características de desempeño de la motocicleta. Sin embargo, se dejó en claro que, a pesar de 

los buenos resultados obtenidos en este estudio, aún existían problemas destacados para la 

implementación de esta red mecánica, algunos ejemplos de dichos problemas son la selección 

de los radios óptimos para los inersores y el correcto dimensionamiento del dispositivo con el 

fin de hacerlo lo suficientemente robusto para soportar el desgaste del uso normal, sin ser 

innecesariamente voluminoso.  

 

La tercera implementación de los inersores se dio en el diseño de suspensiones de trenes de los 

cuales las suspensiones son más complejas que las suspensiones de los vehículos ya que en 

ellas se utiliza un componente extra entre las ruedas y el chasis llamado “bogie”. Estas 

suspensiones utilizan dos sistemas para conectar el chasis con el bogie y el bogie con la rueda, 

en la Figura 2.5 se muestra el diagrama del sistema de suspensión de una rueda de tren. 

 

En 2016 Jin [26] propone dos configuraciones de control pasivo basados en inersores. La 

configuración 1 consiste de una masa conectada a una combinación en paralelo de un resorte y 

un amortiguador en serie con un resorte y un inersor, mientras que la configuración 2 consta 

de un absorbedor de vibración dinámico en serie con un inersor. Estas configuraciones fueron 

propuestas para mejorar la eliminación de vibraciones en una estructura tipo viga. Al analizar 

ambos sistemas y obtener los valores de los parámetros óptimos mediante la técnica de los 

puntos fijos, se compararon los resultados obtenidos con los resultados de un DVA tradicional 

y en ambos casos se encontró que son más eficientes sobre todo bajo relaciones de masas más 

pequeñas. Además, se realiza una comparación entre ambas configuraciones obteniendo como 

resultado que para relaciones de masas más pequeñas la configuración 1 es mejor que la 

configuración dos mientras que para relaciones de masas más grandes la configuración 2 resulta 

ser mejor que la configuración 1. 



 
 

21 
 

 

En 2018 Barredo [15] desarrollo una técnica analítica para el diseño óptimo de absorbedores 

de vibración dinámicos basados en inersores, dicha técnica se basa en la técnica desarrollada 

por Den Hartog [27]. Para encontrar las soluciones óptimas, esta técnica también considera la 

teoría de Krenk y el Teorema de Vieta. Para poder validar ésta técnica se compararon los 

resultados resolviendo un problema de optimización, el problema de optimización se enfocó 

en la desviación media entre las amplitudes de vibración bajo un rango especifico de 

frecuencias de excitación para cada relación de masa, con esto Barredo también demostró que 

la técnica de Den Hartog no es apta para calcular el factor de amortiguamiento óptimo que 

aplane las curvas de la función de respuesta en frecuencia de los absorbedores de vibración 

dinámicos basados en inersor. Adicionalmente, se demostró que los resultados obtenidos con 

la técnica de los puntos fijos extendida son muy similares a los obtenidos con el método de 

optimización 𝐻∞, con la ventaja de que la técnica de los puntos fijos solo requiere resolver un 

conjunto de ecuaciones no lineales dadas por las sumas y productos de las raíces reales de 

ecuaciones de cuarto grado. 

 

En 2021 López [16] realizó el análisis matemático y optimización de una estructura tipo viga 

sobre la cual se ejerce una fuerza de excitación armónica externa, ésta viga esta acoplada a un 

arreglo en serie de dos absorbedores de vibración dinámicos A y B, ambos están compuestos 

por un elemento de masa que a su vez está conectado en serie con un arreglo en paralelo de un 

amortiguador y un resorte, además, el sistema también cuenta con un inersor, para el que una 

de sus terminales está conectada a tierra mecánica y la otra terminal se conecta a la masa del 

DVA-B. El diagrama del modelo propuesto se muestra en la Figura 2.5. 

 

 El análisis fue realizado mediante los criterios de optimización 𝐻∞, basado en el método de 

Nishihara y la técnica de los puntos fijos extendida, siendo una aproximación de la norma 𝐻∞. 

Con los resultados obtenidos se logró minimizar las amplitudes de vibración del sistema 

relacionadas con la respuesta en frecuencia, además de que se corroboró la similitud entre los 

resultados obtenidos con ambas técnicas. Al calcular el índice de ancho de banda de supresión 

de vibraciones existe una ventaja superior al 17% cuando se utiliza el sistema propuesto, en 

comparación con el DVA clásico cuando actúa una fuerza externa de tipo armónica. 
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Figura 2. 5: Diagrama del sistema propuesto por López 

 

 

De la misma manera Pérez [28] propone un sistema de un absorbedor de vibración dinámico 

no tradicional basado en inersor conectado a una estructura tipo viga bajo excitación armónica 

externa, el sistema al cual está acoplada la estructura consta de un absorbedor dinámico de 

vibración amortiguado que, a su vez, se conecta en serie a la red mecánica denominada 𝐶−4 

con conexión a tierra, como se muestra en la Figura 2.6. Así mismo, la red mecánica C-4 está 

formada por una conexión en paralelo de resorte amortiguador viscoso conectado en serie a un 

inersor.  

 

Para obtener los parámetros óptimos se realizó el análisis utilizando el criterio 𝐻∞  y la técnica 

de los puntos fijos extendida. Con ambas técnicas se logró minimizar las amplitudes de 

vibración del sistema relacionadas con la respuesta en frecuencia del sistema. Al calcular el 

índice del ancho de banda de supresión de vibraciones existe un rendimiento del 23.03 % 

cuando se utiliza el NIDVA-C4 propuesto, en comparación con el DVA clásico. 
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Figura 2. 6: Diagrama de la estructura tipo viga acoplada al NIDVA-C4 
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Capítulo 3: Marco Teórico 

 

3.1 Vibraciones Mecánicas 

 

De acuerdo con Rao [2] una vibración se define como cualquier movimiento que se repite 

después de un intervalo de tiempo llamado periodo usualmente denotado por la letra 𝜏  y 

medido en segundos. Además del periodo existen dos características más de las vibraciones las 

cuales son la frecuencia, que es el reciproco del periodo y esta denotado en ciclos por segundo, 

y la amplitud, que es la máxima magnitud del desplazamiento que alcanza la vibración. 

 

3.1.1 Elementos de un sistema vibratorio 

 

Normalmente se contemplan tres elementos  

 

 Elemento Resorte: Este elemento mecánico en la mayoría de sus aplicaciones se 

considera que no tiene amortiguamiento ni masa, sin embargo, cualquier elemento 

elástico o deformable puede considerarse como un resorte, su propósito principal es 

almacenar energía potencial. Existen dos tipos de resortes, lineales y no lineales, para 

que un resorte se considere lineal se tiene que cumplir la relación entre el alargamiento 

o el acortamiento de la longitud 𝑥 del resorte con la fuerza aplicada F mostrada en la 

ecuación (3.1), donde también influye la constante de rigidez del resorte, denotada 

como 𝑘 y la cual indica la fuerza necesaria para producir una deflexión unitaria en el 

resorte, dicha constante es siempre positiva. 

 

𝐹 = 𝑘𝑥                                                               (3.1) 

 

En el caso de los resortes no lineales la relación fuerza-deflexión está dada por la 

ecuación (3.2) en la que la constante asociada con la parte lineal es siempre positiva y 

la constante asociada a la no linealidad, b, determina si un resorte es duro, lineal o suave 

ya que si b>0 el resorte es duro, si b=0 el resorte es lineal y si b<0 el resorte es suave.  
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𝐹 = 𝑎𝑥 + 𝑏𝑥3                                                      (3.2) 

 

 Elemento de masa o inercia: En este elemento tiene la capacidad de perder o ganar 

energía cinética a partir del trabajo que se realiza sobre la misma masa. 

 

 Elemento de amortiguamiento: Este es el mecanismo con el cual la energía vibratoria 

se disipa en calor o sonido. Esta disipación, aunque sea muy pequeña, es importante 

para determinar de manera más precisa la respuesta a la vibración de un sistema. La 

mayoría de las veces es muy difícil determinar las causas del amortiguamiento en 

sistemas prácticos, así que el amortiguamiento se modela tomando en cuenta alguno de 

los siguientes modelos: 

- Amortiguamiento viscoso: Este es el tipo de amortiguamiento más utilizado en el 

análisis de vibración. En este tipo de amortiguamiento la energía se disipa debido a 

la resistencia que ofrece el fluido en el cual se encuentra el sistema mecánico, sin 

embargo, la cantidad de energía disipada depende de otros factores como la 

viscosidad del fluido, la frecuencia de vibración, etc. Para este amortiguamiento la 

fuerza de amortiguamiento es proporcional a la velocidad del cuerpo vibratorio. 

 

- Amortiguamiento de Coulomb o de fricción en seco: Es el resultado de la fricción 

entre dos superficies secas al frotarse, aquí la fuerza de amortiguamiento es de 

magnitud constante, pero en dirección opuesta al movimiento del cuerpo vibratorio. 

 

- Amortiguamiento debido a un material solido o histérico: cuando un material se 

deforma, absorbe o disipa energía. El efecto se debe a la fricción que se genera entre 

los planos internos de material que se deslizan a medida que ocurren las 

deformaciones.  

 

3.1.2 Vibración armónica de un sistema de un solo grado de libertad 

 

Este es el tipo de vibración generalmente es representada matemáticamente con funciones seno 

y coseno, es considerada la forma más simple de vibración y es la base en la cual muchos 
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modos de vibración más complejos ya que hasta las formas de vibración no periódicas pueden 

ser descritas como una vibración periódica cuyo periodo es infinito. 

 

La vibración armónica de un sistema de un sistema de un solo grado de libertad puede suceder 

si se desplaza la masa hasta cierta distancia del punto de equilibrio y después se suelta 

generando una oscilación. Si no existiera fricción en el sistema, la oscilación continuaría en la 

misma proporción y en la misma amplitud para siempre. Este movimiento armónico sencillo 

idealizado, casi nunca se encuentra en sistemas mecánicos reales. Cualquier sistema real tiene 

fricción y eso hace que la amplitud de la vibración disminuya gradualmente ya que la energía 

se disipa en forma de calor [33]. 

 

Otra manera de que ocurra la vibración armónica es si sistema está sujeto a una fuerza armónica 

externa. Si se toma como ejemplo un sistema el cual además tiene un amortiguador viscoso 

cuyo coeficiente de amortiguamiento es 𝑐, con una fuerza armónica externa denotada por 

𝐹0 sin𝜔𝑡 (Figura 3.1) 

 

 

Figura 3. 1: Sistema de un solo grado de libertad sujeto a una fuerza armónica externa 

 

Considerando el sistema mostrado en la Figura 3.1, el modelo matemático que gobierna el 

sistema dinámico es: 

 

𝑚𝑥̈(𝑡) + 𝑐𝑥̇(𝑡) + 𝑘𝑥(𝑡) = 𝐹0 sin𝜔𝑡                                (3.3) 

 

Se sabe que en señales armónicas en el dominio de tiempo con un periodo T y frecuencia ω el 

desplazamiento es de la forma: 

 

𝑥(𝑡)  =  𝑋 sin ω𝑡 =  𝑋 sin (ω𝑡 +  𝑛𝑇 )                       𝑛 =  1, 2, . ..           (3.4) 
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Entonces para este caso la función de desplazamiento de la vibración del sistema que da 

determinada por: 

𝑥(𝑡)  =  𝑋 sin (ω𝑡 +  φ)                                                   (3.5) 

Donde 𝑋 y 𝜑 son constantes que se tienen que determinar e indican la amplitud y el ángulo 

de fase de la respuesta, respectivamente. 

 

3.2 Vigas 

 

Una viga se define como un elemento estructural (generalmente barras prismáticas rectas y 

largas) diseñado para soportar cargas que sean aplicadas en uno o varios puntos a lo largo del 

elemento, dichas cargas normalmente son perpendiculares al eje de la viga produciendo sobre 

esta corte y deflexión [13]. Una viga no solo puede estar sujeta a cargas puntuales, expresadas 

en Newtons o libras, sino también pueden estar sujetas a una carga distribuida 𝑊, expresada 

en N/m o lb/ft. 

 

3.2.1 Clasificación de las vigas 

 

Las vigas se clasifican de acuerdo a la forma en la que estén apoyadas, la Figura 3.2 muestra 

varios tipos de vigas que se utilizan frecuentemente. 

 

 

 

Figura 3. 2: Clasificación de las vigas según su apoyo. 

 

La distancia L que existe entre los apoyos se le llama claro. 
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3.2.2 Teoría de Euler-Bernoulli 

 

En esta teoría se considera una viga de longitud L, sección transversal con área A y módulo de 

inercia I, sobre dicha viga actúan cargas verticales y momentos sobre el plano xz, como se 

muestra en la Figura 3.3. 

 

La teoría de Euler-Bernoulli se basa en tres hipótesis [32]: 

1. Los desplazamientos verticales de todos los puntos de una sección transversal 

son pequeños e iguales a los del eje x. 

2. El desplazamiento lateral (eje y) es nulo. 

3. Las secciones transversales normales al eje de la viga antes de la deformación, 

permanecen planas y ortogonales a dicho eje después de la deformación. 

 

Derivado de estas hipótesis el desplazamiento de cualquier punto se puede escribir de la 

siguiente manera 

𝑢(𝑥, 𝑦, 𝑧) = −𝑧𝜃(𝑥) 

𝑣(𝑥, 𝑦, 𝑧) = 0                                                           (3.6)                                                                                                                                             

𝑤(𝑥, 𝑦, 𝑧) = 𝑤(𝑥) 

 

A partir de la tercera hipótesis se tiene que el giro θ es igual a la pendiente de la deformación 

del eje, es decir  

θ =
𝑑𝑤

𝑑𝑥
  y 𝑢 = −𝑧

𝑑𝑤

𝑑𝑥
                                                    (3.7) 

 

De esta manera las deformaciones de la viga en cualquier punto están dadas por: 

 

𝜀𝑥 =
𝑑𝑢

𝑑𝑥
= −𝑧

𝑑2𝑤

𝑑𝑥2                                                       (3.8) 

𝜀𝑦 = 𝜀𝑧 = ϓ𝑥𝑦 = ϓ𝑥𝑧 = ϓ𝑦𝑧 = 0                                      (3.9) 
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Figura 3. 3: Viga convencional de Euler-Bernoulli. 

Considerando éstas hipótesis se llega a la suposición de que el esfuerzo cortante transversal es 

cero, en cambio en la teoría de Timoshenko esta suposición se elimina, debido a que el plano 

de la sección transversal permanece recto, pero no necesariamente perpendicular al eje neutro 

de la viga. Sin embargo, para el análisis de vigas largas no existe diferencia significativa. 

 

 3.3 Deflexión de vigas 

 

Muchas estructuras que se son útiles en nuestro día a día están constituidas por vigas, columnas 

o placas, las cuales a su vez están sujetas a la acción de fuerzas ya sea debido a su propio peso 

o generadas por algún agente externo. Al considerar la vibración lateral de la viga uniforme, 

mostrada en la Figura 3.4, con una longitud 𝐿, área transversal 𝐴, momento de inercia 𝐼 [20]. 

La viga está constituida por un material con características físicas de densidad de masa 𝜌 y 

módulo de elasticidad 𝐸. Además, dicha  viga está sujeta a una carga externa por unidad de 

longitud 𝑓(𝑥, 𝑡) y su desplazamiento transversal está dado por 𝜔(𝑥, 𝑡). 
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Figura 3. 4: Esquema del modelo de viga [20] 

 

Figura 3. 5: DCL de fuerzas que actúan en un elemento diferencia de la viga 

 

Considerando el diagrama de cuerpo libre mostrado en la Figura 3.5 se tiene que la ecuación 

de movimiento causada por la fuerza es: 

 

𝑉 − (𝑉 +
𝜕𝑉

𝜕𝑥
𝑑𝑥) + ∫ 𝑓(𝜉, 𝑡)𝑑𝜉

𝑥+𝑑𝑥

𝑥
= 𝜌𝐴

𝜕2𝜔

𝜕𝑡2 𝑑𝑥                        (3.10) 

 

Al aplicar el teorema del valor medio se tiene: 

 

𝑓(𝑥, 𝑡) −
𝜕𝑉

𝜕𝑥
= 𝜌𝐴

𝜕2𝜔

𝜕𝑡2                                            (3.11) 

 

Tomando en cuenta el DCL de la Figura 3.5 se obtiene que la ecuación de movimiento causado 

por el momento es: 
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𝑀 − (𝑀 +
𝜕𝑀

𝜕𝑥
𝑑𝑥) − (𝑉 +

𝜕𝑉

𝜕𝑥
𝑑𝑥) 𝑑𝑥 + ∫ (𝜉 − 𝑥)𝑓(𝜉, 𝑡)𝑑𝜉

𝑥+𝑑𝑥

𝑥
= 𝜌𝐴

𝜕2𝜔

𝜕𝑥2
𝑑𝑥 (

𝑑𝑥

2
)   (3.12) 

 

Aplicando el teorema del valor medio y despreciando los términos mayores de orden 2 para los 

elementos infinitesimales, la ecuación anterior se simplifica a: 

 

𝑉 =
𝜕𝑀

𝜕𝑥
                                                      (3.13) 

 

De la teoría de la deflexión de vigas y considerando la convención de los signos de acuerdo al 

DCL  

𝑀 = −𝐸𝐼
𝜕2𝜔

𝜕𝑥2                                                   (3.14) 

 

Considerando las propiedades de una viga uniforme tenemos: 

 

𝐸𝐼
𝜕4𝜔(𝑥,𝑡)

𝜕𝑥4 + 𝜌𝐴
𝜕2𝜔(𝑥,𝑡)

𝜕𝑡2 = 𝑓(𝑥, 𝑡)                                 (3.15) 

 

Esta ecuación representa la dinámica vibratoria de una viga sujeta a una carga externa [2]. 

 

 

 

3.3.1   Condiciones de frontera en vigas 

 

A continuación, ese muestra una lista con las condiciones de frontera utilizadas más 

frecuentemente para vibraciones transversales de vigas: 

 

i. Extremo libre 

 

● Momento de flexión 

 

𝐸𝐼
𝜕2𝜔

𝜕𝑥2 = 0                                              (3.16) 
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● Fuerza cortante  

𝜕

𝜕𝑥
(𝐸𝐼

𝜕2𝜔

𝜕𝑥2) = 0                                        (3.17) 

 

ii. Extremo simplemente apoyado (de pasador) 

 

● Deflexión 

𝜔 = 0                                                (3.18) 

● Momento de flexión 

𝐸𝐼
𝜕2𝜔

𝜕𝑥2
= 0                                          (3.19) 

 

iii. Extremo fijo (empotrado) 

 

● Deflexión 

𝜔 = 0                                               (3.20) 

● Pendiente 

𝜕𝜔

𝜕𝑥
= 0                                               (3.21) 

 

iv. Corredizo (deslizándose) 

 

● Pendiente 

𝜕𝜔

𝜕𝑥
= 0                                             (3.22) 

● Fuerza cortante  

 

𝜕

𝜕𝑥
(𝐸𝐼

𝜕2𝜔

𝜕𝑥2) = 0                                                  (3.23) 

 

 

En la Figura 3.6 se muestran las condiciones de frontera más utilizadas junto con sus ecuaciones 

de frecuencia, modos normales y las frecuencias naturales. 
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Figura 3. 6: Condiciones de frontera más usadas para vibración transversal de vigas [2] 

 

 3.4 Análisis dimensional  

 

El análisis dimensional tiene como propósito tener en ambos lados de una ecuación las mismas 

dimensiones finales, dichas dimensiones, involucradas en un sistema físico, se dan en términos 

de tres dimensiones elementales, longitud, masa y tiempo, que tienen unidades de metro, 

kilogramo y segundo, respectivamente, de acuerdo al Sistema Internacional de Unidades. 
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    3.4.1 Teorema П de Buckingham  

 

Este teorema representa una parte fundamental del análisis adimensional, y está basado en los 

trabajos de Vaschy [34] y Riabouchinski [35]. Este teorema establece que una relación física 

que involucra 𝑛 variables puede ser expresada en términos de 𝑛 − 𝑗 grupos adimensionales, 

donde 𝑗 es el número mínimo de dimensiones fundamentales necesarias para describir las 

variables. De manera textual el teorema puede ser escrito de la siguiente manera: 

 

“ Si (𝑞1, 𝑞2, … , 𝑞𝑛) son n variables físicas involucradas en un problema físico y existe una 

relación funcional entre las variables de la forma: 

 

𝛺(𝑞1, 𝑞2, … , 𝑞𝑛) = 0  

Entonces, las n variables se pueden combinar de tal forma que se forman (n-j) variables 

adimensionales independientes, donde j es el rango de la matriz adimensional”.  

 

Cada factor adimensional es conocido como número П, de manera que la relación se puede 

reescribir como:  

 

𝜓(Π1, Π2, … , Π𝑛−𝑟) = 0                                         (3.24) 

 

De esta manera es posible encontrar los Π𝑖  por medio de la siguiente ecuación:  

 

Π𝑖 = Γ𝐵𝑖
∏ Γ𝑃𝑘

𝐶𝑘𝑗
𝑚=1 ,    con: 𝑖 = 1,2, … , 𝑛 − 𝑗                          (3.25) 

 

Donde Γ𝐵 son las variables involucradas en el sistema, Γ𝑃 son las variables de referencia o 

fundamentales y los c𝑘 se eligen para que cada Π𝑖 sea adimensional. De esta manera se expresa 

la relación entre las Π𝑖 como: 

 

Π1 = Ω(Π2, Π3, … , Π𝑛−𝑗)                                      (3.26) 
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Este teorema solo ayuda a encontrar una manera de generar conjuntos de variables 

adimensionales, sin embargo, el método no deduce las variables físicamente significativas, es 

decir, las que se necesiten para resolver el problema. Cada caso (𝑛 − 𝑗) forman una base. [22] 

 

3.5 Análisis modal 

 

El análisis modal es el proceso de determinar las características dinámicas inherentes de un 

sistema en formas de frecuencia natural, factores de amortiguamiento y formas modales y 

usarlos para formular un modelo matemático para su comportamiento dinámico [13]. 

 

El análisis modal está basado en las respuestas de vibración de un sistema dinámico lineal, el 

cuál puede ser expresado mediante una combinación lineal de movimientos armónicos simples 

(modos naturales de vibración). Al utilizar este análisis, es posible obtener las características 

dinámicas intrínsecas de una estructura, la cual se representa en las formas modales, 

frecuencias naturales y los factores de amortiguamiento. 

 

3.5.1 Función de respuesta en frecuencia 

 

La función principal de la cual depende el análisis modal es la función de respuesta de 

frecuencia o FRF (por sus siglas en inglés) ya que el éxito del análisis modal depende mucho 

de la exactitud de los datos obtenidos de la función de respuesta en frecuencia. 

Debido a que algunos sistemas mecánicos y estructurales son idealizados como sistemas de un 

solo grado de libertad, además de que los sistemas de un solo grado de libertad forman las bases 

para el análisis de sistemas de varios grados de libertad, se toma en cuenta el diagrama 

mostrado en la Figura 3.7 el cual cuenta con una masa, un resorte y un amortiguador. 
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Figura 3. 7: Sistema de un solo grado de libertad con excitación armónica 

En este caso, si la excitación es armónica, 𝑓(𝑡) = 𝐹(𝜔)𝑒𝑗𝜔𝑡 su respuesta también es una 

función armónica de la forma 𝑥(𝑡) = 𝑋(𝜔)𝑒𝑗𝜔𝑡 donde X(ω) es la amplitud compleja. A partir 

de esto se puede deducir que la función de respuesta de frecuencia es la relación entre la 

respuesta de desplazamiento y la fuerza de excitación y puede ser denotado como 𝛼(𝜔) =

1

𝑘−𝜔2𝑚+𝑗𝜔𝑐
. 

 

   3.6   Teorema de Vieta 

 

Cuando se trabaja con ecuaciones algebraicas es inherente tratar de resolverlas y encontrarle 

un significado tangible a las soluciones obtenidas. El resolver las ecuaciones involucra obtener 

todas sus raíces (complejas o reales), de forma exacta o aproximada [23]. En ocasiones basta 

con encontrar una aproximación a dicha solución, sin embargo, en el proceso de efectuar cierto 

procedimiento para encontrar las raíces de forma analítica, es posible encontrar y vincular más 

información relacionada a las propiedades que caracterizan al problema, tal es el caso de las 

llamadas ecuaciones de Vieta. 

Para emplear las ecuaciones de Vieta se considera una ecuación mónica (𝑎𝑛 = 1) de la forma: 

 

𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥
𝑛−1 + ⋯+ 𝑎1𝑥

1 + 𝑎0 = 0                               (3.27) 

 

La ecuación anterior contiene n raíces 𝑥1, 𝑥2, … , 𝑥𝑛. Éstas raíces pueden encontrarse con base 

en los términos 𝑎1, 𝑎2, … , 𝑎𝑛−1 independientes del polinomio. 

Generalizando las soluciones de la ecuación y relacionándolas con los términos independientes 

se obtiene [24]: 

 

 

𝑎𝑛−1 = −(𝑥1 + ⋯+ 𝑥𝑛)  

𝑎𝑛−2 = (𝑥1𝑥2 + ⋯+ 𝑥1𝑥𝑛 + 𝑥2𝑥3 + ⋯+ 𝑥𝑛−1𝑥𝑛) 

: 

𝑎𝑛−𝑗 = (−1)𝑗 ∑ 𝑥𝑖1𝑥𝑖2 …𝑥𝑖𝑗1≤𝑖1≤⋯≤𝑖𝑗≤𝑛                                  (3.28) 

: 

𝑎0 = (−1)𝑛𝑥1𝑥2 …𝑥𝑛 
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Tomando como ejemplo una ecuación cuartica, es decir, una ecuación con n=4: 

 

𝑥4 + 𝑎3𝑥
3 + 𝑎2𝑥

2 + 𝑎1𝑥 + 𝑎0 = 0                                   (3.29) 

 

Los coeficientes de la ecuación se pueden expresar en términos de las sumas y los productos 

de sus raíces 𝑥1, 𝑥2, 𝑥3, 𝑥4 las cuales se expresan como: 

 

𝑎3 = −(𝑥1 + 𝑥2 + 𝑥3 + 𝑥4) 

𝑎2 = (𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥1𝑥4 + 𝑥2𝑥3 + 𝑥2𝑥4 + 𝑥3𝑥4)                        (3.30) 

𝑎1 = −(𝑥1𝑥2𝑥3 + 𝑥1𝑥2𝑥4 + 𝑥1𝑥3𝑥4 + 𝑥2𝑥3𝑥4) 

𝑎0 = 𝑥1𝑥2𝑥3𝑥4 

 

Para el caso de los absorbedores de vibración dinámicos basados en inersor, Barredo [25], 

propone una nueva metodología basándose en las fórmulas de Vieta para la obtención de los 

parámetros óptimos de los absorbedores de vibración dinámicos basados en inersor. 

 

3.7 Técnica de los puntos fijos 

 

Esta técnica descrita por Den Hartog, consiste en minimizar la amplitud máxima de la respuesta 

adimensional de un sistema mecánico, dicha técnica consiste en obtener los puntos fijos o 

invariantes del sistema a partir de dos consideraciones: 

 

I. Amortiguamiento  cero (ζ → 0) 

II. Amortiguamiento tiende a infinito (ζ → ∞) 
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Figura 3. 8: Gráfica de un DVA clásico correspondiente al comportamiento de los estados 

del sistema considerando amortiguamiento infinito y cero, obteniendo los puntos fijos P y Q. 

 

La Figura 3.8 muestra la respuesta en estado estable determinada por las dos condiciones 

consideradas en esta técnica. Considerando que todas las curvas pasan a través de los puntos 

fijos y son independientes del amortiguamiento [14] y mediante un tratamiento matemático se 

obtienen los parámetros óptimos del sistema.  

La Figura 3.9 muestra el comportamiento de la respuesta en frecuencia considerando valores 

arbitrarios, incluyendo las condiciones fundamentales consideradas en esta técnica. 

 

 

Figura 3. 9: Respuesta en frecuencia de la estructura primaria acoplada al DVA clásico 

considerando diferentes valores del factor de amortiguamiento 

 

Como se puede observar todas las curvas tienen diferentes amplitudes, sin embargo, el mejor 

balance dinámico se encuentra cuando la curva de función de respuesta en frecuencia óptima 

sea más plana en todo el rango de frecuencias de excitación. 
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3.8 Técnica de los puntos fijos extendida. 

 

La técnica de los puntos fijos extendida [15], es una expansión de la técnica de Den Hartog, 

que sirve para la optimización de los absorbedores de vibración basados redes mecánicas con 

inersor.  

En [16] se resume esta técnica a una serie de pasos a seguir los cuales se enlistan a continuación:  

 

i. Obtener el modelo matemático del sistema. 

ii. Obtener la función de transferencia H(s) del sistema, la cual también es conocida como 

la respuesta del sistema R(s). 

iii. Sustituir la expresión 𝑠 = 𝑗𝜔. 

iv. Reescribir la función de transferencia H(s) de la siguiente manera: 

𝐻(𝑠) =
𝐴+𝑗𝐵

𝐶+𝑗𝐷
                                            (3.31) 

v. Sustituir los parámetros adimensionales asociados al teorema П de Buckingham. 

Dichas variables están asociadas directamente a las propiedades intrínsecas del sistema. 

vi. Obtener el módulo de H(s) a través de la multiplicación de su conjugado complejo. 

|𝐻(𝑠)|2 =
𝐴2+𝐵2

𝐶2+𝐷2                                          (3.32) 

vii. Aplicar las dos condiciones fundamentales de la técnica de los puntos fijos de Den 

Hartog para el absorbedor dinámico de vibración. 

Cuando el amortiguamiento es cero la ecuación (3.32) se convierte en: 

|𝐻(𝑠)|𝜁→0
2 =

𝐴2

𝐶2                                          (3.33) 

Y cuando el amortiguamiento tiende a infinito  

|𝐻(𝑠)|𝜁→0
2 =

𝐵2

𝐷2
                                           (3.34) 

viii. Igualar las ecuaciones (3.33) y (3.34) al realizar ésta igualación se obtienen dos posibles 

resultados de los cuales una de ellas será trivial y la otra será la que proporcione mayor 

información de la solución del sistema. 

ix. Realizar el cambio de variable.  

𝜖 = Ω2                                                  (3.35) 

x. Convertir en una ecuación mónica. 

xi. Igualar a h el lado derecho de la ecuación obtenida del paso vii bajo la condición 𝜁 →

∞. 
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xii. Realizar el mismo cambio de variable de la ecuación (3.35). 

xiii. Convertir en una ecuación mónica. 

xiv. Obtener las soluciones óptimas mediante el teorema de Vieta. 

xv. Obtener la solución óptima para el factor de amortiguamiento 𝜁𝑜𝑝𝑡 a partir del teorema 

de Krenk. 

    

 3.9  Criterio 𝑯∞ 

 

Esta técnica tiene como objetivo principal minimizar las amplitudes de vibración en las 

frecuencias de resonancia de la respuesta en frecuencia R(s) de la masa de la estructura 

principal, conocida como la norma ||𝐻∞||. Al minimizar esta norma se mejora la respuesta de 

estado estable del sistema acoplado a los DVA´s, esto deriva a un problema de optimización 

de la forma: 

 

min (𝑚𝑎𝑥𝑃𝑜𝑝𝑡
|𝐻𝐼𝐷𝑉𝐴(Ω)|) = max (|𝐻𝐼𝐷𝑉𝐴(𝑃𝑜𝑝𝑡, 𝛽, Ω)|)                     (3.36) 

 

Donde 𝑃𝑜𝑝𝑡 son los parámetros a optimizar del sistema, estos parámetros están restringidos a 

ser soluciones reales y positivas de la siguiente manera: 

𝜕|𝐻𝐼𝐷𝑉𝐴(Ω)|2

𝜕Ω2 = 0                                                  (3.37) 

Para resolver este problema de optimización min-max principalmente se utiliza el método de 

Nishihara, debido a su alta precisión en la resolución numérica, sin embargo, se puede utilizar 

también el método de programación cuadrática secuencial. 

 

3.9.1 Método de Nishihara. 

 

Esta metodología analítica fue presentada por Nishihara y Asami en 2002 [18], con ella se 

pueden obtener los parámetros óptimos para los DVA, sin embargo, esta metodología 

propuesta inicialmente solo funcionaba para modelos con dos grados de libertad y no fue hasta 

un año después que esta metodología pudo ser implementada en modelos con más de dos 

grados de libertad [19]. 

Con el fin de hacer más simple el sistema en este método se propuso remplazar h por 1/(1 −

𝑟2) es decir: 
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𝑟2 = 1 −
1

ℎ𝑚𝑎𝑥
2                                                       (3.38) 

Además, de una función que se emplea para minimizar el valor máximo ℎ𝑚𝑎𝑥 de la función de 

transferencia referente a la norma ||𝐻∞|| 

 

𝑓𝑛 = 𝐷𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑑𝑜𝑟 −
𝑁𝑢𝑚𝑒𝑟𝑎𝑑𝑜𝑟

ℎ𝑚𝑎𝑥
2                                     (3.39) 

 

López [16] resume este método en una serie de pasos enlistados a continuación. 

i. Obtener el módulo de H(s) a través de la multiplicación de su conjugado 

complejo. 

 

|𝐻(𝑠)|2 =
𝐴2+𝐵2

𝐶2+𝐷2                                                (3.40) 

 

ii. Definir las variables numerador 𝒩 y denominador 𝒟 de la siguiente manera: 

𝒩 = 𝐴2 + 𝐵2    y     𝒟 = 𝐶2 + 𝐷2                              (3.41) 

 

iii. Se propone la ecuación descrita por Nishihara para determinar el valor mínimo 

ℎ𝑚𝑖𝑛 dc la amplitud máxima ℎ𝑚𝑎𝑥 mediante la siguiente ecuación.  

 

ℎ = √
1

1−𝑟2                                             (3.42) 

 

iv. Reescribir la ecuación de la siguiente manera  

 

𝒟 −
𝒩

ℎ2 = 0                                           (3.43) 

 

v. Sustituir los términos correspondientes. 

vi. Coinvertir en una ecuación mónica. Esto nos da como resultado una ecuación 

de la forma 

 

Ω12 + 𝑐1Ω
10 + 𝑐2Ω

8 + 𝑐3Ω
6 + 𝑐4Ω

4 + 𝑐5Ω
2 + 𝑐6 = 0            (3.44) 
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vii. A partir del teorema de Vieta, la suma y productos de las raíces de la ecuación 

anterior se pueden expresar mediante el siguiente sistema de ecuaciones en 

términos de los coeficientes 𝑐𝑛. 

𝑓1 → (4𝑐2 − 𝑐1
2)√𝑐6 + 4𝑐5 = 0                            (3.45) 

𝑓2 → 𝑐1𝑐5 + 4𝑐6 + 2𝑐3√𝑐6 = 0                            (3.46) 

𝑓3 → 4𝑐6(𝑐1√𝑐6 + 𝑐4) − 𝑐5
2 = 0                           (3.47) 

 

Estas ecuaciones están expresadas en términos de los parámetros a optimizar, 

incluido el parámetro h. 

viii. Sustituir los coeficientes 𝑐𝑛 en las ecuaciones para 𝑓1, 𝑓2, y 𝑓3 y llevar a su 

mínima expresión. 

ix. Hallar la matriz Jacobiana con base a los parámetros a optimizar. 

[
 
 
 
 
𝜕𝑓1

𝜕𝑞

𝜕𝑓1

𝜕𝜂

𝜕𝑓1

𝜕𝜁

𝜕𝑓1

𝜕𝜇

𝜕𝑓2

𝜕𝑞

𝜕𝑓2

𝜕𝜂

𝜕𝑓2

𝜕𝜁

𝜕𝑓2

𝜕𝜇

𝜕𝑓3

𝜕𝑞

𝜕𝑓3

𝜕𝜂

𝜕𝑓3

𝜕𝜁

𝜕𝑓3

𝜕𝜇 ]
 
 
 
 

= [
𝐴1 𝐵1 𝐶1 𝐷1

𝐴2 𝐵2 𝐶2 𝐷2

𝐴3 𝐵3 𝐶3 𝐷3

]                     (3.48) 

x. Obtener los determinantes 𝑓4 y 𝑓5 de 3x3 asociados a la matriz jacobiana. 

𝑓4 = |
𝐴1 𝐵1 𝐶1

𝐴2 𝐵2 𝐶2

𝐴3 𝐵3 𝐶3

|                                      (3.49) 

𝑓4 = 𝐴1𝐵2𝐶3 − 𝐴1𝐵3𝐶2 − 𝐴2𝐵1𝐶3 + 𝐴2𝐵3𝐶1 + 𝐴3𝐵1𝐶2 − 𝐴3𝐵2𝐶1 = 0 

𝑓5 = |
𝐷1 𝐴1 𝐵1

𝐷2 𝐴2 𝐵2

𝐷3 𝐴3 𝐵3

|                                     (3.50) 

𝑓5 = 𝐴1𝐶2𝐷3 − 𝐴1𝐶3𝐷2 − 𝐴2𝐶1𝐷3 + 𝐴2𝐶3𝐷1 + 𝐴3𝐶1𝐷2 − 𝐴3𝐶2𝐷1 = 0 

 

xi. Proponer un valor arbitrario para 𝛽 y sustituirlo en las ecuaciones 

𝑓1, 𝑓2, 𝑓3, 𝑓4 𝑦 𝑓5. 

xii. Resolver el sistema de ecuaciones no lineales de 5x5 por el método de Newton-

Rhapson estableciendo valores iniciales apropiados. 

 

Los resultados obtenidos de los parámetros óptimos mediante la técnica de los puntos fijos 

extendida se toman como valores iniciales. 
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 3.10 Formulación de Euler-Lagrange 

 

El formulismo de Euler-Lagrange es en método utilizado para obtener ecuaciones diferenciales 

de movimiento cuando el uso de las leyes de Newton resulta complicado. Este método está 

basado en el principio de conservación de energía y fue planteado por Joseph Louis Lagrange, 

por ello y por la gran contribución de Euler, es que este método lleva este nombre. La expresión 

matemática de la formulación para sistemas conservativos es: 

 

                             
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞̇𝑖
) −

𝜕𝐿

𝜕𝑞𝑖
= 0                                              (3.51) 

 

i=1,2,3…n 

 

donde el subíndice i representa cada una de las coordenadas generalizadas y L representa el 

Lagrangiano el cual se define como la diferencia de energía cinética total del sistema con la 

energía potencial total [36], i.e. 

  

                                                  𝐿 = 𝑇 − 𝑈                                                       (3.52) 

Donde T es la energía cinética y U es la energía potencial del sistema. 

 

3.10.1 Función de disipación de Rayleigh 

 

Para el caso de sistemas mecánicos con amortiguamiento se utiliza la forma generalizada de 

las ecuaciones de Euler-Lagrange como se presenta a continuación.  

 

                                               
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞̇𝑖
) −

𝜕𝐿

𝜕𝑞𝑖
+

𝜕𝐷

𝜕𝑞̇𝑖
= 𝑄𝑖                                         (3.53) 

 

Donde se introduce la variable D la cual representa una función de las velocidades 

generalizadas llamada “función de disipación de Rayleigh”,  además de las fuerzas no 

conservativas denotadas por 𝑄𝑖 con i=1,2,3,…,n.  



 
 

45 
 

Las fuerzas generalizadas de las ecuaciones de Euler-Lagrange aplican para sistemas no 

conservativos y deben cumplir con la condición que las fuerzas no conservativas hagan que el 

sistema pierda energía por su acción. 
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Capítulo 4: Desarrollo del modelo 

matemático y optimización  

Para el desarrollo del modelo matemático considere el sistema que se muestra en la Figura 4.1. 

Este sistema consiste de una viga doblemente empotrada la cual está sujeta a una carga 

distribuida 𝑓(𝑥)𝑔(𝑡) donde 𝑓(𝑥) es una función espacial y 𝑔(𝑡) es una función temporal 

determinística. Para determinar el comportamiento dinámico del sistema se propone utilizar 

una fuerza de excitación armónica. La viga está acoplada en el punto 𝑥 = 𝑎 a un absorbedor 

de vibración dinámico no tradicional el cual está conectado a tierra mecánica por una red 

mecánica C3 [4] la cual consiste de un resorte, un inersor y un amortiguador conectados en 

serie, con coeficientes de rigidez, inertancia y amortiguamiento 𝑘2, 𝑏, 𝑐2 respectivamente, 

mientras que el absorbedor de vibración consiste en una masa (𝑚1) conectada a la viga por un 

resorte con rigidez 𝑘1 y un amortiguador con coeficiente de amortiguamiento 𝑐1. 

 

 

 

Figura 4. 1: Esquema del modelo de la viga propuesta en éste trabajo. 
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Donde: 

𝑓(𝑥)𝑔(𝑥) → 𝐶𝑎𝑟𝑔𝑎 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑖𝑑𝑎  

𝑦(𝑥, 𝑡)      → 𝐷𝑒𝑠𝑝𝑙𝑎𝑧𝑎𝑚𝑖𝑒𝑛𝑡𝑜 𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑎𝑙 𝑑𝑒 𝑙𝑎 𝑣𝑖𝑔𝑎  

𝐿               → 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑 𝑑𝑒 𝑙𝑎 𝑣𝑖𝑔𝑎  

𝑚1          → 𝑀𝑎𝑠𝑎 𝑎𝑠𝑜𝑐𝑖𝑎𝑑𝑎 𝑎𝑙 𝐷𝑉𝐴  

𝑘1           → 𝑅𝑖𝑔𝑖𝑑𝑒𝑧 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑒𝑛𝑡𝑒 𝑎𝑙 𝐷𝑉𝐴  

𝑦1(𝑡)     → 𝐷𝑒𝑠𝑝𝑙𝑎𝑧𝑎𝑚𝑖𝑒𝑛𝑡𝑜 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑒𝑛𝑡𝑒 𝑎 𝑚1 𝑑𝑒𝑙 𝐷𝑉𝐴  

𝑘2          → 𝑅𝑖𝑔𝑖𝑑𝑒𝑧 𝑑𝑒𝑙 𝑟𝑒𝑠𝑜𝑟𝑡𝑒 𝑑𝑒 𝑙𝑎 𝑟𝑒𝑑 𝑚𝑒𝑐á𝑛𝑖𝑐𝑎 𝐶3  

𝑦2(𝑡)    → 𝐷𝑒𝑠𝑝𝑙𝑎𝑧𝑎𝑚𝑖𝑒𝑛𝑡𝑜 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑒𝑛𝑡𝑒 𝑎𝑙 𝑖𝑛𝑒𝑟𝑠𝑜𝑟 𝑑𝑒 𝑎𝑙 𝑟𝑒𝑑 𝑚𝑒𝑐á𝑛𝑖𝑐𝑎 𝐶3   

𝑏          → 𝐼𝑛𝑒𝑟𝑡𝑎𝑛𝑐𝑖𝑎  

𝑦3(𝑡)   → 𝐷𝑒𝑠𝑝𝑙𝑎𝑧𝑎𝑚𝑖𝑒𝑛𝑡𝑜 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑒𝑛𝑡𝑒 𝑎𝑙 𝑎𝑚𝑜𝑟𝑡𝑖𝑔𝑢𝑎𝑑𝑜𝑟 𝑑𝑒 𝑙𝑎 𝑟𝑒𝑑 𝑚𝑒𝑐á𝑛𝑖𝑐𝑎 𝐶3  

𝑐2         → 𝐶𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑒 𝑑𝑒 𝑎𝑚𝑜𝑟𝑡𝑖𝑔𝑢𝑎𝑚𝑖𝑒𝑛𝑡𝑜 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑝𝑛𝑑𝑖𝑒𝑛𝑡𝑒 𝑎 𝑙𝑎 𝑟𝑒𝑑 𝑚𝑒𝑐á𝑛𝑖𝑐𝑎 𝐶3   

 

Para realizar el análisis dinámico del sistema partimos del formulismo de Euler-Lagrange para 

sistemas no conservativos para el que se definen las siguientes ecuaciones: 

 

𝑇 =
1

2
𝑀𝑣[𝑦̇(𝑥, 𝑡)]2 +

1

2
𝑚1[𝑦̇1(𝑡)]

2 +
1

2
𝑏[𝑦̇3(𝑡) − 𝑦̇2(𝑡)]

2                                  (4.1) 

𝑈 =
1

2
𝐾𝑣[𝑦(𝑥, 𝑡)]2 +

1

2
𝑘1[𝑦1(𝑡) − 𝑦(𝑎, 𝑡)]2 +

1

2
𝑘2[𝑦2(𝑡) − 𝑦1(𝑡)]

2                  (4.2) 

𝐷 =
1

2
𝑐1[𝑦̇1(𝑡) − 𝑦̇(𝑎, 𝑡)]2 +

1

2
𝑐2[𝑦̇3(𝑡)]

2                                                           (4.3) 

 

La función T [ecuación (4.1)] representa la energía cinética total del sistema, la función U 

[ecuación (4.2)] representa la energía potencial total del sistema y la función D [ecuación (4.3)] 

representa la función de disipación de Rayleigh. Éstas tres funciones son la base de la 

formulación de Euler-Lagrange para obtener el comportamiento dinamico del sistema. 

 

Al aplicar los procedimientos matemáticos correspondientes mostrados en la sección 3.10, 

además de los conceptos de la teoría de vibración lateral en vigas, la ecuación que rige el 

comportamiento de la viga es: 

 

𝐸𝐼
𝜕4

𝜕𝑥4 𝑦(𝑥, 𝑡) + 𝜌𝐴
𝜕2

𝜕𝑡2 𝑦(𝑥, 𝑡) =   𝑓(𝑥, 𝑡) + {𝑐1[𝑦̇1(𝑡) − 𝑦̇(𝑎, 𝑡)] + 𝑘1[𝑦1(𝑡) −

𝑦(𝑎, 𝑡)]}𝛿(𝑥 − 𝑎)                                                            (4.4) 
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Donde: 

A = Área transversal de la viga. 

I = Momento de inercia. 

ρ = Densidad de la viga. 

E = Módulo de elasticidad de la viga. 

𝛿(𝑥 − 𝑎) = Función Delta de Dirac. 

 

La expresión entre llaves puede ser aproximada por la función delta e indica que es válida 

cuando la distancia 𝑥 es igual a la ubicación 𝑎 del NIDVA-C3. 

 

De la misma manera que con la viga es necesario obtener las ecuaciones que rigen el 

comportamiento de los elementos del NIDVA-C3. Para el caso del absorbedor de vibración la 

ecuación es: 

𝑚1𝑦̈1(𝑡) + 𝑐1[𝑦̇1(𝑡) − 𝑦̇(𝑎, 𝑡)] + 𝑘1[𝑦1(𝑡) − 𝑦(𝑎, 𝑡)] + 𝑘2[𝑦1(𝑡) − 𝑦2(𝑡)] = 0        (4.5) 

 

Para el inersor: 

 

𝑏[𝑦̈2(𝑡) − 𝑦̈3(𝑡)] + 𝑐2𝑦̇3(𝑡) = 0                                         (4.6) 

 

Y finalmente el amortiguador: 

 

𝑏[𝑦̈3(𝑡)−𝑦̈2(𝑡)] + 𝑐2𝑦̇3(𝑡) = 0                                         (4.7) 

 

Sin embargo, como el modelo está sujeto a una carga armónica es necesario definir los 

siguientes parámetros: 

  

 𝑦1(𝑡) = 𝑌1𝑒
𝐼𝜔𝑡 ;   𝑦̇1(𝑡) = 𝐼𝜔𝑌1𝑒

𝐼𝜔𝑡 ;   𝑦̈1(𝑡) = −𝜔2𝑌1𝑒
𝐼𝜔𝑡 ;   𝑦2(𝑡) = 𝑌2𝑒

𝐼𝜔𝑡 ;   𝑦̇2(𝑡) =

𝐼𝜔𝑌2𝑒
𝐼𝜔𝑡 ;   𝑦̈2(𝑡) = −𝜔2𝑌2𝑒

𝐼𝜔𝑡 ;   𝑦3(𝑡) = 𝑌3𝑒
𝐼𝜔𝑡 ;   𝑦̇3(𝑡) = 𝐼𝜔𝑌3𝑒

𝐼𝜔𝑡 ;   𝑦̈3(𝑡) =

−𝜔2𝑌3𝑒
𝐼𝜔𝑡 ; 𝑦(𝑎, 𝑡) = 𝑌(𝑎, 𝜔)𝑒𝐼𝜔𝑡;  𝑦̇(𝑎, 𝑡) = 𝐼𝜔𝑌(𝑎, 𝜔)𝑒𝐼𝜔𝑡  

 

Tomando en cuenta éstos nuevos parámetros, se sustituyen en las ecuaciones (4.4)-(4.7) y a 

continuación las ecuaciones resultantes se resuelven para 𝑌1, 𝑌2, 𝑌3 lo cual  da como resultado: 
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𝑌1 = −
𝑘1(𝐼𝑏𝜔2𝑐2−𝐼𝑐2𝑘2+𝑏𝜔𝑘2)𝑌(𝑎,𝜔)

𝐼𝑏𝜔4𝑐2𝑚1+𝑏𝜔3𝑘2𝑚1−𝐼𝑐2((𝑏+𝑚1)𝑘2+𝑏𝑘1)𝜔2−𝑏𝜔𝑘1𝑘2+𝐼𝑐2𝑘1𝑘2
                 (4.8) 

 

𝑌2 =
𝑌1𝑘2(𝐼𝑐2−𝑏𝜔)

𝜔(𝐼𝑐2𝜔+𝑘2)𝑏−𝐼𝑐2𝑘2
                                                 (4.9) 

 

𝑌3 =
𝑏𝜔𝑌2

𝐼𝑐2−𝑏𝜔
                                                     (4.10) 

Se define la siguiente ecuación: 

 

𝑃 = 𝑚1𝜔
2𝑌1 − 𝐼𝑐2𝜔𝑌3                                          (4.11) 

 

Luego se sustituyen los valores correspondientes de 𝑌1, 𝑌2, 𝑌3 resultando de la siguiente manera: 

 

𝑃 = −
[𝐼𝑏𝜔2𝑐2𝑚1+𝑏𝜔𝑘2𝑚1−𝐼𝑘2𝑐2(𝑏+𝑚1)]𝑌(𝑎,𝜔)𝜔2𝑘1

𝐼𝑏𝜔4𝑐2𝑚1+𝑏𝜔3𝑘2𝑚1−𝐼𝑐2[(𝑏+𝑚1)𝑘2+𝑏𝑘1]𝜔2−𝑏𝜔𝑘1𝑘2+𝐼𝑐2𝑘1𝑘2
               (4.12)  

 

La ecuación anterior también se puede escribir en la forma: 𝑃 = −𝐻(𝜔)𝑌(𝑎, 𝜔), siendo  

 

𝐻 = −
𝜔2[𝐼𝑏𝜔2𝑐2𝑚1+𝑏𝜔𝑘2𝑚1−𝐼𝑘2𝑐2(𝑏+𝑚1)]𝑘1

𝐼𝑏𝜔4𝑐2𝑚1+𝑏𝜔3𝑘2𝑚1−𝐼𝑐2[(𝑏+𝑚1)𝑘2+𝑏𝑘1]𝜔2−𝑏𝜔𝑘1𝑘2+𝐼𝑐2𝑘1𝑘2
             (4.13) 

 

A su vez la ecuación anterior se puede expresar de manera simplificada como: 

 

𝐻 = 𝑚1𝜔
2𝐽                                                   (4.14) 

 

donde J está definida como: 

 

𝐽 =  
𝑘1[𝐼𝑏𝜔2𝑐2𝑚1+𝑏𝜔𝑘2𝑚1−𝐼𝑘2𝑐2(𝑏+𝑚1)]

𝑚1{𝐼𝑏𝜔4𝑐2𝑚1+𝑏𝜔3𝑘2𝑚1−𝐼𝑐2[(𝑏+𝑚1)𝑘2+𝑏𝑘1]𝜔2−𝑏𝜔𝑘1𝑘2+𝐼𝑐2𝑘1𝑘2}
             (4.15) 

 

Con el propósito de realizar el análisis adimensional del sistema, se proponen las siguientes 

variables adimensionales las cuales relacionan las propiedades físicas de la estructura tipo viga 

con el sistema absorbedor de vibraciones. 

 

𝜔𝐴
2 =

𝑘1

𝑚
 ; 𝜔𝐶

2 =
𝑘2

𝑏
 ; 𝜁2 =

𝑐2

2𝑚𝜔𝐴
 ;  𝜇 =

𝑏

𝑚
 ; 𝑞 =

𝜔𝐴

𝜔1
 ;  𝜂 =

𝜔𝑐

𝜔𝐴
 ;  Ω =

𝜔

𝜔1
;  𝛽 =

𝑚1

𝑀𝑣
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donde: 

𝜔𝐴
2 = Frecuencia natural al cuadrado asociado al DVA. 

𝜔𝐶
2 = Frecuencia natural al cuadrado relacionado al inersor. 

𝜁2 =Factor de amortiguamiento relacionado al DVA. 

𝜇 = Relación de masas entre la inertancia y el DVA. 

q = Relación de frecuencias naturales no amortiguadas para el DVA. 

𝜂 = Relación de frecuencias naturales no amortiguadas entre la inertancia y el DVA. 

Ω = Relación de frecuencias forzadas. 

𝛽= Relación de masas 

 

Sustituyendo las variables adimensionales en J se obtiene. 

𝐽 = −
2[𝐼𝜂2(𝜇+1)𝜁2𝑞2−

1

2
𝜇𝑞𝜂2Ω−𝐼𝜁2Ω2]𝑞2

2𝐼𝜁2𝑞4𝜂2−𝜇𝑞3𝜂2Ω−2I[(𝜇+1)𝜂2+1]𝜁2Ω2𝑞2+𝜇𝑞𝜂2Ω3+2𝐼𝜁2Ω4                  (4.16) 

 

Después, se sustituye la frecuencia de excitación (𝜔 = 𝜔1Ω) del sistema, lo cual da como 

resultado  

 

𝐻(𝜔) = 𝑚1𝜔1
2𝐽1                                                       (4.17) 

 

donde 𝐽1 = Ω2𝐽. 

 

Es necesaria la implementación del principio de superposición de modos para la obtención de 

la solución de la vibración forzada de la viga, para ello, la deflexión de la viga y sus condiciones 

de frontera se expresan de la siguiente manera: 

𝑦(𝑥, 𝑡) = ∑𝜙𝑖(𝑥)𝑞𝑖(𝑡)

∞

𝑖=1

 

 

𝑑4𝜙𝑖(𝑥)

𝑑𝑥4
= 𝛽𝑖

4𝜙𝑖(𝑥) 

 

Donde 𝛽𝑖 es el valor característico o Eigenvalor  de la ecuación característica de la viga y 𝜙𝑖 

es el i-ésimo modo de vibración de la viga. 
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Para obtener la respuesta dinámica general en función de la frecuencia del desplazamiento 

transversal de la viga, se supone que la excitación armónica afecta al DVA. La ecuación que 

rige el comportamiento del sistema es: 

 

𝑦(𝑥, 𝜔) =  𝐺1(𝑥, 𝜔) −
𝐺2(𝑎,𝜔)𝐺1(𝑥,𝜔)

1

𝐻(𝜔)
+𝐺1(𝑎,𝜔)

                                   (4.18) 

 

donde:  

𝐺1(𝑥, 𝜔) = ∑
𝜙𝑖(𝑥)𝜙𝑖(𝑎)

𝐿(𝐸𝐼𝛽𝑖
4−𝜌𝐴𝜔2)

∞
𝑖=1                                       (4.19) 

 

𝐺2(𝑥, 𝜔) = ∑
𝑎𝑖𝜙𝑖(𝑥)

𝐿(𝐸𝐼𝛽𝑖
4−𝜌𝐴𝜔2)

∞
𝑖=1                                      (4.20) 

 

𝑎𝑖 = ∫ 𝑓(𝑥)𝜙𝑖(𝑥)𝑑𝑥
∞

0
                                          (4.21) 

 

Después de sustituir las ecuaciones correspondientes y efectuar el desarrollo algebraico se 

tiene: 

 

𝑆(𝑎, Ω) =
1

𝜌𝐴𝐿𝜔1
2 ∑ 𝜙𝑖(𝑥) [

𝑎𝑖

𝛾𝑖
2−Ω2

−
𝜙𝑖(𝑎)

𝛾𝑖
2−Ω2 (

∑
𝛽𝑎𝑖𝜙𝑖(𝑎)

𝛾𝑖
2−Ω2

∞
𝑖=1

∑
𝛽𝜙𝑖(𝑎)2

𝛾𝑖
2−Ω2

∞
𝑖=1 +

1

𝐽1

)]∞
𝑖=1                (4.22) 

 

La ecuación (4.22) representa la función de respuesta en frecuencia del desplazamiento 

transversal de la viga cuando se tiene una excitación armónica. Sin embargo, si se considera el 

primer modo de vibración la ecuación (4.22), se reescribe como:  

 

𝑆(𝑎, Ω) =
𝜙1𝑎1

(𝛽𝐽1𝜙1
2−Ω2+1)𝜌𝐴𝐿𝜔1

2                                      (4.23) 

 

 

4.1  Técnica de los puntos fijos extendida 

Para esta técnica es necesario partir de la función de respuesta en frecuencia (FRF) en estado 

estable de la estructura tipo viga con el NIDVA-C3 para la implementación de la técnica de los 



 
 

53 
 

puntos fijos extendida. De esta manera si se considera el primer modo de vibración y al evaluar 

en el punto 𝑋 = 𝑎 se obtiene. 

 

 𝑆(𝑎, Ω) =
1

𝛽𝐽1𝜙1
2(𝑎)−Ω2+1

                                             (4.24) 

 

Después de sustituir el valor de 𝐽1 se  observa que la ecuación puede expresarse en la forma: 

 

𝑆 =  
𝐴+𝑖𝐵

𝐶+𝑖𝐷
                                                         (4.25) 

 

Los valores para A, B, C y D que se muestran en la ecuación (4.25) se proporcionan en el 

apéndice A. 

 

De esta manera se puede obtener la resultante del sistema como el módulo de la ecuación 

(4.25): 

 

|𝐻(𝑠)|2 =
𝐴2+𝐵2

𝐶2+𝐷2                                                (4.26) 

 

Como se menciona en la sección 3.7, la técnica de los puntos fijos se basa principalmente en 

dos condiciones de operación del absorbedor, siendo la primera de ellas cuando el 

amortiguamiento es cero y la segunda cuando el amortiguamiento es infinito. Al aplicar estas 

condiciones a la ecuación (4.26) se obtienen dos ecuaciones las cuales son independientes de 

la relación de amortiguamiento. Para un valor de relación de amortiguamiento de cero  (𝜁 = 0)  

la ecuación (4.26) se reduce a la siguiente expresión. 

 

|𝐻(𝑠)|2 =
𝐴2

𝐶2
                                                   (4.27) 

 

De igual forma para un valor de relación de amortiguamiento infinito  (𝜁 = ∞) la ecuación 

(4.26) se reduce a la siguiente expresión. 

 

|𝐻(𝑠)|2 =
𝐵2

𝐷2                                                  (4.28) 
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Al igualar las ecuaciones (4.26) y (4.27) se obtienen dos soluciones, una de ellas proporciona 

un resultado trivial pero cierto, 𝛽 = 0, 𝜇 = 0, 𝑞 = 0, 𝜂 = 0 𝑦 𝜙1(𝑎) = 0. Cuando Ω = 0 o 𝜔 =

0 la amplitud del sistema es 𝑌(𝑎, 𝑡)𝑒𝑠𝑡(Deflexión estática) y es independiente del 

amortiguamiento, simplemente porque el amortiguamiento se mueve tan despacio que no se da 

oportunidad para la creación de una fuerza de amortiguamiento. 

 

La segunda alternativa proporciona un polinomio de grado 8 el cual comparte las mismas raíces 

que la ecuación (4.28). Para reducir el grado de la ecuación se realiza un cambio de variable 

para después convertirla en una ecuación mónica y así emplear el teorema de Vieta. 

 

Al aplicar el teorema de Vieta, se igualan las sumas y los productos de las raíces de las 

ecuaciones (4.27) y (4.28), a partir de ello se obtienen los parámetros óptimos del sistema. 

 

 

 

4.2   Criterio 𝑯∞  

Como se menciona en la sección 3.8, para llevar a cabo la optimización mediante el criterio 

𝐻∞ es necesario utilizar el método de Nishihara para la obtención de los parámetros óptimos. 

 

 4.2.1 Método de Nishihara 

  

Para éste método se parte de calcular el módulo de H(s), (ecuación (4.26)), a partir de la cual 

se definen dos variables: 

 

𝑁𝑢𝑚𝑒𝑟𝑎𝑑𝑜𝑟 = 𝐴2 + 𝐵2                                              (4.29) 

𝐷𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑑𝑜𝑟 = 𝐶2 + 𝐷2                                            (4.30) 

 

También es necesario definir una nueva variable propuesta por Nishihara como se menciona 

en la sección 3.9.1. 

 

ℎ = √
1

1−𝑟2                                                      (4.31) 
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A partir de las ecuaciones (4.29) -(4.31) se define la siguiente ecuación.  

 

𝐷𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑑𝑜𝑟 −
𝑁𝑢𝑚𝑒𝑟𝑎𝑑𝑜𝑟

ℎ2 = 0                                (4.32) 

 

Después de sustituir las ecuaciones (4.29)-(4.31) en la ecuación (4.32) se obtiene un polinomio 

de grado 12, el cual es necesario convertir en un polinomio mónico, dicho polinomio tiene la 

forma: 

 

Ω12 + 𝑐1Ω
10 + 𝑐2Ω

8 + 𝑐3Ω
6 + 𝑐4Ω

4 + 𝑐5Ω
2 + 𝑐6 = 0                 (4.33) 

 

Los valores de los coeficientes 𝑐𝑛 de la ecuación (4.33) se enlistan en el apéndice B. 

 

A partir del teorema de Vieta se obtiene el sistema de ecuaciones en términos de los coeficientes 

𝑐𝑛 del polinomio de la ecuación (4.33), de la siguiente manera. 

 

𝑓1(𝛽, 𝜙1, 𝜇, 𝑞, 𝜂, 𝑟, 𝜁2) = (4𝑐2 − 𝑐1
2)√𝑐6 + 4𝑐5                    (4.34) 

𝑓2(𝛽, 𝜙1, 𝜇, 𝑞, 𝜂, 𝑟, 𝜁2) = 𝑐1𝑐5 + 4𝑐6 + 2𝑐3√𝑐6                    (4.35) 

𝑓3(𝛽, 𝜙1, 𝜇, 𝑞, 𝜂, 𝑟, 𝜁2) = 4𝑐6(𝑐1√𝑐6 + 𝑐4) − 𝑐5
2                  (4.36) 

 

Al sustituir los valores de los coeficientes 𝑐𝑛 se puede observar que el conjunto de ecuaciones 

(4.34)-(4.3) están en función de los parámetros a optimizar. A partir de dicho conjunto de 

ecuaciones se define la matriz jacobiana asociada al sistema de la siguiente manera. 

 

𝒥 =

[
 
 
 
 
𝜕𝑓1

𝜕𝑞

𝜕𝑓1

𝜕𝜂

𝜕𝑓1

𝜕𝜁2

𝜕𝑓1

𝜕𝜇

𝜕𝑓2

𝜕𝑞

𝜕𝑓2

𝜕𝜂

𝜕𝑓2

𝜕𝜁2

𝜕𝑓2

𝜕𝜇

𝜕𝑓3

𝜕𝑞

𝜕𝑓3

𝜕𝜂

𝜕𝑓3

𝜕𝜁2

𝜕𝑓3

𝜕𝜇 ]
 
 
 
 

                                            (4.37) 

 

A partir de la matriz descrita en la ecuación (4.37) se llega a las ecuaciones 𝑓4 y 𝑓5, para ello 

se consideran los determinantes de 3x3 más simples asociados a la matriz jacobiana, los cuales 

son: 
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𝑓4 =
|
|

𝜕𝑓1

𝜕𝑞

𝜕𝑓1

𝜕𝜂

𝜕𝑓1

𝜕𝜁2

𝜕𝑓2

𝜕𝑞

𝜕𝑓2

𝜕𝜂

𝜕𝑓2

𝜕𝜁2

𝜕𝑓3

𝜕𝑞

𝜕𝑓3

𝜕𝜂

𝜕𝑓3

𝜕𝜁2

|
|
                                               (4.38) 

 

 

𝑓5 =
|
|

𝜕𝑓1

𝜕𝜇

𝜕𝑓1

𝜕𝑞

𝜕𝑓1

𝜕𝜁2

𝜕𝑓2

𝜕𝜇

𝜕𝑓2

𝜕𝑞

𝜕𝑓2

𝜕𝜁2

𝜕𝑓3

𝜕𝜇

𝜕𝑓3

𝜕𝑞

𝜕𝑓3

𝜕𝜁2

|
|
                                               (4.39) 

 

Al resolver ambos determinantes y sustituir las derivadas parciales del conjunto de ecuaciones 

(4.34)-(4.36) se obtiene un sistema de 5 ecuaciones no lineales. Para resolver el sistema se 

emplea el método de Newton-Raphson mediante una herramienta computacional ya que, 

además de ser ecuaciones no lineales, las expresiones resultantes de los determinantes son muy 

extensas. 

 

Con el procedimiento del modelado matemático de la viga el cual resulta en la función de 

respuesta en frecuencia en estado estable necesaria para la obtención de los parámetros óptimos 

del sistema, se procedió con la implementación de los procedimientos necesarios para la 

optimización mediante la técnica de los puntos fijos extendida y el criterio 𝐻∞ siguiendo los 

pasos mostrados en las secciones 3.7-3.9. A partir de éstos procedimientos, se obtienen las 

ecuaciones a resolver para la obtención de los parámetros óptimos del sistema. Los resultados 

obtenidos se muestran en el Capítulo 5 de este trabajo de investigación. 
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Capítulo 5: Resultados. 

En éste capítulo se muestran los resultados obtenidos de los procedimientos desarrollados en 

el capítulo 4, además de que se realiza una comparación de las gráficas que se obtienen al 

utilizar los parámetros obtenidos de la técnica de los puntos fijos y el criterio 𝐻∞. De la misma 

manera se obtienen los índices de incremento del ancho de banda y de reducción de la amplitud 

de vibración con respecto al DVA clásico. 

 

5.1 Resultados de la técnica de los puntos fijos extendida 

Siguiendo el procedimiento del Teorema de Vieta se obtienen los parámetros óptimos que se 

muestran a continuación. 

 

𝜇𝑜𝑝𝑡 = −
2𝛽𝜙1

2

𝛽𝜙1
2−1

                                                    (5.1) 

𝜂𝑜𝑝𝑡 = √−𝛽𝜙1
2 + 1                                             (5.2) 

𝑞𝑜𝑝𝑡 = 1                                                               (5.3) 

𝑅(𝑠) = √
1

𝛽𝜙1
2                                                       (5.4) 

 

 

La ecuación (5.4) representa la amplitud de la vibración en los puntos invariantes, que también 

es la amplitud mínima de vibración de la estructura tipo viga con el dispositivo NIDVA-C3. 

 

Como se puede observar, el conjunto de ecuaciones (5.1)-(5.4) se encuentran en términos de 𝛽 

y 𝜙1. Basado en las condiciones de frontera de la estructura tipo viga, además de considerar 

que la masa del dispositivo NIDVA-C3 sea el 10% de la masa de la estructura principal, se 

plantean los valores mostrados en la Tabla 5.1. Para casos prácticos de absorbedores de 

vibración dinámicos en los cuales se utilicen redes mecánicas el valor máximo de la relación 

de masas es el 10%, mientras que para el DVA clásico es el 25% [29,30].  
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Tabla 5. 1: Valores numéricos asignados para las variables independientes. 

Variable Valor 

Numérico 

𝛽 0.1 

𝜙1(𝑎) √2 

 

Una vez se definen los valores mostrados en la Tabla 5.1, éstos se sustituyen en las ecuaciones 

de los parámetros óptimos (ecuaciones (5.1)-(5.4)). Los valores numéricos obtenidos se 

muestran en la Tabla 5.2, para este caso se consideran 6 cifras significativas. 

 

Tabla 5. 2: valores numéricos obtenidos para los parámetros óptimos y la respuesta en 

frecuencia del sistema en su forma adimensional. 

Parámetro Valor 

𝜇𝑜𝑝𝑡 0.50000 

𝜂𝑜𝑝𝑡 0.89442 

𝑞𝑜𝑝𝑡 1.00000 

R(s) 2.23606 

 

 

Después de sustituir los valores numéricos de las Tablas 5.1 y 5.2 se llega a la función de 

respuesta en frecuencia (FRF) del sistema considerando amortiguamiento igual a cero (𝜁2 →

0). 

 

𝐻
𝜁2→0

𝜇𝑜𝑝𝑡,𝜂𝑜𝑝𝑡,𝑞𝑜𝑝𝑡 = √
(1−Ω)2(1+Ω)2

(−Ω4+2.2Ω2−1)2
                                      (5.5) 

 

De la misma manera, considerando los valores de las Tablas 5.1 y 5.2 se obtiene la función de 

respuesta de frecuencia (FRF) del sistema considerando amortiguamiento infinito (𝜁2 → ∞).  

 

𝐻
𝜁2→∞

𝜇𝑜𝑝𝑡,𝜂𝑜𝑝𝑡,𝑞𝑜𝑝𝑡 = √
(Ω4−2.2Ω2+0.8)2

(Ω6−3.4Ω4+3.24Ω2−0.8)2
                              (5.6) 
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Para poder observar de mejor manera el comportamiento de la función de respuesta  en 

frecuencia se propone un valor arbitrario para el amortiguamiento, en este caso 𝜁2 = 0.5. Al 

sustituir los valores numéricos se obtiene la siguiente expresión. 

 

𝐻
𝜁2=0.5

𝜇𝑜𝑝𝑡,𝜂𝑜𝑝𝑡,𝑞𝑜𝑝𝑡 = √
0.16Ω2(−Ω2+1)2+(Ω4−2.2Ω2+0.8)2

0.16Ω2(−2.2Ω2+Ω4+1)2+(Ω6−3.4Ω4+3.24Ω2−0.8)2
          (5.7) 

 

La representación gráfica de las ecuaciones (5.5)-( 5.7) se muestra en la Figura 5.1. 

 

Figura 5. 1: Respuesta en frecuencia de la estructura primaria acoplada al NIDVA-C3 vs la 

relación de frecuencia 𝛺 utilizando los parámetros óptimos y un coeficiente de 

amortiguamiento arbitrario. 

 

Como se observa en la Figura 5.1 todas las curvas pasan por los puntos fijos o invariantes que 

son independientes de la relación de amortiguamiento. Además, la curva de la función de 

respuesta en frecuencia con el valor de relación de amortiguamiento arbitrario (𝜁2 = 0.5) no 

brinda una reducción adecuada de la amplitud de vibración del sistema. 

 

El conjunto de soluciones óptimas obtenidas hasta este punto (𝜇𝑜𝑝𝑡, 𝜂𝑜𝑝𝑡, 𝑞𝑜𝑝𝑡) crean los 

parámetros necesarios para producir la misma amplitud de vibración en las frecuencias 

invariantes del NIDVA-C3, pero para aplanar la curva de la función de respuesta en frecuencia 
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del NIDVA-C3 estos parámetros no son suficientes, es necesario encontrar la relación de 

amortiguamiento óptimo 𝜁2𝑜𝑝𝑡
.  

 

5.1.1 Soluciones óptimas para la relación de amortiguamiento 𝜻𝟐 

 

Al aplicar la teoría de Krenk [38] para obtener el amortiguamiento óptimo de la viga se 

producen tres frecuencias resonantes  Ω1,2 cuando 𝜁 → ∞ y Ω0 cuando 𝜁 → 0. 

 

Para calcular las frecuencias invariantes Ω1,2 se debe resolver la ecuación que resulta de igualar 

a cero el denominador de la ecuación (4.27), resultando en la siguiente expresión. 

 

−Ω4 + 2.2Ω2 − 1 = 0                                                    (5.8) 

 

Al resolver la ecuación (5.8) y tomando las raíces positivas obtenemos los siguientes valores. 

 

Ω1 = 1.248301874 

Ω2 = 0.8010882790 

 

Para Ω0 se iguala a cero el denominador de la ecuación (4.28), además se sustituyen los 

parámetros óptimos 𝜇𝑜𝑝𝑡, 𝜂𝑜𝑝𝑡, 𝑞𝑜𝑝𝑡, lo cual resulta en: 

 

 Ω6 − 3.4Ω4 + 3.24Ω2 − 0.8                                          (5.9) 

 

Al resolver la ecuación (5.9) se toma un valor que cumpla con la condición Ω2 ≤ Ω0 ≤ Ω1 por 

lo tanto: 

Ω0 = 1 

 

Para obtener numéricamente la relación de amortiguamiento óptimo que aplana la curva de 

respuesta en frecuencia de la estructura principal, se deben sustituir las soluciones 

𝜇𝑜𝑝𝑡, 𝜂𝑜𝑝𝑡, 𝑞𝑜𝑝𝑡, R(s), Ω1, Ω2 y  Ω0 en la ecuación (4.26). Esto produce tres valores para la 

relación de amortiguamiento en cada frecuencia resonante, los valores obtenidos se muestran 

en la Tabla 5.3. 
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Tabla 5. 3: Valores numéricos de la relación de amortiguamiento para cada frecuencia 

resonante. 

 

Amortiguamiento Valor Numérico  

𝜁2𝐴
 0.3046334712 

𝜁2𝐵
 0.2292690598 

𝜁2𝐶
 0.2294157339 

 

El factor de amortiguamiento óptimo se obtiene calculando el valor cuadrático medio (RMS) 

de los valores de amortiguamiento producidos en cada frecuencia resonante. 

 

𝜁2𝑜𝑝𝑡
=

1

3
√3𝜁2𝐴

2 + 3𝜁2𝐵

2 + 3𝜁2𝐶

2                                            (5.10) 

Lo cual da como resultado: 

 

𝜁2𝑜𝑝𝑡
= 0.2569029859 

 

De esta manera al sustituir los datos de las Tablas 5.1 y 5.2, además del factor de 

amortiguamiento óptimo se obtiene la siguiente expresión. 

 

 

𝐻
𝜁2𝑜𝑝𝑡

𝜇𝑜𝑝𝑡,𝜂𝑜𝑝𝑡,𝑞𝑜𝑝𝑡 = √
0.16Ω2(−Ω2+1)2+0.2639965766(Ω4−2.2Ω2+0.8)2

0.16Ω2(Ω4−2.2Ω2+1)2+0.2639965766(Ω6−3.4Ω4+3.24Ω2−0.8)2
          (5.11) 

 

En la Figura 5.2 se observan las gráficas de la respuesta de la estructura tipo viga con el 

NIDVA-C3, los valores de la relación de amortiguamiento utilizados para obtener las gráficas 

son las dos condiciones principales de funcionamiento en la técnica de los puntos fijos (𝜁2 = 0 

y 𝜁2 → ∞), un valor arbitrario de la relación de amortiguamiento y finalmente la relación de 

amortiguamiento óptima para el sistema.  
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Figura 5. 2: Gráfica de la respuesta en frecuencia 𝐻(𝛺) con los parámetros óptimos 

incluyendo la relación de amortiguamiento óptimo. 

 

Como se observa en la Figura 5.2 las curvas de la respuesta de la estructura cuando se utilizan 

los valores fundamentales de la relación de amortiguamiento (𝜁2 = 0 y 𝜁2 → ∞) además del 

valor de amortiguamiento arbitrario (𝜁2 = 0.5) y el valor óptimo obtenido mediante la técnica 

de los puntos fijos. También, es posible observar que al utilizar el factor de amortiguamiento 

óptimo (curva negra) se tiene una menor amplitud en comparación con la curva en la cual se 

emplea un valor arbitrario para le relación de amortiguamiento. 

 

En la Tabla 5.4 se enlista los parámetros óptimos que se obtienen al aplicar la técnica de los 

puntos fijos extendida considerando distintos valores para la relación de masas, 𝛽. Se 

consideraron valores de 3%, 5%, 8% y 10%. 

 

Tabla 5. 4: Parámetros óptimos del sistema considerando diferentes valores para β con la 

técnica de los puntos fijos extendida. 

Técnica de los puntos fijos extendida 

𝜙1 = √2 

𝜷 𝜇𝑜𝑝𝑡 𝑞𝑜𝑝𝑡 𝜂𝑜𝑝𝑡 𝜁𝑜𝑝𝑡 R(s) 

0.03 0.12765 1 0.96953 0.13699 4.08248 

0.05 0.22222 1 0.94868 0.17822 3.16227 

0.08 0.38095 1 0.91651 0.22804 2.49999 

0.1 0.5 1 0.89442 0.25690 2.23606 
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Figura 5. 3: Respuestas del sistema al considerar distintos valores de 𝛽 con la técnica de los 

puntos fijos extendida. 

 

La Figura 5.3 muestra una comparación de las respuestas del sistema obtenidas a partir de los 

parámetros obtenidos al considerar distintos valores de relación de masa, como se observa, al 

aumentar la relación de masas la amplitud de la vibración disminuye. 

 

5.2  Resultados mediante el criterio 𝑯∞ 

 

En ésta técnica, al igual que con la técnica de los puntos fijos extendida se consideran los 

valores para  𝛽 y 𝜙1 propuestos en la Tabla 5.1. Para resolver el sistema de ecuaciones mediante 

el método de Newton-Raphson los valores iniciales se propusieron considerando los resultados 

obtenidos en la técnica de los puntos fijos extendida (ver Tabla 5.2). 

 

Los resultados obtenidos para los parámetros óptimos se muestran en la Tabla 5.5. 
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Tabla 5. 5: valores para los parámetros óptimos obtenidos mediante el criterio 𝐻∞ 

 

 

 

Al sustituir los valores de los parámetros óptimos de la Tabla 5.5 en la función de respuesta en 

frecuencia se obtiene la siguiente expresión. 

 

𝐻𝑁𝑖𝑠ℎ = √
0.26626Ω2(−Ω2+1.07954)2+0.25381(Ω4−2.48080Ω2+0.93394)2

0.26626Ω2(Ω4−2.29545Ω2+1.07954)2+0.25381(Ω6−3.69671Ω4+3.71728Ω2−0.93394)2
    (5.12) 

 

La Figura 5.4 muestra como la curva de la función de respuesta en frecuencia del sistema al 

utilizar los parámetros óptimos resultantes al emplear el criterio 𝐻∞. 

 

 

 

Figura 5. 4: Gráfica de 𝐻(𝛺) considerando los parámetros óptimos obtenidos con el criterio 

𝐻∞ 

 

Parámetro Valor óptimo 

𝜇𝑜𝑝𝑡 0.61972 

𝜂𝑜𝑝𝑡 0.89520 

𝑞𝑜𝑝𝑡 1.03901 

𝜁2𝑜𝑝𝑡
 0.25190 

||𝐻∞|| 2.32812 
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Para poder visualizar de mejor manera la diferencia existente entre las curvas generadas con 

los parámetros óptimos resultantes de la técnica de los puntos fijos extendida [ecuación (5.11)] 

y el criterio 𝐻∞ [ecuación 5.12] la Figura 5.5 muestra una comparación entre ambas gráficas. 

 

 

 

Figura 5. 5: Comparación entre las curvas resultantes de la técnica de los puntos fijos 

extendida y el criterio 𝐻∞. 

 

Como se observa en la Figura 5.5, ambas curvas muestran una amplitud similar, sin embargo, 

el aplanamiento de la curva es mejor cuando se aplica el criterio 𝐻∞ con el método de 

Nishihara, mientras que con la técnica de los puntos se notan oscilaciones en la amplitud, esto 

se debe a que le técnica de los puntos fijos extendida es solo una aproximación a los resultados 

exactos que se obtienen con el criterio 𝐻∞. Sin embargo, para casos en los cuales se tenga una 

limitada capacidad de computo, la técnica de los puntos fijos es ampliamente útil, ya que resulta 

en ecuaciones menos complejas y el resultado es bastante aceptable. 

 

En la Tabla 5.6 se muestran los valores numéricos de los  parámetros óptimos que se obtienen 

al aplicar el criterio 𝐻∞ al sistema cambiando los valores de la relación de masas, 𝛽, 

correspondientes al 3%, 5%, 8% y 10%. 
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Tabla 5. 6: Parámetros óptimos del sistema considerando diferentes valores para 𝛽 en el 

criterio 𝐻∞. 

Criterio 𝑯∞ 

𝝓𝟏 = √𝟐 

β 𝜇𝑜𝑝𝑡 𝑞𝑜𝑝𝑡 𝜂𝑜𝑝𝑡 𝜁𝑜𝑝𝑡 ||𝐻∞|| 

0.03 0.16824 1.01363 0.97073 0.13582 4.41721 

0.05 0.29178 1.02220 0.95068 0.17647 3.37379 

0.08 0.52837 1.03711 0.91679 0.22541 2.61623 

0.1 0.61972 1.03901 0.89520 0.25190 2.32812 

 

 

 

Figura 5. 6: Respuesta del sistema considerando distintos valores de 𝛽 en el criterio 𝐻∞. 

 

La Figura 5.6 muestra de manera gráfica como la respuesta del sistema se ve afectada por la 

relación de masas, en este caso con el criterio 𝐻∞ se observa que si se aumenta le relación de 

masas del NIDVA-C3 la amplitud de vibración disminuye. 

 

Para calcular el porcentaje de supresión de vibración con respecto al DVA clásico se calcula el 

ancho de banda de supresión de vibraciones %𝑆𝐵𝑖, para ello se considera la función de 

respuesta en frecuencia del sistema NIDVA-C3 así como la función de respuesta en frecuencia 

del sistema tipo viga con el absorbedor de vibración dinámico clásico. Para tener una mejor 
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idea del contraste entre ambos sistemas se utiliza como referencia la función de respuesta en 

frecuencia cuando no existe un absorbedor dinámico de vibración acoplado a la estructura tipo 

viga. 

 

En la Figura 5.7 se observa que el rango de supresión de vibraciones y el ancho de banda 

operativo es mayor al utilizar el NIDVA-C3 en comparación con el DVA clásico. 

Traduciéndose en una manera más eficiente de aislar las vibraciones y reduciendo así su 

impacto, con lo cual se obtiene una mejora en la comodidad, estabilidad y la prolongación de 

la vida útil de los sistemas mecánicos. 

 

 

Figura 5. 7: Comparación de las curvas FRF del NIDVA-C3 y el DVA clásico 

 

 

La ecuación para calcular el incremento del ancho de banda operativo del sistema es: 

 

%𝑆𝐵𝑁𝐼𝐷𝑉𝐴−𝐶3 =
𝑆𝐵𝑁𝐼𝐷𝑉𝐴−𝐶3−𝑆𝐵𝐷𝑉𝐴𝑐𝑙á𝑠𝑖𝑐𝑜

𝑆𝐵𝑁𝐼𝐷𝑉𝐴−𝐶3
× 100%                           (5.13) 

 

De la misma forma, para calcular el índice de reducción de la amplitud de vibración del 

NIDVA-C3 con respecto al DVA clásico, se encuentran los puntos máximos correspondientes 

a cada FRF entre los puntos invariantes asociados a cada amplitud máxima de la FRF. Por lo 

tanto, la ecuación para el índice de reducción de la amplitud de vibración del sistema es: 
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%𝑆𝑃𝑁𝐼𝐷𝑉𝐴−𝐶3 =
𝑆𝑃𝐷𝑉𝐴𝑐𝑙á𝑠𝑖𝑐𝑜

− 𝑆𝑃𝑁𝐼𝐷𝑉𝐴−𝐶3

𝑆𝑃𝐷𝑉𝐴𝑐𝑙á𝑠𝑖𝑐𝑜

× 100% 

 

Una vez realizados los cálculos se obtienen que el %𝑆𝐵𝑁𝐼𝐷𝑉𝐴−𝐶3 para el NIDVA-C3 es del 

48.2% mientras que el %𝑆𝑃𝑁𝐼𝐷𝑉𝐴−𝐶3 es del 48.1% en comparación a la estructura tipo viga con 

el DVA clásico. 

De los resultados obtenidos en éste capítulo se concluye que, al implementar el NIDVA-C3 en 

una estructura tipo viga la cual esté sujeta a carga armónica la mitigación de las vibraciones 

resulta ser mucho más efectiva que solo emplear el DVA clásico.   
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Capítulo 6: Conclusiones 

Con el desarrollo matemático realizado en éste trabajo se determinó el diseño óptimo de un 

absorbedor de vibración no tradicional basado en inersor para el control de vibración de una 

estructura tipo viga. El desarrollo se llevó a cabo considerando que a la estructura se le aplica 

una excitación armónica. El absorbedor de vibración no tradicional se conecta a tierra mecánica 

utilizando una red mecánica C3 [4] compuesta por un resorte, un inersor y un amortiguador 

conectados en serie.  

Para el análisis dinámico fue necesario seguir una serie de pasos en la que fue necesario emplear 

la formulación de Euler-Lagrange para obtener las ecuaciones de movimiento que rigen el 

sistema, además, para simplificar el procedimiento se obtuvieron los parámetros 

adimensionales a partir del teorema Π de Buckingham, lo cual permitió hallar la respuesta en 

frecuencia adimensional del sistema. La resolución del problema planteado se llevó a cabo por 

medio de dos técnicas, siendo la primera, la técnica de los puntos fijos extendida propuesta por 

Barredo [15] además de la técnica de optimización 𝐻∞ en la cual es necesario emplear el 

método de Nishihara. Como se describe en la sección 5 de éste trabajo de investigación los 

resultados obtenidos mediante el criterio 𝐻∞ muestran una mejor minimización de la amplitud 

de la vibración ya que proporciona soluciones exactas mientras que la técnica de los puntos 

fijos extendida es una aproximación de la norma 𝐻∞ que considera el teorema de Vieta y la 

teoría de Steen Krenk [38]. Sin embargo, la técnica de los puntos extendida resulta ser 

ampliamente útil debido a que sus ecuaciones resultantes son menos complejas que las del 

criterio 𝐻∞, lo cual deriva en un menor uso de recursos computacionales. 

 

Tanto el criterio  𝐻∞ y la técnica de los puntos fijos extendida consiste en encontrar la respuesta 

óptima entre los puntos fijos para extender el rango de mitigación de vibración del NIDVA-

C3. Lo anterior en el área de la ingeniería mecánica automotriz, se puede traducir en una 

trayectoria de conducción más suave y fluida, brindando un mayor confort, mientras que en 

ingeniería civil se traduce a una prolongación de la vida útil de las estructuras y maquinaria, 

sin embargo, también resulta muy útil en diversas industrias. 

 

Finalmente se realizó la comparación entre los resultados obtenidos con el NIDVA-C3 y el 

DVA clásico donde se observó una mejora considerable al utilizar el NIDVA-C3 en la 
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estructura tipo viga. De ésta manera la hipótesis planteada al principio de esta investigación 

fue demostrada exitosamente. 

 

6.1 Trabajos futuros 

 

Es importante recalcar que el trabajo realizado en ésta tesis puede ser mejorado de distintas 

maneras, siendo las principales las que se enlistan a continuación. 

 

 Debido a que los inersores aún no son muy utilizados en las industrias, la 

implementación del modelo propuesto en ésta tesis resulta complejo, sin embargo, sería 

muy importante realizar la implementación física del sistema y así realizar la 

comprobación de los resultados obtenidos mediante la experimentación. 

 Como es sabido, existen diversos tipos de excitaciones externas a las cuales pueden 

estar sujetas las estructuras y maquinaria, es por ello que resultaría muy útil llevar a 

cabo el diseño del sistema considerando distintos tipos de excitación, tales como fuerzas 

inerciales o aleatorias. 
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Apéndices. 

 

 Apéndice A 

 

Coeficientes de la FRF 

 

𝐴 = 𝜇𝑞𝜂2Ω(−Ω2 + 𝑞2)                                                                                                       (A.1) 

  

𝐵 = −2𝜁2(Ω
4 − ((𝜇 + 1)𝜂2 + 1)𝑞2Ω2 + 𝜂2𝑞4)                                                               (A.2) 

 

𝐶 = Ω𝜂2𝜇𝑞(−Ω2𝛽𝑞2𝜙1
2 + Ω4 − Ω2𝑞2 − Ω2 + 𝑞2)                                                            (A.3) 

 

𝐷 = 2𝜁2(Ω
6 + (−1 + ((−𝜇 − 1)𝜂2 − 𝛽𝜙1

2 − 1)𝑞2) + ((1 + 𝛽(𝜇 + 1)𝜙1
2)𝜂2𝑞2 + 1 +

    (𝜇 + 1)𝜂2) 𝑞2Ω2 − 𝜂2𝑞4)                                                                                               (A.4) 
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 Apéndice B 

 

Coeficientes del Método de Nishihara 

 

𝑐1 =
1

4

(−8+((−8𝜇−8)𝜂2−8𝛽𝜙1
2−8)𝑞2)𝜁2

2+𝜂4𝜇2𝑞2

𝜁2
2                                                                                                  (B.1) 

 

𝑐2 =
1

2𝜁2
2 (((2(𝜇 + 1)2𝜂4 + (8𝛽𝜇𝜙1

2 + 8𝛽𝜙1
2 + 4𝜇 + 8)𝜂2 + 2(𝛽𝜙1

2 + 1)2)𝜁2
2 −

𝜇2𝜂4(𝛽𝜙1
2 + 1))𝑞4 + (((8𝜇 + 8)𝜂2 + 4𝛽𝜙1

2 + 8)𝜁2
2 − 𝜂4𝜇2) 𝑞2 + 2𝑟2𝜁2

2)                          (B.2) 

 

𝑐3 =
1

4𝜁2
2 (𝑞2 ((−8(𝛽𝜇𝜙1

2 + 𝛽𝜙1
2 + 1)((𝜇 + 1)𝜂2 + 𝛽𝜙1

2 + 1)𝜁2
2 + 𝜇2𝜂2(𝛽𝜙1

2 +

1)2)𝜂2𝑞4 + ((−8(𝜇 + 1)2𝜂4 + (−16𝛽𝜇𝜙1
2 − 16𝛽𝜙1

2 − 16𝜇 − 32)𝜂2 − 8𝛽𝜙1
2 − 8)𝜁2

2 +

2𝜇2𝜂4(𝛽𝜙1
2 + 2))𝑞2 + ((−8 + (−8𝜇 − 8)𝜂2)𝜁2

2 + 𝜂4𝜇2)𝑟2))                                                   (B.3) 

 

𝑐4 =
1

𝜁2
2 (((((𝛽𝜇𝜙1

2 + 𝛽𝜙1
2 + 1)2𝑞4 + 2(𝜇 + 1)(𝛽𝜇𝜙1

2 + 𝛽𝜙1
2 + 2)𝑞2 + 𝑟2(𝜇 + 1)2)𝜁2

2 −

1

2
𝜇2((𝛽𝜙1

2 + 1)𝑞2 + 𝑟2)) 𝜂4 + 2((𝛽𝜇𝜙1
2 + 2𝛽𝜙1

2 + 2)𝑞2 + 𝑟2(𝜇 + 2))𝜁2
2𝜂2 + 𝑟2𝜁2

2) 𝑞4)                                                                                                                                    

(B.4) 

 

𝑐5 = −
1

𝜁2
2 (2 ((((𝛽𝜇𝜙1

2 + 𝛽𝜙1
2 + 1)𝑞2 + 𝑟2(𝜇 + 1))𝜂2 + 𝑟2) 𝜁2

2 −
1

8
𝜂2𝜇2𝑟2) 𝑞6𝜂2)       (B.5) 

 

𝑐6 = 𝜂4𝑞8𝑟2                                                                                                                           (B.6) 
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