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Resumen

En este trabajo de tesis se propone el disefio tedrico de un dispositivo absorbedor de vibraciones
basado en la red mecéanica C3 llamado NIDVA-C3, para el control de vibracién arménica de
una estructura tipo viga. Para cumplir con el propésito de éste trabajo se utilizaron la técnica
de los puntos fijos extendida y el criterio H,, en ambos casos se obtuvieron resultados
satisfactorios, sin embargo al utilizar la técnica de los puntos fijos solo se obtiene una
aproximacion de la respuesta exacta que se obtiene al utilizar el criterio H,, esto se observa
mas claramente al comparar las graficas de las respuestas del sistema con ambas técnicas. Una
vez obtenidos los pardmetros dptimos para el sistema se compard la respuesta del sistema
optimizado con la respuesta del sistema al utilizar el absorbedor de vibracion dinamico (DVA)
clasico. Al realizar la comparacién se observo que al utilizar el NIDVA-C3 la amplitud de la
vibracion se reduce en un 48.1% que para casos practicos significa una mayor durabilidad de
las estructuras y maquinas sujetas a vibracion y para el area de ingenieria mecanica automotriz
se traduce en una mejor experiencia de manejo ya que se tendria una trayectoria mas suave y

fluida, lo cual brinda mayor confort.
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Capitulo 1: Introduccion

En diversas areas de la ingenieria el dafio generado a estructuras y maquinaria por vibraciones
es una de las principales preocupaciones. Es por ello que, durante los Gltimos afios, el desarrollo
de dispositivos de control de vibraciones ha sido una de las principales &reas de investigacion.
Debido a este crecimiento del area de estudio, se ha implementado el uso de nuevos dispositivos

de control de vibraciones.

En el 2001 un nuevo dispositivo para el control de vibraciones fue introducido el cual desde
entonces se ha convertido en uno de los tres principales dispositivos de control pasivo utilizados
en los sistemas de suspension de vehiculos de motor de alto rendimiento [1], esto hace que el
conocimiento adquirido al desarrollar esta tesis también tenga aplicacion en el area automotriz.
En su articulo “The inerter: A retrospective” [1], Smith cita una analogia entre los elementos
de las redes mecénicas con los elementos de las redes eléctricas, la cual es llamada la analogia

Fuerza-Corriente, la cual se muestra en la Figura 1.1.

Mechanical Electrical
F PR T F |
_'t \.-I \.-I \.-I e _'_.;,-_. ?j ?j ?j Vv
2 1
v VI Resorte Inductor
%=k{“’2_""1] %2%'{1"’2_"1:'
F i | | i
E vz Vi .
|1-_’3 ; vi=0  Masa d| | Capacitor
= ﬂ = M
F=m i i=C i
F EI:I F i . ] . i
z v, L—1 v
|F2, 1-|7]' Amortiguador Resistor
F=clvz—w) "-2%(""'2_ Vi)

Figura 1. 1: Asignacion estandar de los elementos de circuitos en la analogia Fuerza-
Corriente donde, k (rigidez), m (masa), c (coeficiente de amortiguamiento), I (inductancia),
C (capacitancia) y R (resistencia), son constantes positivas



Sin embargo, la masa no es un dispositivo para la ingenieria que se pudiera manufacturar en
comparacion con los otros 5 dispositivos de esta analogia, es por ello que con la invencion del
inersor esta analogia cobra un poco mas de sentido ya que puede ser el equivalente mecénico

de un capacitor eléctrico.

Existe un fendmeno Ilamado Resonancia el cual se da siempre que la frecuencia natural de la
vibracion de una maquina o de una estructura coincide con la frecuencia de la excitacion
externa [2], este fendmeno puede llegar a producir deflexiones y fallas excesivas en cualquier
sistema, es por ello que es importante buscar la manera de reducir las amplitudes de vibracién
que las fuerzas externas producen en los sistemas. Una de las técnicas de reduccion de
vibraciones més investigadas es el uso de absorbedores de vibracién dindmicos. Este sistema
denominado DVA por sus siglas en inglés, es un sistema de masa auxiliar acoplado a un sistema
primario, el cual ayuda reduciendo la amplitud de la vibracién no deseada, para ello utiliza el
equilibrio dinamico entre los desplazamientos de la estructura principal y el absorbedor.
También, existe una configuracion llamada absorbedor de vibracion no tradicional, cuya
caracteristica es la conexion a tierra del amortiguador viscoso lineal del sistema secundario. El
absorbedor de vibracion dinamico se disefia de modo que las frecuencias naturales del sistema

resultante se alejen de la frecuencia de excitacion.

Actualmente las investigaciones relacionadas con el control pasivo de vibraciones se central en
la implementacion del DVA en conjunto con las redes mecanicas basadas en inersor. En [3]
mediante la propuesta de dos sistemas de control pasivo de vibraciones basados en inersores se

comprob6 que el uso de éstos sistemas resulta mas eficiente que usar solo el DVA clésico.



1.1  Planteamiento del problema

La vida util de muchos elementos estructurales y maquinaria se ve reducida en gran manera
debido a las vibraciones generadas por alguna fuerza externa muchas veces generadas por los
efectos del viento o mala alineacion de componentes conectados a motores, por ésta razon el
desarrollo de sistemas de control de vibraciones para minimizar las amplitudes de vibracion es
de gran importancia en la ingenieria. Existen muchas variedades de sistemas mecanicos que
han sido modelados matematicamente y que han demostrado ser muy efectivos, ahora bien,
desde el desarrollo del inersor, la sintesis de redes mecanicas pasivas se ha popularizado ya que
se ha demostrado una ventaja superior cuando se emplean los inersores. Es por ello que en éste
trabajo de tesis se propone el sistema mostrado en la Figura 1.2 en donde, considerando el
modelo dinamico de la estructura, se realizaran las actividades planteadas en la seccién de

objetivos y metas.

En la propuesta mostrada en la Figura 1.2 se observa una configuracién de una viga de Euler-
Bernoulli de longitud L y sujeta a una fuerza de excitacion armoénica la cual esta definida por
la funcion f(x)g(t) donde f(x) es una funcion espacial y g(t) es una funcién deterministica de
tiempo. Esta viga estd acoplada en serie con un absorbedor de vibracion no tradicional el cual
utiliza la red mecéanica basada en inersor C3 [4], la cual emplea un resorte, un inersor y
amortiguador en serie. Los coeficientes de rigidez y amortiguamiento para el absorbedor y la
red mecénica quedan definidos como ¢,V k,, (n=1,2) respectivamente, ambos, estan conectados
a lamasa m;. La configuracion del absorbedor de vibracion se localiza en el punto x = a. Para
el disefio 6ptimo del absorbedor de vibracion se utilizaran tanto la técnica de los puntos fijos,
como el indice de rendimiento H,,, ambas técnicas de optimizacion tienen como proposito
obtener parametros Gptimos para el disefio de los absorbedores de vibracion, sin embargo, la
técnica de los puntos fijos extendida emplea los puntos invariantes para obtener soluciones
aproximadas, mientras que con el indice de rendimiento H,, se utilizan las frecuencias de
resonancia para obtener soluciones exactas, sin embargo, las ecuaciones resultantes en el
tratamiento matematico son méas complejas. Es por ello que es importante considerar ambas

técnicas de optimizacion.
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Figura 1. 2: Esquema de la viga Euler-Bernoulli con el absorbedor de vibracion no
tradicional utilizando la red mecénica C3

1.2  Justificacion

Segun la teoria de vibraciones, si un cuerpo tiene masa y elasticidad tiene la capacidad de
vibrar, en estructuras, esta vibracion muchas veces es ocasionada por la intervencion de una
fuerza dinamica externa, la cual puede ser causada por efectos del viento, olas, terremotos o
incluso explosiones. Si la vibracién generada por las fuerzas dindmicas externas tiene una
frecuencia equiparable a las frecuencias naturales de la estructura se da un fenémeno llamado
resonancia, este fendmeno hace que las amplitudes de las vibraciones tengan un incremento
peligroso, comprometiendo la integridad de la estructura. Por esta razon es necesario el
desarrollo de métodos para la mitigacion de las vibraciones, ya que de no hacer esto, la vida
atil de las estructuras se reduce. Con el fin de mitigar las vibraciones en estructuras tipo viga
este trabajo se propone el control pasivo de vibraciones mediante el disefio 6ptimo de un
absorbedor de vibracion dinamico no tradicional basado en inersor conectado a tierra mecénica

por una red mecanica C3.



1.3

La imp

Hipotesis

lementacién del absorbedor de vibracion dindmico no tradicional NIDVA-C3 a una

estructura tipo viga, producira un mayor rendimiento dinamico en comparacion con el DVA

clasico.

1.4

Objetivos

1.4.1 Objetivo General

Disefiar tericamente un absorbedor de vibracion no tradicional sintonizado para minimizar la

vibracion armoénica de la estructura tipo viga

1.5

1.4.2 Objetivos Especificos

Obtener el modelo dindmico adimensional de la estructura tipo viga con el absorbedor
de vibracion no tradicional NIDVA-C3.

Aplicar la técnica de optimizacion de los puntos fijos extendida con el objetivo de
obtener soluciones de forma cerrada para el disefio éptimo del absorbedor dinamico

propuesto.

Obtener numéricamente soluciones éptimas mediante el criterio de rendimiento H,, con
el objetivo de minimizar las amplitudes de vibracion de la estructura tipo viga sujeta a

vibracion armonica.

Metas

Desarrollo del modelado de la viga con el absorbedor de vibracion no tradicional

NIDVA-C3 mediante la implementacion del formulismo de Euler-Lagrange.
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e Obtencidn de las ecuaciones algebraicas simplificadas para el célculo de los parametros

optimos del sistema mediante la técnica de los puntos fijos extendida.

e Obtencidn de los valores numéricos de los parametros optimos del sistema mediante el

criterio H,.

e Comparacion gréfica las funciones de respuesta en frecuencia considerando los

parametros éptimos obtenidos con ambas técnicas de optimizacion.

e Comparacion los resultados obtenidos con el criterio H,, con la respuesta del sistema

al implementar el DVA clésico.

e Escribir una tesis con los resultados obtenidos.

1.6 Metodologia.

La metodologia que se utilizo en éste trabajo fue la propuesta por Canales [5] ya que segun el
autor este método responde a la necesidad de las diferentes escuelas de ingenieria. La
estructura de la metodologia se muestra en la Figura 1.3:

0 5 6

) ANALTSIS DE .
DOCUMENTACION REULTADQS Y s > REDACCION DEL
ELABORACION DE REPORTE FINAL

CONCLUSIONES

-
) J

1 4

DETERMINACION RESOLUCION,
DEL PROBLEMA VALIDACION Y

VERIFICACION

&

3

CREACION DE oo N DEFINICION DEL
LA HIPOTESIS METODO DE
TRABAJO

Figura 1. 3: Esquema de la estructura de la metodologia propuesta por Canales.
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Donde cada etapa consiste en:

Etapa 0: Documentacion. En esta etapa, se recopila informacién relevante acerca de la
tecnologia, metodologias empleadas, entre otros aspectos relacionados con el tema de
investigacion. Es coman que antes de comenzar un desarrollo o investigacion, sea necesario
documentarse sobre el dominio especifico del producto o tema a abordar. La documentacion
puede incluir bibliografias, textos, articulos, normas, reglamentos, entre otros recursos que
proporcionen informacion necesaria para el proceso de investigacion.

Para el caso particular de éste trabajo de tesis fue necesario recopilar informacion sobre
métodos de optimizacion de absorbedores de vibracion, ademéas de obtener un panorama
general acerca de estudios previos a éste trabajo en los cuales se haya implementado el control
de vibraciones y todo el conocimiento tedrico necesario para el desarrollo del modelo

matematico del sistema.

Etapa 1: Determinacion del problema. Esta consiste en realizar la captura de requerimientos,
lo que permite realizar un analisis del problema y delimitar los aspectos concretos que se
tendran en cuenta para el futuro objeto de investigacion.

Para éste trabajo se considera una estructura tipo viga sujeta a carga armonica externa a la cual
es necesario mitigar la vibracion mediante el uso del NIDVA-C3, para ello es necesario el uso
de dos técnicas de optimizacion para la obtencion de los parametros 6ptimos que reduzcan de

mejor manera las amplitudes de vibracion del sistema.

Etapa 2: Creacion de la hip6tesis. En la creacion de la hipotesis, se formula una descripcion
del nuevo objeto que se desea construir o desarrollar en el contexto de la investigacion. Esta
hipébtesis se basa en el objeto de estudio y tiene como objetivo principal guiar el proceso de
investigacion y proporcionar una direccién clara para la resolucién del problema planteado.
La hipotesis planteada en este trabajo es la siguiente:
e Laimplementacién del absorbedor de vibracion dinamico no tradicional NIDVA-C3 a
una estructura tipo viga, producira un mayor rendimiento dinamico en comparacion con
el DVA clasico.
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Etapa 3: Definicion del método de trabajo. En esta etapa se toman decisiones importantes
relacionadas con la investigacion, lo cual implica elegir el paradigma metodologico general de
abordamiento, el método concreto y la metodologia técnica ingenieril.

En éste trabajo se utilizan las ecuaciones de equilibrio de Newton y el formulismo de Euler-
Lagrange para desarrollar el modelo matematico, ademas se utiliza el analisis modal para
obtener la funcién de respuesta en frecuencia de la estructura. Una vez obtenida la funcion de
respuesta en frecuencia se utilizan la técnica de los puntos fijos extendida y el criterio H,, para

obtener los parametros 6ptimos que minimicen la vibracion del sistema.

Etapa 4: Resolucién, validacion y verificacion. En primer lugar, se realiza la resolucion del
problema identificado mediante herramientas matematicas y consideraciones fisicas.

Luego, se procede a la validacion y verificacion de la solucién propuesta. La validacion implica
comprobar si la solucion es adecuada y cumple con los requerimientos establecidos. Por otro
lado, la verificacion implica probar la solucion en casos de prueba para asegurarse de que
funcione correctamente. Una vez obtenidos los parametros dptimos del sistema se realizé la
validacion de los mismos al realizar graficas de la funcion de respuesta en frecuencia
considerando distintos valores para los pardmetros. A partir las graficas se observd que los
parametros obtenidos mediante las técnicas de optimizacion resultan en la mejor respuesta del

sistema, validando asi los resultados obtenidos en éste trabajo de tesis.

Etapa 5: Una vez obtenidos los resultados analiticos o numéricos se comparan detalladamente
con los reportados en la literatura y se plantea si los resultados obtenidos afirman o refutan la
hipétesis. También se evalla si se cumplieron con los objetivos y metas propuestas al inicio de
la tesis. Cuando no se cumplen en su totalidad los objetivos 0 metas se plantean posibles
soluciones al problema y se responde a la interrogante del por qué no fue posible su resolucion
total. De manera breve, se formulan ideas que enriquecen al tema de investigacion para trabajos
a futuro y como continuar con la investigacion. Al realizar la comparacién de los resultados
obtenidos al realizar la optimizacion del sistema NIDVA-C3 con los resultados mostrados en
la literatura para el sistema con el DVA clésico con lo cual se corrobora la hipotesis planteada

al principio de la investigacion.

Etapa 6: Redaccion del informe final. En esta etapa, se redacta el informe final de la
investigacion. En dicho informe se debe dar una explicacion clara y coherente del

procedimiento y los resultados obtenidos.
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Capitulo 2: Estado del arte

2.1 Breve historia de los absorbedores de vibracion

A finales del siglo XIX, durante la era industrial, surgieron los primeros estudios y desarrollos
relacionados con el control de vibraciones. Uno de los primeros dispositivos utilizados para
reducir las vibraciones fue el amortiguador de masa, que consistia en agregar una masa
adicional a un sistema vibratorio para cambiar su frecuencia natural y reducir las vibraciones
no deseadas.

El primer absorbedor de vibracién (DVA por sus siglas en inglés) fue desarrollado por Frahm
en 1909 [37], este sistema es un dispositivo de control pasivo el cual consiste en un resorte
lineal y una masa (m,), este sistema se acopla a un sistema principal el cual puede ser una
estructura o maquinaria, Figura 2.1, y es utilizado para suprimir la vibracién de banda estrecha.
A partir de este modelo los investigadores han desarrollado nuevas configuraciones en busca

de mejorar su rendimiento dindmico y superar su limitante obteniendo una absorcion de

T
2
[
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Figura 2. 1: Absorbedor de vibracion dinamico de Frahm. (6)

vibraciones de banda ancha.

Basado en este sistema en 1928 Ormondroyd [27] propuso un arreglo en el cual agrega un
amortiguador al sistema, dicho amortiguador fue puesto en paralelo con el resorte del sistema
de Frahm lo cual resulta en que el ancho de banda operativo del sistema se amplia

considerablemente. A éste sistema es el que se le llama en la literatura DVA clasico. Gracias a
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esta propuesta se descubrié también que existen frecuencias llamadas puntos fijos en donde las
amplitudes de vibracion son independientes del factor de amortiguamiento, a partir de estos
puntos se puede obtener el valor optimo de rigidez y amortiguamiento. Esa técnica de
optimizacion sigue usandose hoy en dia y es conocida como la técnica de los puntos fijos.

Una de las primeras aplicaciones practicas de los sistemas de absorbedores de vibracion
dinamicos es el DAVI (Dynamic Antirresonant Vibration Isolator) utilizado por la armada de
Estados Unidos para modificar un Helicoptero UH-1H [6] con la intencion de reducir las
vibraciones y dafios que estas producen a los componentes de este vehiculo, para ello se
llevaron a cabo varias pruebas haciendo una comparacion entre las del vehiculo estandar y el
mejorado con el DAVI, los resultados de esta prueba mostraron que para el caso del vehiculo
modificado con el DAVI la vibracion vertical se redujo a % - ¥ de la vibracion del vehiculo
estandar, esto a una velocidad de 20-30 nudos. A velocidades maés altas se redujo solo a la

mitad.

En [7] se propone un modo de andlisis para obtener los parametros 6ptimos de los absorbedores
de vibracién dinamicos, el cual es Gtil para varios tipos de vigas. En este método se utiliza la
primera forma modal como la funcién de expansion para la viga, esto hace que dichos
parametros estén en funcion de las condiciones de frontera de la viga, ademas de la ubicacion
del absorbedor de vibracion dinamico. Ademas de que se llegé a la conclusion de que si la
frecuencia de excitacion es menor a cuatro veces la frecuencia de resonancia de la viga la
solucion aproximada que se obtiene de este método es muy cercana a la respuesta exacta
amortiguada. Adicionalmente, este método no solo se puede utilizar para sintonizar el
absorbedor a altas frecuencias de resonancia, ya que también resulta atil en casos en los cuales
sea necesario utilizar mas de un absorbedor de vibracion y cada uno de ellos estén sintonizados

a diferentes frecuencias resonantes.

En el afio 1985 B.P. Wang en [8] propuso un metodo para el desarrollo de absorbedores de
vibracion dindmicos en el cual se utiliza la creacion de antirresonancias en puntos especificos
del sistema, donde, a partir de la respuesta dindmica de la viga a la excitacion externa
(receptancia) es posible obtener los parametros del absorbedor, que, en este caso, son la rigidez
del resorte y la masa del absorbedor. Sin embargo, también se considera la adicion de un
amortiguador del cual se puede calcular su constante a partir de un rango de amortiguamiento.

Los pasos a seguir en este método son los siguientes:
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o Elegir el grado de libertad antirresonante deseado

e Elegir la ubicacion de el/los absorbedores.

e Calcular las fuerzas internas

e Calcular la receptancia para cada absorbedor

e Paraun rango admisible de valores para la masa del absorbedor, calcular las constantes
del resorte. Si esta constante es positiva, los valores de la masa y rigidez del resorte son
una solucidn fisicamente posible al problema de disefio.

Debido a que en este método la estructura y el o los absorbedores se analizan por separado, se
pueden utilizar otros tipos de absorbedores ademas del sistema de masa-resorte. De la misma
manera, la libertad de elegir el nUmero de absorbedores y su ubicacion, permite evadir algunas

limitaciones del disefio.

En el afio 1992 Tadayashi Aida [9] publicé un articulo en el cual se utiliza un sistema de
absorbedor de vibracion dinamico compuesto por una viga un resorte de conexion y un
amortiguador. Este sistema es colocado en la viga principal bajo las mismas condiciones de
frontera que la viga principal. Asi mismo, se discute la importancia del amortiguamiento en el
absorbedor de vibracion dindmico, ya que se demuestra que sin el amortiguamiento la respuesta
de la viga principal se reduce a excepcion de la respuesta del segundo modo. Ahora, si se utiliza
el amortiguamiento la respuesta de la viga principal se reduce notablemente, mostrando asi que
el absorbedor de vibracién dindmico de tipo viga es efectivo para reducir la respuesta de la viga
principal a la carga periodica y que el amortiguamiento es un factor importante a considerar en
el disefio del absorbedor para lograr una reduccion efectiva de las amplitudes de vibracion de

la viga.

En 2001 se propuso un nuevo disefio basado en el llamado absorbedor de vibracion dinamico
clasico, dicho disefio consiste en un sistema compuesto por una masa, un resorte y un
amortiguador, el cual se conecta a una estructura primaria sujeta a vibraciones (Figura 2.2). El
principio de funcionamiento de este DVA se basa en la capacidad del amortiguador para disipar

la energia vibracional.
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En el disefio propuesto [10], el elemento amortiguador se conecta a la tierra en lugar de a la
estructura que se desea controlar (Figura 2.3). Este tipo de configuracion es conocido como
DVA no tradicional. Se demostrd que para una misma relacion de masas el DVA no tradicional
reduce de manera mas efectiva el nivel de vibracion que el disefio clasico, lo cual significa que
se puede lograr una mejor reduccion de la vibracion sin aumentar la masa adicional. Ademas,
se encontrd que el amortiguamiento 6ptimo para el DVA no tradicional es mayor que el

amortiguamiento 6ptimo del DVA clésico.

.| - T

T— i
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Figura 2. 2: Disefio de DVA clasico. Figura 2. 3: Disefio DVA no tradicional.

2.2 Implementacion del inersor

Como se menciono anteriormente, Smith [31] introdujo el concepto de “inersor” el cual es un
dispositivo de dos terminales el cual cuenta con ciertas propiedades las cuales estan definidas
por la aceleracion relativa entre ambas terminales de dicho dispositivo. En ese mismo articulo
se propone el uso del inersor en el disefio de puntales de suspensiones que, tradicionalmente,
solo emplean amortiguadores y resortes. Al considerar la suspension con arreglos

convencionales de resortes y amortiguadores resulta en un comportamiento muy oscilatorio, en
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cambio si se implementan redes mecanicas basadas en inersor reduce significativamente dicha

oscilacion.

Las primeras aplicaciones exitosas del inersor se dieron en sistemas de suspension de
vehiculos, Smith y Wang [11] fueron de los primeros investigadores en realizar la publicacién
de un articulo sobre la implementacion de los inersores en suspensiones de vehiculos, en dicho
articulo, se menciona que debido a que las suspensiones de vehiculos en las cuales solo se
utilizan resortes y amortiguadores y que, ademas, se evita tener un elemento masa tienen
caracteristicas dinamicas limitadas, existe un rango de mejora de las dinamicas del vehiculo si
se utilizan sistemas de suspensiones en las cuales no solo se utilizan los dispositivos mecanicos
mencionados anteriormente, sino que también se utilizan inersores, es por ello que se
propusieron ocho configuraciones de sistemas de suspension empleando estos tres dispositivos
las cuales se muestran en la Figura 2.4. Adicionalmente, se utilizaron modelos simplificados
de la suspension de un cuarto de vehiculo y de vehiculo completo, para hacer un estudio de
optimizacion preliminar tomando en cuenta ciertos requerimientos practicos para el disefio
tales como el confort del pasajero, cargas normales de los neumaticos, manejo, etc. Después
de la optimizacion se obtuvieron mejoras de un 10% o mas para mediciones como las cargas
normales a los neumaticos o el manejo, esto para el caso del cuarto de vehiculo, sin embargo,
para el caso del vehiculo completo también se obtuvieron mejoras. Por Gltimo, se cred un

prototipo de un inersor con la finalidad de realizar pruebas experimentales.
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Figura 2. 4: Configuraciones de suspensiones empleando inersores propuestas
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Otro de los usos que se le dio al inersor fue en el disefio de un compensador mecanico de
direccion para motocicletas de alto rendimiento [12] en el cual se introdujo la idea de remplazar
el amortiguador de direccion de una motocicleta de alto rendimiento por una red mecanica, esta
idea fue incitada debido a los reportes del bajo desempefio de las motocicletas de alto
rendimiento a altas velocidades y asi buscar un mejor desempefio en la repuesta de los modos
de vibracion “wobble and weave” de la motocicleta a altas velocidades. Los resultados
obtenidos mediante el procedimiento de disefio de respuesta en frecuencia muestran que la
implementacion de la red mecéanica basada en inersor mejora significativamente las
caracteristicas de desempefio de la motocicleta. Sin embargo, se dejo en claro que, a pesar de
los buenos resultados obtenidos en este estudio, aln existian problemas destacados para la
implementacién de esta red mecanica, algunos ejemplos de dichos problemas son la seleccion
de los radios 6ptimos para los inersores y el correcto dimensionamiento del dispositivo con el
fin de hacerlo lo suficientemente robusto para soportar el desgaste del uso normal, sin ser

innecesariamente voluminoso.

La tercera implementacidn de los inersores se dio en el disefio de suspensiones de trenes de los
cuales las suspensiones son mas complejas que las suspensiones de los vehiculos ya que en
ellas se utiliza un componente extra entre las ruedas y el chasis llamado “bogie”. Estas
suspensiones utilizan dos sistemas para conectar el chasis con el bogie y el bogie con la rueda,

en la Figura 2.5 se muestra el diagrama del sistema de suspension de una rueda de tren.

En 2016 Jin [26] propone dos configuraciones de control pasivo basados en inersores. La
configuracion 1 consiste de una masa conectada a una combinacion en paralelo de un resorte y
un amortiguador en serie con un resorte y un inersor, mientras que la configuracion 2 consta
de un absorbedor de vibracion dindmico en serie con un inersor. Estas configuraciones fueron
propuestas para mejorar la eliminacion de vibraciones en una estructura tipo viga. Al analizar
ambos sistemas y obtener los valores de los parametros optimos mediante la técnica de los
puntos fijos, se compararon los resultados obtenidos con los resultados de un DVA tradicional
y en ambos casos se encontré que son mas eficientes sobre todo bajo relaciones de masas mas
pequefias. Ademas, se realiza una comparacion entre ambas configuraciones obteniendo como
resultado que para relaciones de masas mas pequefias la configuracion 1 es mejor que la
configuracién dos mientras que para relaciones de masas mas grandes la configuracion 2 resulta

ser mejor que la configuracion 1.
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En 2018 Barredo [15] desarrollo una técnica analitica para el disefio 6ptimo de absorbedores
de vibracion dindmicos basados en inersores, dicha técnica se basa en la técnica desarrollada
por Den Hartog [27]. Para encontrar las soluciones 6ptimas, esta técnica también considera la
teoria de Krenk y el Teorema de Vieta. Para poder validar ésta técnica se compararon los
resultados resolviendo un problema de optimizacién, el problema de optimizacién se enfocd
en la desviacion media entre las amplitudes de vibracion bajo un rango especifico de
frecuencias de excitacion para cada relacion de masa, con esto Barredo también demostré que
la técnica de Den Hartog no es apta para calcular el factor de amortiguamiento 6ptimo que
aplane las curvas de la funcion de respuesta en frecuencia de los absorbedores de vibracion
dinamicos basados en inersor. Adicionalmente, se demostrd que los resultados obtenidos con
la técnica de los puntos fijos extendida son muy similares a los obtenidos con el método de
optimizacion H,,, con la ventaja de que la técnica de los puntos fijos solo requiere resolver un
conjunto de ecuaciones no lineales dadas por las sumas y productos de las raices reales de

ecuaciones de cuarto grado.

En 2021 Lopez [16] realizo el analisis matematico y optimizacion de una estructura tipo viga
sobre la cual se ejerce una fuerza de excitacion armonica externa, ésta viga esta acoplada a un
arreglo en serie de dos absorbedores de vibracion dindmicos A y B, ambos estan compuestos
por un elemento de masa que a su vez esta conectado en serie con un arreglo en paralelo de un
amortiguador y un resorte, ademas, el sistema también cuenta con un inersor, para el que una
de sus terminales estd conectada a tierra mecéanica y la otra terminal se conecta a la masa del

DVA-B. El diagrama del modelo propuesto se muestra en la Figura 2.5.

El andlisis fue realizado mediante los criterios de optimizacion H,,, basado en el método de
Nishihara y la técnica de los puntos fijos extendida, siendo una aproximacién de la norma H,.
Con los resultados obtenidos se logré minimizar las amplitudes de vibracion del sistema
relacionadas con la respuesta en frecuencia, ademas de que se corrobord la similitud entre los
resultados obtenidos con ambas técnicas. Al calcular el indice de ancho de banda de supresion
de vibraciones existe una ventaja superior al 17% cuando se utiliza el sistema propuesto, en

comparacion con el DVA clésico cuando actia una fuerza externa de tipo armonica.
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Figura 2. 5: Diagrama del sistema propuesto por Lépez

De la misma manera Pérez [28] propone un sistema de un absorbedor de vibracién dinamico
no tradicional basado en inersor conectado a una estructura tipo viga bajo excitacion arménica
externa, el sistema al cual esta acoplada la estructura consta de un absorbedor dinamico de
vibracion amortiguado que, a su vez, se conecta en serie a la red mecénica denominada C—4
con conexién a tierra, como se muestra en la Figura 2.6. Asi mismo, la red mecéanica C-4 esta
formada por una conexidn en paralelo de resorte amortiguador viscoso conectado en serie a un

inersor.

Para obtener los parametros 6ptimos se realiz6 el analisis utilizando el criterio H,, Yy la técnica
de los puntos fijos extendida. Con ambas técnicas se logré6 minimizar las amplitudes de
vibracion del sistema relacionadas con la respuesta en frecuencia del sistema. Al calcular el
indice del ancho de banda de supresion de vibraciones existe un rendimiento del 23.03 %

cuando se utiliza el NIDVA-C4 propuesto, en comparacion con el DVA clasico.
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Figura 2. 6: Diagrama de la estructura tipo viga acoplada al NIDVA-C4
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Capitulo 3: Marco Teorico

3.1 Vibraciones Mecanicas

De acuerdo con Rao [2] una vibracion se define como cualquier movimiento que se repite

después de un intervalo de tiempo llamado periodo usualmente denotado por la letra 7y

medido en segundos. Ademas del periodo existen dos caracteristicas mas de las vibraciones las

cuales son la frecuencia, que es el reciproco del periodo y esta denotado en ciclos por segundo,

y la amplitud, que es la maxima magnitud del desplazamiento que alcanza la vibracion.

3.1.1 Elementos de un sistema vibratorio

Normalmente se contemplan tres elementos

Elemento Resorte: Este elemento mecénico en la mayoria de sus aplicaciones se
considera que no tiene amortiguamiento ni masa, sin embargo, cualquier elemento
elastico o deformable puede considerarse como un resorte, su propdésito principal es
almacenar energia potencial. Existen dos tipos de resortes, lineales y no lineales, para
que un resorte se considere lineal se tiene que cumplir la relacion entre el alargamiento
o0 el acortamiento de la longitud x del resorte con la fuerza aplicada F mostrada en la
ecuacién (3.1), donde también influye la constante de rigidez del resorte, denotada
como k y la cual indica la fuerza necesaria para producir una deflexion unitaria en el

resorte, dicha constante es siempre positiva.

F =kx (3.2)
En el caso de los resortes no lineales la relacion fuerza-deflexion estad dada por la
ecuacion (3.2) en la que la constante asociada con la parte lineal es siempre positiva y
la constante asociada a la no linealidad, b, determina si un resorte es duro, lineal o suave

ya que si b>0 el resorte es duro, si b=0 el resorte es lineal y si b<0 el resorte es suave.
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F = ax + bx3 (3.2)

e Elemento de masa o inercia: En este elemento tiene la capacidad de perder o ganar

energia cinética a partir del trabajo que se realiza sobre la misma masa.

e Elemento de amortiguamiento: Este es el mecanismo con el cual la energia vibratoria
se disipa en calor o sonido. Esta disipacion, aunque sea muy pequefia, es importante
para determinar de manera mas precisa la respuesta a la vibracion de un sistema. La
mayoria de las veces es muy dificil determinar las causas del amortiguamiento en
sistemas practicos, asi que el amortiguamiento se modela tomando en cuenta alguno de
los siguientes modelos:

- Amortiguamiento viscoso: Este es el tipo de amortiguamiento mas utilizado en el
andlisis de vibracion. En este tipo de amortiguamiento la energia se disipa debido a
la resistencia que ofrece el fluido en el cual se encuentra el sistema mecanico, sin
embargo, la cantidad de energia disipada depende de otros factores como la
viscosidad del fluido, la frecuencia de vibracion, etc. Para este amortiguamiento la

fuerza de amortiguamiento es proporcional a la velocidad del cuerpo vibratorio.

- Amortiguamiento de Coulomb o de friccion en seco: Es el resultado de la friccidn
entre dos superficies secas al frotarse, aqui la fuerza de amortiguamiento es de

magnitud constante, pero en direccion opuesta al movimiento del cuerpo vibratorio.

- Amortiguamiento debido a un material solido o histérico: cuando un material se
deforma, absorbe o disipa energia. El efecto se debe a la friccidén que se genera entre
los planos internos de material que se deslizan a medida que ocurren las
deformaciones.

3.1.2 Vibracién armonica de un sistema de un solo grado de libertad

Este es el tipo de vibracidn generalmente es representada matematicamente con funciones seno

y coseno, es considerada la forma mas simple de vibracion y es la base en la cual muchos
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modos de vibracién méas complejos ya que hasta las formas de vibracion no periodicas pueden

ser descritas como una vibracion periddica cuyo periodo es infinito.

La vibracién arménica de un sistema de un sistema de un solo grado de libertad puede suceder
si se desplaza la masa hasta cierta distancia del punto de equilibrio y después se suelta
generando una oscilacion. Si no existiera friccion en el sistema, la oscilacion continuaria en la
misma proporcion y en la misma amplitud para siempre. Este movimiento armonico sencillo
idealizado, casi nunca se encuentra en sistemas mecénicos reales. Cualquier sistema real tiene
friccion y eso hace que la amplitud de la vibracion disminuya gradualmente ya que la energia

se disipa en forma de calor [33].

Otra manera de que ocurra la vibracién armonica es si sistema esté sujeto a una fuerza armonica
externa. Si se toma como ejemplo un sistema el cual ademas tiene un amortiguador viscoso
cuyo coeficiente de amortiguamiento es ¢, con una fuerza armoénica externa denotada por

Fy sin wt (Figura 3.1)

kx cx

y=t

m

> 4—

lFO sin ot

iFO sin wt

Figura 3. 1: Sistema de un solo grado de libertad sujeto a una fuerza armoénica externa

Considerando el sistema mostrado en la Figura 3.1, el modelo matemético que gobierna el

sistema dinamico es:
mi(t) + cx(t) + kx(t) = Fysinwt (3.3

Se sabe que en sefiales armonicas en el dominio de tiempo con un periodo T y frecuencia ® el

desplazamiento es de la forma:

x(t) = Xsinwt = X sin (wt + nT) n=12.. (3.4)
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Entonces para este caso la funcion de desplazamiento de la vibracion del sistema que da
determinada por:

x(t) = Xsin (wt + @) (3.5)
Donde X y ¢ son constantes que se tienen que determinar e indican la amplitud y el angulo

de fase de la respuesta, respectivamente.

3.2 Vigas

Una viga se define como un elemento estructural (generalmente barras prismaticas rectas y
largas) disefiado para soportar cargas que sean aplicadas en uno o varios puntos a lo largo del
elemento, dichas cargas normalmente son perpendiculares al eje de la viga produciendo sobre
esta corte y deflexion [13]. Una viga no solo puede estar sujeta a cargas puntuales, expresadas
en Newtons o libras, sino también pueden estar sujetas a una carga distribuida W, expresada
en N/m o Ib/ft.

3.2.1 Clasificacion de las vigas

Las vigas se clasifican de acuerdo a la forma en la que estén apoyadas, la Figura 3.2 muestra

varios tipos de vigas que se utilizan frecuentemente.

| L ! 1 L ! L |

a) Viga simplemente apoyada b) Viga con voladizo ¢) Viea en voladizo

‘HM 1 Ly | | L. !

L |

) Viga continua ) Viga fija en un extremo y f) Viga fija

simplemente apovada en el otro

Figura 3. 2: Clasificacion de las vigas segun su apoyo.

La distancia L que existe entre los apoyos se le llama claro.
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3.2.2 Teoria de Euler-Bernoulli

En esta teoria se considera una viga de longitud L, seccidn transversal con area A y modulo de
inercia I, sobre dicha viga actlan cargas verticales y momentos sobre el plano xz, como se

muestra en la Figura 3.3.

La teoria de Euler-Bernoulli se basa en tres hipdtesis [32]:
1. Los desplazamientos verticales de todos los puntos de una seccién transversal
son pequefios e iguales a los del eje x.
2. El desplazamiento lateral (eje y) es nulo.
3. Las secciones transversales normales al eje de la viga antes de la deformacion,

permanecen planas y ortogonales a dicho eje después de la deformacion.

Derivado de estas hipétesis el desplazamiento de cualquier punto se puede escribir de la
siguiente manera
u(x,y,z) = —z60(x)
v(x,y,z) =0 (3.6)

w(x,y,z) =w(x)

A partir de la tercera hipotesis se tiene que el giro 0 es igual a la pendiente de la deformacion

del eje, es decir

G=d—wyu=—zd—W (3.7)

De esta manera las deformaciones de la viga en cualquier punto estan dadas por:

d d?
== —2—— (3.8)
ey =6="p ="y, =7Y,=0 (3.9)
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Centro de gravedad: O
Area: A
Inercia: |

B'B"=u=-A'B'0=—ABO=—2-2"
dx

Figura 3. 3: Viga convencional de Euler-Bernoulli.

Considerando éstas hipotesis se llega a la suposicion de que el esfuerzo cortante transversal es
cero, en cambio en la teoria de Timoshenko esta suposicion se elimina, debido a que el plano
de la seccion transversal permanece recto, pero no necesariamente perpendicular al eje neutro

de la viga. Sin embargo, para el analisis de vigas largas no existe diferencia significativa.

3.3 Deflexion de vigas

Muchas estructuras que se son utiles en nuestro dia a dia estan constituidas por vigas, columnas
0 placas, las cuales a su vez estan sujetas a la accion de fuerzas ya sea debido a su propio peso
0 generadas por algun agente externo. Al considerar la vibracion lateral de la viga uniforme,
mostrada en la Figura 3.4, con una longitud L, area transversal A, momento de inercia I [20].
La viga esta constituida por un material con caracteristicas fisicas de densidad de masa p y
modulo de elasticidad E. Ademas, dicha viga esta sujeta a una carga externa por unidad de

longitud f(x, t) y su desplazamiento transversal esta dado por w(x, t).
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Figura 3. 4: Esquema del modelo de viga [20]

| \“ " ):‘ .
v S CametTpi ﬂ dx PA (—71 dx
e ol G ¥
Fuerzas externas Fuerzas efectivas

Figura 3. 5: DCL de fuerzas que acttan en un elemento diferencia de la viga

Considerando el diagrama de cuerpo libre mostrado en la Figura 3.5 se tiene que la ecuacion

de movimiento causada por la fuerza es:
v +d a2
V- (V + adx) + [T (&, 0)dE = pAS S dx (3.10)

Al aplicar el teorema del valor medio se tiene:

flt) -2 =pale (3.11)

at2

Tomando en cuenta el DCL de la Figura 3.5 se obtiene que la ecuacion de movimiento causado

por el momento es:
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f;c+dx

M—(M+2dx) - (v + 2 dx) dx + (€ —0f(§,0dE = pAT2dx (£) (312)

Aplicando el teorema del valor medio y despreciando los términos mayores de orden 2 para los

elementos infinitesimales, la ecuacion anterior se simplifica a:

M
V=22 (3.13)

De la teoria de la deflexion de vigas y considerando la convencién de los signos de acuerdo al
DCL

Considerando las propiedades de una viga uniforme tenemos:

4w (x,t) 2w(xt) _
El—==+ pA—— = f(x,t) (3.15)

Esta ecuacidn representa la dinamica vibratoria de una viga sujeta a una carga externa [2].

3.3.1 Condiciones de frontera en vigas

A continuacién, ese muestra una lista con las condiciones de frontera utilizadas mas

frecuentemente para vibraciones transversales de vigas:
i.  Extremo libre

e Momento de flexién
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e Fuerza cortante

Extremo simplemente apoyado (de pasador)

e Deflexion
w=20
e Momento de flexion
92w
Elﬁ =0
Extremo fijo (empotrado)
e Deflexion
w=0
e Pendiente
W _
ox
Corredizo (deslizandose)
e Pendiente
o0 _
ox
e Fuerza cortante
i} 02w
5 (E15%) =0

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

En la Figura 3.6 se muestran las condiciones de frontera mas utilizadas junto con sus ecuaciones

de frecuencia, modos normales y las frecuencias naturales.
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Condiciones
en los extremos

Ecuacion

de la viga de frecuencia Modo (funciéon normal) Valor de B,/
Ambos extremos sen B,/ =0 Wa(x) = C,[sen B,x] Bl =m
articulados Byl = 277
;Bgf =37
) 4 Byl = 4
Ambos extremos  cos 3,/ .cosh B,/ =1 W, (x) = Cp[sen B,x + senh B,x B = 4730041
libres + @, (cos B,x + cosh B,x)] B,/ = 7.853205
1 donde Bl = 10.995608

Ambos extremos
empotrados

Un extremo
empotrado
y el otro libre

2:

Un extremo
empotrado
y el otro articulado

Vj:
1

Un extremo
articulado
v el otro libre

—
1

cos B,l-cosh B,/ =1

cos B, - cosh Bl = —1

tan B,/ — tanh B,/ =0

tan B,/ — tanh B,/ =0

_ lfsen B, — senh B”(\.l
\cosh B,/ —cos B, )

Gy

W,(x) = C,[senh B, x ;x — sen B,x
+ a,, (cosh B,x — cos B,x)]

donde

_ lfsenh B, — sen an\l

\cos B,/ — cosh B, )

W,(x) = Cylsen B,x — senh B,x
— ap (COS B,x — cosh B,x)]
donde

_ ('sen B,l + senh an\al

R |

\cos B,[ + cosh B,[ )

Wy(x) = Cylsen B,x — senh B,x
+ ay (cosh Byx — cos B,x)]
donde

_ [sen B, — senh B, 1 \I
\cos B,/ —cosh B,l )

Uy

Wn(x) - C”[sen Bﬂx + senh ﬁnx]
donde

_ ( sen B,! 3\
\ senh B,/ /

R

B = 14137165
(B! = 0 para el mo-
do de cuerpo rigido)

Bl = 4730041
Bl = 7.853205
Bsl = 10.995608
B4 = 14137165

Bl = 1875104
Byl = 4.694091
Bl = 7.854757
B4l = 10.995541

Bl = 3.926602
Bl = T.068583
B5l = 10.210176
B = 13351768

Byl = 3.926602
Bol = 7.068583
Bsl = 10210176
B4l = 13351768
(Bl = 0 para el mo-
do de cuerpo rigido)

Figura 3. 6: Condiciones de frontera mas usadas para vibracién transversal de vigas [2]

3.4 Analisis dimensional

El andlisis dimensional tiene como propdsito tener en ambos lados de una ecuacién las mismas

dimensiones finales, dichas dimensiones, involucradas en un sistema fisico, se dan en términos

de tres dimensiones elementales, longitud, masa y tiempo, que tienen unidades de metro,

kilogramo y segundo, respectivamente, de acuerdo al Sistema Internacional de Unidades.
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3.4.1 Teorema II de Buckingham

Este teorema representa una parte fundamental del analisis adimensional, y esta basado en los
trabajos de Vaschy [34] y Riabouchinski [35]. Este teorema establece que una relacion fisica
que involucra n variables puede ser expresada en términos de n — j grupos adimensionales,
donde j es el nimero minimo de dimensiones fundamentales necesarias para describir las

variables. De manera textual el teorema puede ser escrito de la siguiente manera:

“ Si (q1,92, ---,qy) SON n variables fisicas involucradas en un problema fisico y existe una

relacion funcional entre las variables de la forma:

'Q(qll q>z, ""qn) =0
Entonces, las n variables se pueden combinar de tal forma que se forman (n-j) variables

adimensionales independientes, donde j es el rango de la matriz adimensional”.

Cada factor adimensional es conocido como numero I1, de manera que la relacion se puede

reescribir como:
Yy, I, ..., 0,_,.) =0 (3.24)
De esta manera es posible encontrar los IT; por medio de la siguiente ecuacion:
M; =T, [T,_, Tk, conii=12,..,n—j (3.25)
Donde I’z son las variables involucradas en el sistema, I'» son las variables de referencia o
fundamentales y los c, se eligen para que cada I1; sea adimensional. De esta manera se expresa

la relacion entre las I1; como:

Hl = Q(Hz, H3, vy HTl—j) (326)
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Este teorema solo ayuda a encontrar una manera de generar conjuntos de variables
adimensionales, sin embargo, el método no deduce las variables fisicamente significativas, es

decir, las que se necesiten para resolver el problema. Cada caso (n — j) forman una base. [22]

3.5 Analisis modal

El anélisis modal es el proceso de determinar las caracteristicas dindmicas inherentes de un
sistema en formas de frecuencia natural, factores de amortiguamiento y formas modales y

usarlos para formular un modelo matemaético para su comportamiento dinamico [13].

El analisis modal esta basado en las respuestas de vibracidn de un sistema dinamico lineal, el

cudl puede ser expresado mediante una combinacién lineal de movimientos armonicos simples
(modos naturales de vibracion). Al utilizar este analisis, es posible obtener las caracteristicas
dindmicas intrinsecas de una estructura, la cual se representa en las formas modales,

frecuencias naturales y los factores de amortiguamiento.

3.5.1 Funcion de respuesta en frecuencia

La funcién principal de la cual depende el analisis modal es la funcion de respuesta de
frecuencia o FRF (por sus siglas en inglés) ya que el éxito del analisis modal depende mucho
de la exactitud de los datos obtenidos de la funcion de respuesta en frecuencia.

Debido a que algunos sistemas mecanicos y estructurales son idealizados como sistemas de un
solo grado de libertad, ademas de que los sistemas de un solo grado de libertad forman las bases
para el analisis de sistemas de varios grados de libertad, se toma en cuenta el diagrama

mostrado en la Figura 3.7 el cual cuenta con una masa, un resorte y un amortiguador.

I f(t)

x(t) K |_|J c (or h)
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Figura 3. 7: Sistema de un solo grado de libertad con excitacion armonica

En este caso, si la excitacion es armoénica, f(t) = F(w)e/®t su respuesta también es una
funcion arménica de la forma x(t) = X (w)e’“* donde X(w) es la amplitud compleja. A partir
de esto se puede deducir que la funcion de respuesta de frecuencia es la relacién entre la

respuesta de desplazamiento y la fuerza de excitacion y puede ser denotado como a(w) =

1
k-w?m+joc’

3.6 Teorema de Vieta

Cuando se trabaja con ecuaciones algebraicas es inherente tratar de resolverlas y encontrarle
un significado tangible a las soluciones obtenidas. El resolver las ecuaciones involucra obtener
todas sus raices (complejas o reales), de forma exacta o aproximada [23]. En ocasiones basta
con encontrar una aproximacion a dicha solucion, sin embargo, en el proceso de efectuar cierto
procedimiento para encontrar las raices de forma analitica, es posible encontrar y vincular méas
informacion relacionada a las propiedades que caracterizan al problema, tal es el caso de las
Ilamadas ecuaciones de Vieta.

Para emplear las ecuaciones de Vieta se considera una ecuacion monica (a,, = 1) de la forma:
Ap X"+ a1 x" 1+t axt +ag =0 (3.27)

La ecuacion anterior contiene n raices x;, x,, ..., X,,. Estas raices pueden encontrarse con base
en los términos a4, a,, ..., a,—; independientes del polinomio.

Generalizando las soluciones de la ecuacion y relacionandolas con los términos independientes
se obtiene [24]:

Ap1 = — (X1 + -+ xp)

Ap_y = (X1x5 + -+ x1X0 + XXz + -+ Xp_1Xy)

n-j = (=1) Tisiy<osijon Xiy Xiy - X (3.28)

ap = (—D)"x1x5 ... xp
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Tomando como ejemplo una ecuacion cuartica, es decir, una ecuacion con n=4:

x*+azx3+ax*+ax+ag=0 (3.29)

Los coeficientes de la ecuacion se pueden expresar en términos de las sumas y los productos

de sus raices x;, x5, x5, x4 las cuales se expresan como:

a3 = _(xl +x2 +X3 +X4)
Ay = (X1Xg + X X3 + X X4 + X3X3 + XXy + X3X4) (3.30)
Ay = —(X1X2X3 + X1 XX, + X1X3X4 + X3X3X,)

Ao = X1X2X3X4
Para el caso de los absorbedores de vibracion dindmicos basados en inersor, Barredo [25],

propone una nueva metodologia basandose en las formulas de Vieta para la obtencion de los

parametros éptimos de los absorbedores de vibracion dindmicos basados en inersor.

3.7 Técnica de los puntos fijos

Esta técnica descrita por Den Hartog, consiste en minimizar la amplitud méaxima de la respuesta
adimensional de un sistema mecéanico, dicha técnica consiste en obtener los puntos fijos o

invariantes del sistema a partir de dos consideraciones:

I.  Amortiguamiento cero (¢ — 0)

Il.  Amortiguamiento tiende a infinito (¢ — o)
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0.5 0.6 0.7 0.8 0.9 1 1.1 12 1.3 1.4
Q

Figura 3. 8: Grafica de un DVA clasico correspondiente al comportamiento de los estados
del sistema considerando amortiguamiento infinito y cero, obteniendo los puntos fijos Py Q.

La Figura 3.8 muestra la respuesta en estado estable determinada por las dos condiciones
consideradas en esta técnica. Considerando que todas las curvas pasan a través de los puntos
fijos y son independientes del amortiguamiento [14] y mediante un tratamiento matematico se
obtienen los parametros éptimos del sistema.

La Figura 3.9 muestra el comportamiento de la respuesta en frecuencia considerando valores

arbitrarios, incluyendo las condiciones fundamentales consideradas en esta técnica.

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
Q

Figura 3. 9: Respuesta en frecuencia de la estructura primaria acoplada al DVA clasico
considerando diferentes valores del factor de amortiguamiento

Como se puede observar todas las curvas tienen diferentes amplitudes, sin embargo, el mejor
balance dindmico se encuentra cuando la curva de funcion de respuesta en frecuencia 6ptima

sea mas plana en todo el rango de frecuencias de excitacion.
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3.8 Técnica de los puntos fijos extendida.

La técnica de los puntos fijos extendida [15], es una expansion de la técnica de Den Hartog,

que sirve para la optimizacion de los absorbedores de vibracion basados redes mecanicas con

inersor.

En [16] se resume esta técnica a una serie de pasos a seguir los cuales se enlistan a continuacion:

Vi.

Vii.

viii.

Xi.

Obtener el modelo matematico del sistema.

Obtener la funcion de transferencia H(s) del sistema, la cual también es conocida como
la respuesta del sistema R(5s).

Sustituir la expresion s = jw.

Reescribir la funcion de transferencia H(s) de la siguiente manera:
A+jB
C+jD

H(s) = (3.31)

Sustituir los parametros adimensionales asociados al teorema II de Buckingham.
Dichas variables estan asociadas directamente a las propiedades intrinsecas del sistema.

Obtener el médulo de H(s) a través de la multiplicacion de su conjugado complejo.

A%+B?
C2+D?

|H(s)I* = (3.32)
Aplicar las dos condiciones fundamentales de la técnica de los puntos fijos de Den
Hartog para el absorbedor dinamico de vibracion.

Cuando el amortiguamiento es cero la ecuacion (3.32) se convierte en:

AZ
IH(S)Z50 = 5 (3.33)
Y cuando el amortiguamiento tiende a infinito
BZ
H($)0 = = (3.34)

Igualar las ecuaciones (3.33) y (3.34) al realizar ésta igualacion se obtienen dos posibles
resultados de los cuales una de ellas sera trivial y la otra seré la que proporcione mayor
informacion de la solucion del sistema.
Realizar el cambio de variable.

€ = 0? (3.35)
Convertir en una ecuacién ménica.
Igualar a h el lado derecho de la ecuacién obtenida del paso vii bajo la condicion ¢ —

o,
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xii.  Realizar el mismo cambio de variable de la ecuacion (3.35).
xiii. ~ Convertir en una ecuacion monica.
xiv.  Obtener las soluciones 6ptimas mediante el teorema de Vieta.

xv.  Obtener la solucion optima para el factor de amortiguamiento ¢, a partir del teorema

de Krenk.
3.9 Criterio H,,

Esta técnica tiene como objetivo principal minimizar las amplitudes de vibracion en las
frecuencias de resonancia de la respuesta en frecuencia R(s) de la masa de la estructura
principal, conocida como la norma ||H||. Al minimizar esta norma se mejora la respuesta de
estado estable del sistema acoplado a los DVA’s, esto deriva a un problema de optimizacion

de la forma:

min (maxp,,|Hioya(@1) = max(Hipya(Pope, B, D)) (3.36)

Donde P,,; son los parametros a optimizar del sistema, estos parametros estan restringidos a
ser soluciones reales y positivas de la siguiente manera:

d|Hipya()|* _
— oz = 0 (3.37)

Para resolver este problema de optimizacién min-max principalmente se utiliza el método de
Nishihara, debido a su alta precision en la resolucion numérica, sin embargo, se puede utilizar

también el método de programacion cuadréatica secuencial.

3.9.1 Método de Nishihara.

Esta metodologia analitica fue presentada por Nishihara y Asami en 2002 [18], con ella se
pueden obtener los parametros Optimos para los DVA, sin embargo, esta metodologia
propuesta inicialmente solo funcionaba para modelos con dos grados de libertad y no fue hasta
un afio después que esta metodologia pudo ser implementada en modelos con méas de dos
grados de libertad [19].

Con el fin de hacer méas simple el sistema en este método se propuso remplazar h por 1/(1 —

r2) es decir:
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1

r2=1- (3.38)

h%nax
Ademas, de una funcion que se emplea para minimizar el valor madximo h,,,, de la funcion de

transferencia referente a la norma ||Hy||

Numerador

fn = Denominador — (3.39)

2
hmax

Ldpez [16] resume este método en una serie de pasos enlistados a continuacion.
i.  Obtener el modulo de H(s) a través de la multiplicacién de su conjugado

complejo.

A%+B?
IH)I? = 5 (3.40)
ii.  Definir las variables numerador V' y denominador D de la siguiente manera:
N=A>+B%> y D= C*+D? (3.41)

iii.  Se propone la ecuacion descrita por Nishihara para determinar el valor minimo

Rin dc la amplitud méaxima h,,,,,, mediante la siguiente ecuacion.

h= | (3.42)
iv.  Reescribir la ecuacién de la siguiente manera
p-L=p (3.43)

v.  Sustituir los términos correspondientes.
vi.  Coinvertir en una ecuacién monica. Esto nos da como resultado una ecuacion

de la forma

Q2 4+ 00 + 0,08 + 300 + c, Q'+ csQ%? + ¢, =0 (3.44)
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Vili.

viil.

Xi.

Xii.

A partir del teorema de Vieta, la suma y productos de las raices de la ecuacion
anterior se pueden expresar mediante el siguiente sistema de ecuaciones en

términos de los coeficientes c,,.

fi = (4c, — cf)\/c_6 +4cs =0 (3.45)
fz - C1C5 + 4C6 + 2C3\/C_6 = 0 (346)
fz - 4C6(C1\/C_6 +cy)—c2=0 (3.47)

Estas ecuaciones estan expresadas en términos de los parametros a optimizar,
incluido el parametro h.

Sustituir los coeficientes c,, en las ecuaciones para fi, f2, Y f3y llevar a su
minima expresion.

Hallar la matriz Jacobiana con base a los pardmetros a optimizar.

[2h 24 24 24
aq on aq aul
|22 0% Of Of)_
aq an a¢ auJ

Al B1 Cl D1
AZ BZ CZ DZ
A; B; C; Dy

(3.48)

9fs 3 9 0f3
aq an a¢ u

Obtener los determinantes f, y f5 de 3x3 asociados a la matriz jacobiana.

Ay By G
fa=|42 By (; (3.49)
A3 Bz (3
f4_ = A1B263 - A133C2 - A2B163 + AzB3CI + A3BIC2 - A3BzCl =0
D, A B
fs=|D2 Ay B, (3.50)
D3 A; Bs

f5 = A162D3 - A1C3D2 - AzClD3 + A263D1 + A3ClD2 - A3C2D1 = 0

Proponer un valor arbitrario para [ Yy sustituirlo en las ecuaciones

fufafafay fs.
Resolver el sistema de ecuaciones no lineales de 5x5 por el método de Newton-

Rhapson estableciendo valores iniciales apropiados.

Los resultados obtenidos de los parametros optimos mediante la técnica de los puntos fijos

extendida se toman como valores iniciales.
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3.10 Formulacion de Euler-Lagrange

El formulismo de Euler-Lagrange es en método utilizado para obtener ecuaciones diferenciales
de movimiento cuando el uso de las leyes de Newton resulta complicado. Este método esta
basado en el principio de conservacion de energia y fue planteado por Joseph Louis Lagrange,
por ello y por la gran contribucion de Euler, es que este método lleva este nombre. La expresion

matematica de la formulacidn para sistemas conservativos es:

d (0L oL
w(5s) 5 =0 (3:31)
i=1,2,3...n

donde el subindice i representa cada una de las coordenadas generalizadas y L representa el
Lagrangiano el cual se define como la diferencia de energia cinética total del sistema con la

energia potencial total [36], i.e.

L=T-U (3.52)

Donde T es la energia cinética y U es la energia potencial del sistema.
3.10.1 Funcién de disipacion de Rayleigh

Para el caso de sistemas mecanicos con amortiguamiento se utiliza la forma generalizada de

las ecuaciones de Euler-Lagrange como se presenta a continuacion.
d (oL aL  aD
wGe) et = (3.53)

Donde se introduce la variable D la cual representa una funcion de las velocidades
generalizadas llamada “funcion de disipacion de Rayleigh”, ademas de las fuerzas no

conservativas denotadas por Q; con i=1,2,3,...,n.
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Las fuerzas generalizadas de las ecuaciones de Euler-Lagrange aplican para sistemas no
conservativos y deben cumplir con la condicion que las fuerzas no conservativas hagan que el

sistema pierda energia por su accion.
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Capitulo 4: Desarrollo del modelo
matematico y optimizacion

Para el desarrollo del modelo matematico considere el sistema que se muestra en la Figura 4.1.
Este sistema consiste de una viga doblemente empotrada la cual estd sujeta a una carga
distribuida f(x)g(t) donde f(x) es una funcion espacial y g(t) es una funcion temporal
deterministica. Para determinar el comportamiento dinamico del sistema se propone utilizar
una fuerza de excitacién armoénica. La viga esta acoplada en el punto x = a a un absorbedor
de vibracion dinamico no tradicional el cual esta conectado a tierra mecénica por una red
mecanica C3 [4] la cual consiste de un resorte, un inersor y un amortiguador conectados en
serie, con coeficientes de rigidez, inertancia y amortiguamiento k,, b, c, respectivamente,
mientras que el absorbedor de vibracidn consiste en una masa (m,) conectada a la viga por un

resorte con rigidez k, y un amortiguador con coeficiente de amortiguamiento c;.

f(x)g(t)
T 1 |
k= a - L -
kl% %j €1
_‘}’(1’, t) DVA-A m4q _‘
¥1(t)
k,
b y2(t)
C2

y3(t)

Figura 4. 1: Esquema del modelo de la viga propuesta en éste trabajo.
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Donde:
f(x)g(x) - Carga distribuida

y(x,t) — Desplazamiento transversal de la viga

L - Longitud de la viga
my — Masa asociada al DVA
kq — Rigidez correspondiente al DVA

y1(t) — Desplazamiento correspondiente a m, del DVA

k, — Rigidez del resorte de la red mecanica C3

y,(t) — Desplazamiento correspondiente al inersor de al red mecanica C3

b - Inertancia

y3(t) — Desplazamiento correspondiente al amortiguador de la red mecanica C3

Cy — Coeficiente de amortiguamiento correspopndiente a la red mecanica C3

Para realizar el analisis dinamico del sistema partimos del formulismo de Euler-Lagrange para

sistemas no conservativos para el que se definen las siguientes ecuaciones:

T= gMVb.I(x' 1% + %ml [y (O] + %bb"s(t) =72 (O] 4.1)
U= 356 OF + 5k - y(@ OF + S hl® = OF (4.2)
D =2e1[1 () = y(@ O +36,[y5 (O 43)

La funcion T [ecuacion (4.1)] representa la energia cinética total del sistema, la funcion U
[ecuacion (4.2)] representa la energia potencial total del sistema y la funcion D [ecuacion (4.3)]
representa la funcién de disipacion de Rayleigh. Estas tres funciones son la base de la

formulacion de Euler-Lagrange para obtener el comportamiento dinamico del sistema.

Al aplicar los procedimientos matematicos correspondientes mostrados en la seccién 3.10,

ademas de los conceptos de la teoria de vibracion lateral en vigas, la ecuacion que rige el

comportamiento de la viga es:

Elaa—;y(x, t) + pA aTZZY(x» )= flx,t) +{ci[y:(®) —y(a, )] + ky[y:(t) —
y(a,t)]}6(x — a) (4.4)
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Donde:

A = Area transversal de la viga.

| = Momento de inercia.

p = Densidad de la viga.

E = Mddulo de elasticidad de la viga.
& (x — a) = Funcion Delta de Dirac.

La expresion entre llaves puede ser aproximada por la funcion delta e indica que es vélida

cuando la distancia x es igual a la ubicacion a del NIDVA-C3.

De la misma manera que con la viga es necesario obtener las ecuaciones que rigen el
comportamiento de los elementos del NIDVA-C3. Para el caso del absorbedor de vibracién la

ecuacion es:
my1 () + c1[y1(0) — y(a, )] + ki[y1 (&) —y(a, O] + k2 [y1(£) — y.(©)] =0 (4.5)

Para el inersor:

b[y,(t) — y3(t)] + cy3(t) = 0 (4.6)

Y finalmente el amortiguador:

b[y3(t)—.(0)] + cy3(t) = 0 (4.7)

Sin embargo, como el modelo estd sujeto a una carga armdnica es necesario definir los

siguientes parametros:

y1(t) = Yie'®t; yi(t) = IwYie't; §,(t) = —w?Y1e'®t; y,(t) = Ve y,(0) =
IwY,e'®t; §,(t) = —w?Y,e'®t; yi(t) = Yze'®t; y3(t) = IwYze'®t; y3(t) =
—w?Yze'@t s y(a,t) = Y(a,w)e'; y(a,t) = oY (a,w)e!®t

Tomando en cuenta éstos nuevos parametros, se sustituyen en las ecuaciones (4.4)-(4.7) y a

continuacion las ecuaciones resultantes se resuelven para Y3, Y,, Y5 lo cual da como resultado:

49



Yl - _ kl(Ib(UZCZ—IC2k2+b(1)k2)Y(a,(1)) (4.8)

Iba)4czm1+bw3k2m1—162((b+m1)k2 +bk1)w2—b(l)k1k2+1C2k1kz

Y]_kz(]Cz—bw)

2 7 wlcaw+ky)b—Icyk, (4.9)
bwY-
O P (4.10)
Se define la siguiente ecuacion:
P = mw?Y; — Ic,wYs (4.11)

Luego se sustituyen los valores correspondientes de Y3, Y5, Y5 resultando de la siguiente manera:

P - _ [Ib(l)Zszl+ba)k2m1—Ik2C2(b+m1)]Y(a,(J))(J)2k1 (4.12)

Iba)4czm1+ba)3k2m1—lcz [(b+m1)k2 +bk1]w2—bwk1k2 +1C2k1k2

La ecuacion anterior también se puede escribir en la forma: P = —H(w)Y (a, w), siendo

(1.)2[Ibw2C2m1+b(L)k2m1—1k2C2(b+m1)]k1

H= T Ibwtcymy+bw3kymy —Icy[(b+my )k +bk, w2 —bwky ky+Ico ke ks (4.13)
A su vez la ecuacion anterior se puede expresar de manera simplificada como:
H =m;w?] (4.14)
donde J esta definida como:
J= kq[Ibw?cymy+bwkymy—Ik;co (b+mq)] (4.15)

ml{lbw4czm1+bw3k2m1—lcz [(b+m1)k2+bk1]w2—bwk1k2+162k1k2}

Con el proposito de realizar el analisis adimensional del sistema, se proponen las siguientes
variables adimensionales las cuales relacionan las propiedades fisicas de la estructura tipo viga

con el sistema absorbedor de vibraciones.
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donde:

w3 = Frecuencia natural al cuadrado asociado al DVA.

w? = Frecuencia natural al cuadrado relacionado al inersor.

¢, =Factor de amortiguamiento relacionado al DVA.

u = Relacion de masas entre la inertancia y el DVA.

g = Relacidn de frecuencias naturales no amortiguadas para el DVA.

n = Relacion de frecuencias naturales no amortiguadas entre la inertancia y el DVA.
Q = Relacion de frecuencias forzadas.

= Relacion de masas

Sustituyendo las variables adimensionales en J se obtiene.

2[1n2(u+1)Czq2—%uqnzﬂ—lc'zﬂz]qz
2182q*n? —uq3n2Q-21[(p+1)n2+1]{,Q2q% +uqn2Q3+21, Q*

] = (4.16)

Después, se sustituye la frecuencia de excitacion (w = w;Q) del sistema, lo cual da como

resultado

H(w) = mywij; (4.17)
donde J; = Q2J.
Es necesaria la implementacion del principio de superposicion de modos para la obtencion de

la solucién de la vibracion forzada de la viga, para ello, la deflexion de la viga y sus condiciones

de frontera se expresan de la siguiente manera:

Y0 = ) $i@a

d*¢i(x)
et - Bi $i(x)

Donde g; es el valor caracteristico o Eigenvalor de la ecuacion caracteristica de la viga 'y ¢;

es el i-ésimo modo de vibracion de la viga.
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Para obtener la respuesta dinamica general en funcion de la frecuencia del desplazamiento
transversal de la viga, se supone que la excitacion armonica afecta al DVA. La ecuacion que

rige el comportamiento del sistema es:

Gy (a,w)Gq(x,w)

, = G,(x, — 4.18
y(x,0) = G, (x,w) e vyoy (4.18)
donde:
G1(x, ©) = T2 fpiptma (4.19)
G2, 0) = T2 s (4.20)
a; = [ f)$i(x)dx (4.21)

Después de sustituir las ecuaciones correspondientes y efectuar el desarrollo algebraico se

tiene:
30 Baj¢i(a)
_ 1 © a; $i(a) =lyi-a?
S(a,, Q) - pAL(J)% Zi:l ¢l(x) ViZ_QZ Viz_ﬂz Z?o Boi(a)? 1 (422)

=1 y%—ﬂz J1

La ecuacion (4.22) representa la funcion de respuesta en frecuencia del desplazamiento
transversal de la viga cuando se tiene una excitacion armoénica. Sin embargo, si se considera el

primer modo de vibracion la ecuacion (4.22), se reescribe como:

_ $1aq
500 = Grgraroaa? 429

4.1 Técnica de los puntos fijos extendida

Para esta técnica es necesario partir de la funcion de respuesta en frecuencia (FRF) en estado

estable de la estructura tipo viga con el NIDVA-C3 para la implementacion de la técnica de los

52



puntos fijos extendida. De esta manera si se considera el primer modo de vibracién y al evaluar

en el punto X = a se obtiene.

1

$(a, ) = o

(4.24)

Después de sustituir el valor de J; se observa que la ecuacién puede expresarse en la forma:

__ A+iB
C+iD

(4.25)

Los valores para A, B, C y D que se muestran en la ecuacion (4.25) se proporcionan en el

apéndice A.

De esta manera se puede obtener la resultante del sistema como el modulo de la ecuacién
(4.25):

_ A*4+B?
T C24D2

|H(s)|?

(4.26)

Como se menciona en la seccion 3.7, la técnica de los puntos fijos se basa principalmente en
dos condiciones de operacion del absorbedor, siendo la primera de ellas cuando el
amortiguamiento es cero y la segunda cuando el amortiguamiento es infinito. Al aplicar estas
condiciones a la ecuacion (4.26) se obtienen dos ecuaciones las cuales son independientes de
la relacion de amortiguamiento. Para un valor de relacion de amortiguamiento de cero (¢ = 0)

la ecuacion (4.26) se reduce a la siguiente expresion.
A2
H()|? =5 (4.27)

De igual forma para un valor de relacién de amortiguamiento infinito ({ = ) la ecuacion

(4.26) se reduce a la siguiente expresion.

|H(s)|* = ﬁ—"; (4.28)
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Al igualar las ecuaciones (4.26) y (4.27) se obtienen dos soluciones, una de ellas proporciona
un resultado trivial pero cierto, 3 = 0,u =0,g =0,n =0y ¢,(a) =0.Cuando Q =00 w =
0 la amplitud del sistema es Y(a,t).s(Deflexion estatica) y es independiente del
amortiguamiento, simplemente porque el amortiguamiento se mueve tan despacio que no se da

oportunidad para la creacion de una fuerza de amortiguamiento.

La segunda alternativa proporciona un polinomio de grado 8 el cual comparte las mismas raices
que la ecuacion (4.28). Para reducir el grado de la ecuacion se realiza un cambio de variable

para después convertirla en una ecuacion monica y asi emplear el teorema de Vieta.

Al aplicar el teorema de Vieta, se igualan las sumas y los productos de las raices de las

ecuaciones (4.27) y (4.28), a partir de ello se obtienen los parametros 6ptimos del sistema.

4.2 Criterio H,

Como se menciona en la seccién 3.8, para llevar a cabo la optimizacion mediante el criterio

H,, es necesario utilizar el método de Nishihara para la obtencion de los parametros 6ptimos.

4.2.1 Método de Nishihara

Para éste método se parte de calcular el médulo de H(s), (ecuacion (4.26)), a partir de la cual

se definen dos variables:

Numerador = A? + B? (4.29)
Denominador = C? + D? (4.30)

Tambien es necesario definir una nueva variable propuesta por Nishihara como se menciona

en la seccion 3.9.1.

(4.31)
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A partir de las ecuaciones (4.29) -(4.31) se define la siguiente ecuacion.

Numerador

Denominador — — = 0 (4.32)

Después de sustituir las ecuaciones (4.29)-(4.31) en la ecuacion (4.32) se obtiene un polinomio

de grado 12, el cual es necesario convertir en un polinomio ménico, dicho polinomio tiene la
forma:

Q2 +¢,01° + ;08 + 305 + ¢, Q* + Q2 + ¢4 =0 (4.33)

Los valores de los coeficientes c,, de la ecuacion (4.33) se enlistan en el apéndice B.

A partir del teorema de Vieta se obtiene el sistema de ecuaciones en términos de los coeficientes
¢y, del polinomio de la ecuacion (4.33), de la siguiente manera.

fl(ﬁl ¢1' waqnr, {2) = (4C2 - CIZ)\/C—G + 4’CS (434)
fz(ﬁ’ ¢11 uwqnr, CZ) = (165 + 4‘C6 + 2CB\/C—G (435)
f3 (ﬁ' ¢1' waqnr, {2) = 4’C6 (Cl\/c_6 + C4) - C52 (436)

Al sustituir los valores de los coeficientes c,, se puede observar que el conjunto de ecuaciones
(4.34)-(4.3) estan en funcion de los parametros a optimizar. A partir de dicho conjunto de

ecuaciones se define la matriz jacobiana asociada al sistema de la siguiente manera.

[2o 2h 04 Oh
0q 9on 9% odu
_ |22 32 02 Of
J=1%¢ o 3, ou (4.37)
fs 0fs s 9fs
dq on 0{, Ou

A partir de la matriz descrita en la ecuacion (4.37) se llega a las ecuaciones f, y fz, para ello
se consideran los determinantes de 3x3 mas simples asociados a la matriz jacobiana, los cuales

son:
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9h 9fi Oh
dqg 9dn 094,
f_% 9f2 9f
4+ 7 lag on o
9fs 0fs 9fs
dq 0n  0Q;

(4.38)

9fi 9 9f
o 9q 9L,
f_%%%
57 low aq 9,
9fs 9fs 9fz
ou 9q 94

(4.39)

Al resolver ambos determinantes y sustituir las derivadas parciales del conjunto de ecuaciones
(4.34)-(4.36) se obtiene un sistema de 5 ecuaciones no lineales. Para resolver el sistema se
emplea el método de Newton-Raphson mediante una herramienta computacional ya que,
ademas de ser ecuaciones no lineales, las expresiones resultantes de los determinantes son muy

extensas.

Con el procedimiento del modelado matematico de la viga el cual resulta en la funcion de
respuesta en frecuencia en estado estable necesaria para la obtencion de los pardmetros 6ptimos
del sistema, se procedid con la implementacién de los procedimientos necesarios para la
optimizacion mediante la técnica de los puntos fijos extendida y el criterio H,, siguiendo los
pasos mostrados en las secciones 3.7-3.9. A partir de éstos procedimientos, se obtienen las
ecuaciones a resolver para la obtencion de los parametros 6ptimos del sistema. Los resultados

obtenidos se muestran en el Capitulo 5 de este trabajo de investigacion.
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Capitulo 5: Resultados.

En éste capitulo se muestran los resultados obtenidos de los procedimientos desarrollados en
el capitulo 4, ademas de que se realiza una comparacion de las graficas que se obtienen al
utilizar los pardmetros obtenidos de la técnica de los puntos fijos y el criterio H,,. De la misma
manera se obtienen los indices de incremento del ancho de banda y de reduccion de la amplitud
de vibracion con respecto al DVA clésico.

5.1 Resultados de la técnica de los puntos fijos extendida

Siguiendo el procedimiento del Teorema de Vieta se obtienen los parametros 6ptimos que se

muestran a continuacion.

2897
Hopt = _,84)%—11 (5.1)
Nopt = _ﬁd)lz +1 (5.2)
Qopt = 1 (5.3)

RO) = |7 54

La ecuacion (5.4) representa la amplitud de la vibracion en los puntos invariantes, que también

es la amplitud minima de vibracion de la estructura tipo viga con el dispositivo NIDVA-C3.

Como se puede observar, el conjunto de ecuaciones (5.1)-(5.4) se encuentran en términos de 8
y ¢,. Basado en las condiciones de frontera de la estructura tipo viga, ademas de considerar
que la masa del dispositivo NIDVA-C3 sea el 10% de la masa de la estructura principal, se
plantean los valores mostrados en la Tabla 5.1. Para casos practicos de absorbedores de
vibracién dinamicos en los cuales se utilicen redes mecéanicas el valor maximo de la relacion

de masas es el 10%, mientras que para el DVA clasico es el 25% [29,30].
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Tabla 5. 1: Valores numéricos asignados para las variables independientes.

Variable Valor
Numeérico
B 0.1
¢1(a) V2

Una vez se definen los valores mostrados en la Tabla 5.1, éstos se sustituyen en las ecuaciones
de los pardmetros 6ptimos (ecuaciones (5.1)-(5.4)). Los valores numéricos obtenidos se
muestran en la Tabla 5.2, para este caso se consideran 6 cifras significativas.

Tabla 5. 2: valores numéricos obtenidos para los pardmetros éptimos y la respuesta en
frecuencia del sistema en su forma adimensional.

Parametro Valor
Hopt 0.50000
Nopt 0.89442
Qopt 1.00000
R(s) 2.23606

Después de sustituir los valores numéricos de las Tablas 5.1 y 5.2 se llega a la funcion de
respuesta en frecuencia (FRF) del sistema considerando amortiguamiento igual a cero ({, —
0).

Hopt:Nopt:dopt _ w (55)

¢2—0 (—Q4+2.202-1)2

De la misma manera, considerando los valores de las Tablas 5.1 y 5.2 se obtiene la funcion de

respuesta de frecuencia (FRF) del sistema considerando amortiguamiento infinito ({, — o).

Hopt:Nopt-dopt (Q4-2.202+0.8)2
opt'lopt:Yop =\/ (56)

{2 (26-3.404+3.2402-0.8)2
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Para poder observar de mejor manera el comportamiento de la funcion de respuesta en
frecuencia se propone un valor arbitrario para el amortiguamiento, en este caso ¢, = 0.5. Al

sustituir los valores numéricos se obtiene la siguiente expresion.

Hﬂopt;nopt;qt)pt _ 0.1692(—02+1)2+(Q4—2.ZQZ+0.8)2 (5 7)
¢2=0.5 T 4 0.1602(-2.202+0%+1)2+(Q6-3.404+3.2402—0.8)2 )
La representacion grafica de las ecuaciones (5.5)-( 5.7) se muestra en la Figura 5.1.
6
— =05
— =0
5 ‘ 4’-_
52=0
__4- 1
~
\J}n
si 3L i
3
=
- 2 k
O | 1
0.4 0.6 0.8 1 1.2 1.4 1.6

Q,

Figura 5. 1: Respuesta en frecuencia de la estructura primaria acoplada al NIDVA-C3 vs la
relacion de frecuencia 2 utilizando los parametros 6ptimos y un coeficiente de
amortiguamiento arbitrario.

Como se observa en la Figura 5.1 todas las curvas pasan por los puntos fijos o invariantes que
son independientes de la relacion de amortiguamiento. Ademas, la curva de la funcion de
respuesta en frecuencia con el valor de relacion de amortiguamiento arbitrario (¢, = 0.5) no

brinda una reduccién adecuada de la amplitud de vibracion del sistema.
El conjunto de soluciones Optimas obtenidas hasta este punto (iepe, Mopes Gopt) Crean los

parametros necesarios para producir la misma amplitud de vibracion en las frecuencias

invariantes del NIDVA-C3, pero para aplanar la curva de la funcion de respuesta en frecuencia
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del NIDVA-C3 estos parametros no son suficientes, es necesario encontrar la relacion de

amortiguamiento 6ptimo C2opt-

5.1.1 Soluciones éptimas para la relacion de amortiguamiento {,

Al aplicar la teoria de Krenk [38] para obtener el amortiguamiento 6ptimo de la viga se

producen tres frecuencias resonantes (), , cuando { — ooy Q, cuando { — 0.

Para calcular las frecuencias invariantes €, , se debe resolver la ecuacion que resulta de igualar

a cero el denominador de la ecuacion (4.27), resultando en la siguiente expresion.
—0*4+2202-1=0 (5.8)
Al resolver la ecuacion (5.8) y tomando las raices positivas obtenemos los siguientes valores.

(1, = 1.248301874
Q, = 0.8010882790

Para (), se iguala a cero el denominador de la ecuacion (4.28), ademas se sustituyen los

parametros Optimos fioy ¢, Mopes Gopt, 10 cual resulta en:

0° —3.40% +3.240% — 0.8 (5.9)

Al resolver la ecuacion (5.9) se toma un valor que cumpla con la condicion Q, < Q, < Q, por
lo tanto:
QO == 1

Para obtener numéricamente la relacion de amortiguamiento 6ptimo que aplana la curva de
respuesta en frecuencia de la estructura principal, se deben sustituir las soluciones
Hopts Mopt» Qopt» R(S), 01, Q, Y Qq en la ecuacion (4.26). Esto produce tres valores para la
relacion de amortiguamiento en cada frecuencia resonante, los valores obtenidos se muestran
en la Tabla 5.3.
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Tabla 5. 3: Valores numéricos de la relacién de amortiguamiento para cada frecuencia

resonante.
Amortiguamiento | Valor Numérico
{2, 0.3046334712
{2p 0.2292690598
{2, 0.2294157339

El factor de amortiguamiento éptimo se obtiene calculando el valor cuadratico medio (RMS)

de los valores de amortiguamiento producidos en cada frecuencia resonante.

1
Goope =3 303, + 362, + 38 (5.10)

Lo cual da como resultado:

$2yp: = 0.2569029859

De esta manera al sustituir los datos de las Tablas 5.1 y 5.2, ademas del factor de

amortiguamiento 6ptimo se obtiene la siguiente expresion.

Hopt:Nopt:d 0.1602(-02+41)2+0.2639965766(0*—2.202+0.8)2
pHoptmopedopt _ J (=02+1) ( ) (5.11)

$20pt 0.16Q2(0%-2.202+1)2+0.2639965766(Q26—3.40%+3.2402-0.8)2
En la Figura 5.2 se observan las graficas de la respuesta de la estructura tipo viga con el
NIDVA-C3, los valores de la relacion de amortiguamiento utilizados para obtener las graficas
son las dos condiciones principales de funcionamiento en la técnica de los puntos fijos (¢, = 0
y {, = o), un valor arbitrario de la relacién de amortiguamiento y finalmente la relacion de

amortiguamiento optima para el sistema.

62



[H(1.11,q,65,9)|

0.4

Figura 5. 2: Grafica de la respuesta en frecuencia H () con los parametros 6ptimos

0.6 0.8 1

Q

incluyendo la relacion de amortiguamiento éptimo.

Como se observa en la Figura 5.2 las curvas de la respuesta de la estructura cuando se utilizan

los valores fundamentales de la relacion de amortiguamiento ({, = 0 y {, — o) ademas del

valor de amortiguamiento arbitrario (¢, = 0.5) y el valor 6ptimo obtenido mediante la técnica

de los puntos fijos. También, es posible observar que al utilizar el factor de amortiguamiento

optimo (curva negra) se tiene una menor amplitud en comparacién con la curva en la cual se

emplea un valor arbitrario para le relacion de amortiguamiento.

En la Tabla 5.4 se enlista los parametros éptimos que se obtienen al aplicar la técnica de los

puntos fijos extendida considerando distintos valores para la relacion de masas, B. Se

consideraron valores de 3%, 5%, 8% y 10%.

Tabla 5. 4: Parametros optimos del sistema considerando diferentes valores para ff con la

técnica de los puntos fijos extendida.

Técnica de los puntos fijos extendida

¢, = V2
B Hopt opt Nopt Copt R(s)
0.03 0.12765 1 0.96953 0.13699 4.08248
0.05 0.22222 1 0.94868 0.17822 3.16227
0.08 0.38095 1 0.91651 0.22804 2.49999
0.1 0.5 1 0.89442 0.25690 2.23606
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Figura 5. 3: Respuestas del sistema al considerar distintos valores de 8 con la técnica de los
puntos fijos extendida.

La Figura 5.3 muestra una comparacion de las respuestas del sistema obtenidas a partir de los
parametros obtenidos al considerar distintos valores de relacion de masa, como se observa, al

aumentar la relacion de masas la amplitud de la vibracion disminuye.

5.2 Resultados mediante el criterio H,

En ésta técnica, al igual que con la técnica de los puntos fijos extendida se consideran los
valores para Sy ¢, propuestos en la Tabla 5.1. Para resolver el sistema de ecuaciones mediante
el meétodo de Newton-Raphson los valores iniciales se propusieron considerando los resultados

obtenidos en la técnica de los puntos fijos extendida (ver Tabla 5.2).

Los resultados obtenidos para los parametros 6ptimos se muestran en la Tabla 5.5.
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Tabla 5. 5: valores para los parametros 6ptimos obtenidos mediante el criterio H,

Parametro Valor 6ptimo
Hopt 0.61972
Nopt 0.89520
Gopt 1.03901
Caope 0.25190

I|Hol| 2.32812

Al sustituir los valores de los pardmetros optimos de la Tabla 5.5 en la funcidn de respuesta en

frecuencia se obtiene la siguiente expresion.

H _ \/ 0.2662602(—02+1.07954)2+0.25381(Q%-2.4808002+0.93394)2
Nish —

5.12
0.2662602(Q4—2.2954502+1.07954)2+0.25381(Q6—3.6967104+3.7172802—0.93394)2 (5.12)

La Figura 5.4 muestra como la curva de la funcién de respuesta en frecuencia del sistema al

utilizar los parametros 6ptimos resultantes al emplear el criterio H..

Caop=0.25190

5, _

X))

a’?aqsc_v_%
(8]
[

I_H(#

0.4 0.6 0.8 1 1.2 1.4 1.6
Q

Figura 5. 4: Gréfica de H() considerando los parametros 6ptimos obtenidos con el criterio
He
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Para poder visualizar de mejor manera la diferencia existente entre las curvas generadas con
los parametros éptimos resultantes de la técnica de los puntos fijos extendida [ecuacion (5.11)]

y el criterio H,, [ecuacion 5.12] la Figura 5.5 muestra una comparacion entre ambas graficas.

° T
CIN ishihﬂm:O 25190
Gprr=0.25690
5 I 14
54 7
N
£
=

[H(x

0.4 0.6 0.8 1 12 14 1.6
0

Figura 5. 5: Comparacion entre las curvas resultantes de la técnica de los puntos fijos
extendida y el criterio H,.

Como se observa en la Figura 5.5, ambas curvas muestran una amplitud similar, sin embargo,
el aplanamiento de la curva es mejor cuando se aplica el criterio H, con el método de
Nishihara, mientras que con la técnica de los puntos se notan oscilaciones en la amplitud, esto
se debe a que le técnica de los puntos fijos extendida es solo una aproximacion a los resultados
exactos que se obtienen con el criterio H,,. Sin embargo, para casos en los cuales se tenga una
limitada capacidad de computo, la técnica de los puntos fijos es ampliamente til, ya que resulta

en ecuaciones menos complejas y el resultado es bastante aceptable.
En la Tabla 5.6 se muestran los valores numericos de los parametros optimos que se obtienen

al aplicar el criterio H, al sistema cambiando los valores de la relacion de masas, S,
correspondientes al 3%, 5%, 8% y 10%.
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Tabla 5. 6: Parametros optimos del sistema considerando diferentes valores para 3 en el

criterio Hy,.
Criterio H,
¢, = V2
B Hopt opt Nopt Copt [|Hool|

0.03 0.16824 1.01363 0.97073 0.13582 441721
0.05 0.29178 1.02220 0.95068 0.17647 3.37379
0.08 0.52837 1.03711 0.91679 0.22541 2.61623
0.1 0.61972 1.03901 0.89520 0.25190 2.32812

B

Q)|

3

L8]

[H(zt.n1.q,

(9]

0.4 0.6 0.8 1 1.2 1.4 1.6
Q

Figura 5. 6: Respuesta del sistema considerando distintos valores de £ en el criterio H,.

La Figura 5.6 muestra de manera grafica como la respuesta del sistema se ve afectada por la
relacién de masas, en este caso con el criterio H,, se observa que si se aumenta le relacién de

masas del NIDVA-C3 la amplitud de vibracion disminuye.

Para calcular el porcentaje de supresién de vibracion con respecto al DVA clésico se calcula el
ancho de banda de supresion de vibraciones %SB;, para ello se considera la funcion de
respuesta en frecuencia del sistema NIDVA-C3 asi como la funcion de respuesta en frecuencia

del sistema tipo viga con el absorbedor de vibracion dindmico clésico. Para tener una mejor
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idea del contraste entre ambos sistemas se utiliza como referencia la funcion de respuesta en
frecuencia cuando no existe un absorbedor dindmico de vibracion acoplado a la estructura tipo

viga.

En la Figura 5.7 se observa que el rango de supresion de vibraciones y el ancho de banda
operativo es mayor al utilizar el NIDVA-C3 en comparacion con el DVA clésico.
Traduciéndose en una manera mas eficiente de aislar las vibraciones y reduciendo asi su
impacto, con lo cual se obtiene una mejora en la comodidad, estabilidad y la prolongacién de

la vida Gtil de los sistemas mecanicos.

6 ; - . :
i “ —NIDVA-C3
,' \ - = Estructura sin control
5 r ! ‘\ DVAcld\sicc) M
/ \ |
N °
=~ 4+ ) — )\\ 7
C} I SBDVAcléslcu \
s\‘,\:‘ / ‘\
- /7
?__f 3 L /// \\\ _
= S A A PR
= 2= -7
r{: - - - SB NIDVA-C3
1C
0.4 0.6 0.8 1 1.2 1.4 1.6
Q

Figura 5. 7: Comparacion de las curvas FRF del NIDVA-C3y el DVA clésico

La ecuacion para calcular el incremento del ancho de banda operativo del sistema es:

SBNIDVA-c3—SBpva

%SBNIDVA—C3 = clasico X 100% (513)

SBNIDVA-C3

De la misma forma, para calcular el indice de reduccion de la amplitud de vibracion del
NIDVA-C3 con respecto al DVA clasico, se encuentran los puntos maximos correspondientes
a cada FRF entre los puntos invariantes asociados a cada amplitud méaxima de la FRF. Por lo
tanto, la ecuacién para el indice de reduccion de la amplitud de vibracion del sistema es:
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SPpva ssico — SPNIDVA-C3

%SPNIDVA—C3 = X 100%

SPDVAclésico

Una vez realizados los célculos se obtienen que el %SBypya—c3 para el NIDVA-C3 es del
48.2% mientras que el %SPypya—c3 €S del 48.1% en comparacion a la estructura tipo viga con
el DVA clésico.

De los resultados obtenidos en éste capitulo se concluye que, al implementar el NIDVA-C3 en
una estructura tipo viga la cual esté sujeta a carga armoénica la mitigacion de las vibraciones

resulta ser mucho mas efectiva que solo emplear el DVA clasico.
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Capitulo 6: Conclusiones

Con el desarrollo matematico realizado en éste trabajo se determind el disefio 6ptimo de un
absorbedor de vibracién no tradicional basado en inersor para el control de vibracién de una
estructura tipo viga. El desarrollo se llevd a cabo considerando que a la estructura se le aplica
una excitacion armdnica. El absorbedor de vibracion no tradicional se conecta a tierra mecanica
utilizando una red mecanica C3 [4] compuesta por un resorte, un inersor y un amortiguador
conectados en serie.

Para el analisis dinamico fue necesario seguir una serie de pasos en la que fue necesario emplear
la formulacién de Euler-Lagrange para obtener las ecuaciones de movimiento que rigen el
sistema, ademas, para simplificar el procedimiento se obtuvieron los pardmetros
adimensionales a partir del teorema IT de Buckingham, lo cual permiti6 hallar la respuesta en
frecuencia adimensional del sistema. La resolucion del problema planteado se llevo a cabo por
medio de dos técnicas, siendo la primera, la técnica de los puntos fijos extendida propuesta por
Barredo [15] ademas de la técnica de optimizacion H,, en la cual es necesario emplear el
método de Nishihara. Como se describe en la seccion 5 de éste trabajo de investigacion los
resultados obtenidos mediante el criterio H,, muestran una mejor minimizacion de la amplitud
de la vibracion ya que proporciona soluciones exactas mientras que la técnica de los puntos
fijos extendida es una aproximacién de la norma H,, que considera el teorema de Vieta y la
teoria de Steen Krenk [38]. Sin embargo, la técnica de los puntos extendida resulta ser
ampliamente Gtil debido a que sus ecuaciones resultantes son menos complejas que las del

criterio H,, lo cual deriva en un menor uso de recursos computacionales.

Tanto el criterio H,, Yy latécnica de los puntos fijos extendida consiste en encontrar la respuesta
Optima entre los puntos fijos para extender el rango de mitigacion de vibracion del NIDVA-
C3. Lo anterior en el area de la ingenieria mecanica automotriz, se puede traducir en una
trayectoria de conduccion més suave y fluida, brindando un mayor confort, mientras que en
ingenieria civil se traduce a una prolongacién de la vida util de las estructuras y maquinaria,

sin embargo, también resulta muy atil en diversas industrias.

Finalmente se realizo la comparacion entre los resultados obtenidos con el NIDVA-C3 vy el

DVA clasico donde se observé una mejora considerable al utilizar el NIDVA-C3 en la
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estructura tipo viga. De ésta manera la hipdtesis planteada al principio de esta investigacion

fue demostrada exitosamente.

6.1 Trabajos futuros

Es importante recalcar que el trabajo realizado en ésta tesis puede ser mejorado de distintas

maneras, siendo las principales las que se enlistan a continuacion.

e Debido a que los inersores ain no son muy utilizados en las industrias, la
implementacion del modelo propuesto en ésta tesis resulta complejo, sin embargo, seria
muy importante realizar la implementacion fisica del sistema y asi realizar la
comprobacion de los resultados obtenidos mediante la experimentacion.

e Como es sabido, existen diversos tipos de excitaciones externas a las cuales pueden
estar sujetas las estructuras y maquinaria, es por ello que resultaria muy util llevar a
cabo el disefio del sistema considerando distintos tipos de excitacion, tales como fuerzas

inerciales o aleatorias.
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Apendices.

Apéndice A

Coeficientes de la FRF

A= ugn*Q(-Q% + q%) (A1)
B = =23,(0* — ((u + Dn* + 1)q>Q% + n*q*) (A.2)
C = *uq(=Q*Bq*¢p7 + Q* — Q%q* — Q% + ¢%) (A3)

D =250+ (14 ((—u—Dn* =B —1)q*) + (A + Blu+ DpIn?q* + 1 +
(1 + 1n?) ¢2Q% — n?q*) (A.4)
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Apéndice B

Coeficientes del Método de Nishihara

(-8+((-su-8)m>-8ppi-8)q? )i +n*u?q?

o =1 (22 (B.1)
2 = 523 (@G + 170" + (85} + B9 + 4u + 8% + 2(697 + DA -
Rt (Bt + )" + (8 + 807 + 483 + 8)33 — *u?) ¢ + 217 ) (B.2)

1

s = (02 (=882 + BT + D(Ge+ Dn? + Bgd + 1)35 + wn? (897 +
DH)n?q* + ((—=8(u + 1)*n* + (—16Bud3 — 168¢F — 161 — 32)n? — 88¢pF — 8){3 +

200" (B} +2))q” + (=8 + (=8 = )G + 1" )r?) ) ®3)

1

C4:g

<((((ﬁu¢>% + 87 + 2" + 2(u + D(Bug? + foi +2)q* +r?(u+ 1)*)EF -
~u2((Bo? + Dg* + TZ)) n* +2((Bud? + 2B¢7 +2)q* + 2+ 2))%n* + rz(%) q4>
(B.4)

es = =7 (2((((Buot + 807 + D 472+ DI +72) & ~intur? ) a'n?) - (B9

ce = n*q®r? (B.6)
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