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RESUMEN

La presente investigación se enfoca en la optimización de sistemas de control

de vibraciones aplicados a sistemas rotor-cojinete tipo Jeffcott, mediante la im-

plementación de tres configuraciones de Absorbedores Dinámicos de Vibración

No Tradicionales basados en Inersor, NIDVAs C3, C4 y C6. Estos dispositivos

han mostrado un desempeño superior al de los amortiguadores convencionales

(DVA, TMD e IDVA), al ampliar la banda de atenuación de la respuesta vibratoria

del sistema.

El estudio surge de la necesidad de mejorar el control de vibraciones en sis-

temas rotodinámicos, donde las soluciones tradicionales presentan limitaciones

en términos de robustez y efectividad ante variaciones de frecuencia. Para abor-

dar este problema, se emplean dos técnicas de optimización: la técnica de los

puntos fijos extendida y el criterio H∞ con el objetivo de minimizar la amplitud de

la función de respuesta en frecuencia (FRF) de los NIDVAs implementados en

rotores Jeffcott.

La metodologı́a seguida se basa en el método de Canales, que contempla

desde la documentación del estado del arte hasta la redacción del informe final.

Se utilizan modelos matemáticos derivados mediante las ecuaciones de Euler-

Lagrange y software de cálculo simbólico (Maple) para simular el comportamiento

de los sistemas y determinar los parámetros óptimos.

Finalmente, se evaluó y comparó la efectividad de ambas técnicas de optimi-

zación y se demostró que los NIDVAs C3, C4 y C6 representan una alternativa

eficaz para la supresión de vibraciones en sistemas rotodinámicos.
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NOMENCLATURA

mu: Masa desbalanceada o masa excentrica.

d: Excentricidad.

wt: Ángulo recorrido.

M : Masa del disco del rotor tipo Jeffcott.

mx: Masa de los absorbedores en la dirección x.

bx: Inertancia de las redes mecánicas en la dirección x.

cx: Amortiguamiento de las redes mecánicas en la dirección x.

c1x: Amortiguamiento de los absorbedores en la dirección x.

k1x: Rigidez de los absorbedores en la dirección x.

k2x: Rigidez de las redes mecánicas en la dirección x.

Kx: Rigidez del rotor tipo Jeffcott en la dirección x.

x: Desplazamiento del disco del rotor tipo Jeffcott.

x1: Desplazamiento de las masas de los absorbedores.

x2: Desplazamiento interno de las redes mecánicas.

x3: Desplazamiento interno de las redes mecánicas.

my: Masa de los absorbedores en la dirección y.

by: Inertancia de las redes mecánicas en la dirección y.

cy: Amortiguamiento de las redes mecánicas en la dirección y.

c1y: Amortiguamiento de los absorbedores en la dirección y.

k1y: Rigidez de los absorbedores en la dirección y.

k2y: Rigidez de las redes mecánicas en la dirección y.

Ky: Rigidez del rotor tipo Jeffcott en la dirección y.

y: Desplazamiento del disco del rotor tipo Jeffcott.

y1: Desplazamiento de las masas de los absorbedores.

y2: Desplazamiento interno de las redes mecánicas.

y3: Desplazamiento interno de las redes mecánicas.
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Índice de figuras IX
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1.2 JUSTIFICACIÓN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
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APÉNDICE 100

A Funciones de Transferencia. 100
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Figura 5.3. Gráfica de la FRF del NIDVA-C6 en Rotor-Cojinete Tipo

Jeffcott, con factor de amortiguamiento óptimo. . . . . . . . 80
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Capı́tulo 1

INTRODUCCIÓN

Los rotores tipo Jeffcott son un modelo simplificado de sistemas rotodinámi-

cos para el análisis de vibraciones de máquinas rotatorias. Este modelo es utiliza-

do para estudiar los efectos de vibraciones, resonancia y estabilidad en máquinas

rotatorias como turbinas, generadores y motores.

En 1911 se identificó un fenómeno llamado vibraciones de resonancia, el cual

puede llegar a afectar significativamente estructuras como barcos y edificios. De-

bido a este problema, se propuso el uso de cuerpos auxiliares cuya vibración es

opuesta a la estructura principal y ayuda a reducir la amplitud de las oscilaciones

mediante un efecto de cancelación. Este principio fue el inicio para el desarrollo

de dispositivos de control pasivo de vibraciones.

Más tarde, se realizó la comparación del desempeño en el control de vibra-

ciones entre el Amortiguador de Masa Sintonizada (TMD) y seis Absorbedores

Dinámicos de Vibración basados en Inersor (IDVAs) para una torre de desulfura-

ción [1]. Los resultados demostraron que los IDVAs pueden mitigar significativa-

mente la respuesta vibratoria, además, el inersor hace que la banda de frecuen-

cia efectiva de los IDVAs sea más amplia que la del TMD. De la misma forma, se

obtuvieron mejoras mediante el criterio H∞ en la implementación de los absor-

bedores dinámicos de vibración basados en inersor (IDVAs) ampliando la banda

de frecuencias efectiva mediante el uso del inersor[2].
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1.1. PLANTEAMIENTO DEL PROBLEMA CAPÍTULO 1. INTRODUCCIÓN

Después, en consecuencia de que la relación de masas fijas en IDVAs fue un

obstáculo para su desempeño, idearon un IDVA no tradicional. Se demostró que

el NIDVA tiene ventaja sobre el IDVA y el DVA tradicional [3].

En este contexto, existe la limitante de solo poder usarse para mitigar vibra-

ciones en estructuras de ingenierı́a civil o estructuras mecánicas estacionarias.

Por ello, el estudio y modelado de los absorbedores dinámicos de vibración no

tradicionales basados en inersor (NIDVAs) en sistemas rotor-cojinete tipo Jeffcott

tiene gran importancia, ya que estos dispositivos han mostrado un desempeño

superior al de los DVA tradicionales y los IDVAs.

La presente investigación trata de analizar y optimizar el rendimiento en la

respuesta en frecuencia de los sistemas rotor-cojinete tipo Jeffcott, utilizando las

redes mecánicas no tradicionales basadas en inersor denominadas NIDVA-C3,

C4 y C6 como objeto de estudio para mejorar la eficiencia en la supresión de

vibraciones de este tipo de sistemas.

1.1. PLANTEAMIENTO DEL PROBLEMA

Las vibraciones mecánicas constituyen un problema crı́tico en diversos cam-

pos de la ingenierı́a, afectando el desempeño y la estabilidad de estructuras

y máquinas. En el caso de sistemas rotodinámicos, como los sistemas rotor-

cojinete tipo Jeffcott, estas vibraciones pueden deberse al desbalance, desali-

neación, desgaste de componentes o fuerzas externas. La presencia de vibra-

ciones excesivas puede reducir la vida útil de los componentes, provocar fallas

prematuras y afectar la seguridad y eficiencia del sistema.

Tradicionalmente, el control de vibraciones en estos sistemas se ha abordado

mediante Amortiguadores de Masa Sintonizada (TMDs) y amortiguadores visco-

sos. Sin embargo, estos dispositivos presentan limitaciones:

Los TMDs son eficaces solo en rangos de frecuencia especı́ficos y su rendi-
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miento se degrada cuando la frecuencia de excitación varı́a.

Los amortiguadores viscosos pueden no ser suficientes para aplicaciones que

requieren un control preciso en un amplio espectro de frecuencias o bajo condi-

ciones dinámicas cambiantes.

Para superar estas limitaciones, el uso de inersores en absorbedores dinámi-

cos representa una solución innovadora. En particular, los NIDVAs han mostrado

un desempeño superior en la mitigación de vibraciones debido a su configuración

mecánica mejorada. No obstante, su aplicación en sistemas rotodinámicos aún

no ha sido explorada.

Por lo tanto, la presente investigación se centra en el análisis y optimización

de NIDVAs en sistemas rotor-cojinete tipo Jeffcott, evaluando su efectividad en la

reducción de vibraciones. Ası́ mismo, impulsar la implementación de NIDVAs en

sistemas rotodinámicos, mejorando la estabilidad y eficiencia de estos dispositi-

vos en el campo de la ingenierı́a mecánica.

1.2. JUSTIFICACIÓN

Las vibraciones en embarcaciones pueden originarse por diversas causas,

como el desbalanceo en la hélice, la desalineación del eje de propulsión, el des-

gaste de componentes mecánicos (rodamientos o cojinetes), las vibraciones del

motor o las fuerzas hidrodinámicas generadas por la interacción de la hélice con

el agua. Estas vibraciones no se limitan únicamente a los barcos, también afectan

aeronaves, aviones, vehı́culos ferroviarios y automóviles, reduciendo su desem-

peño y seguridad estructural.

Las vibraciones mecánicas se pueden encontrar en nuestra vida cotidiana y a

pesar de los distintos estudios e investigaciones, siguen existiendo limitantes en

el control de vibraciones.

Sin embargo, un novedoso dispositivo surgió en los últimos años, el inersor.
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Se ha demostrado que el inersor mejora significativamente el rendimiento de los

absorbedores de vibración tradicionales y no tradicionales (DVA y NDVA). Por

ello, se eligieron tres configuraciones de redes mecánicas basadas en inersor,

C3, C4 y C6. Estas configuraciones se implementaron en DVAs y NDVAs, crean-

do ası́ nuevos diseños de absorbdores para el control de vibraciones, IDVAs y

NIDVAs.

Se demostró que los NIDVAs C3, C4 y C6 superaron en rendimiento y en

minimización de la curva de la función de la respuesta en frecuencia del sistema

(FRF), a los DVAs y NDVAs. No obstante, existe la limitante de solo poder utilizar

estos NIDVAs en sistemas mecánicos estacionarios.

Con el fin de abordar esta limitante, se pretende realizar en este trabajo, la

implementación de los NIDVAs C3, C4 y C6 en un sistema rotor-cojinete tipo

Jeffcott. Además, se minimizará la curva de la función de la respuesta en fre-

cuencia (FRF) del sistema, mediante la técnica de los puntos fijos extendida y la

técnica de optimización H∞.

1.3. HIPÓTESIS

Se espera que la implementación de técnicas de optimización y ajuste en los

NIDVAs C3, C4 y C6 de un rotor tipo Jeffcott mejore el rendimiento de estas

configuraciones, reduciendo la amplitud de la función de respuesta en frecuencia

(FRF) del sistema y permitiendo un mejor control de las vibraciones en sistemas

rotodinámicos.
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1.4. OBJETIVOS

1.4.1. Objetivo General.

Determinar el diseño óptimo de los NIDVA-C3, C4 y C6 implementados en un

sistema rotor cojinete tipo Jeffcott, para minimizar la amplitud de la función de la

respuesta en frecuencia de los sistemas y ası́ mejorar el control de vibraciones

en sistemas rotodinámicos.

1.4.2. Objetivos Especı́ficos.

• Obtener los modelos matemáticos del sistema rotor-cojinete tipo Jeffcott con

los dispositivos NIDVA-C3, C4 y C6..

• Obtener y graficar la respuesta en frecuencia de los sistemas rotor-cojinete

tipo Jeffcott con los dispositivos NIDVA-C3, C4 y C6.

• Determinar valores óptimos para el diseño del rotor-cojinete tipo Jeffcott con

los dispositivos NIDVA-C3, C4 y C6. mediante la técnica de los puntos fijos ex-

tendida.

• Determinar valores óptimos para el diseño del rotor-cojinete tipo Jeffcott con

los dispositivos NIDVA-C3, C4 y C6 mediante la técnica de optimización H∞.

• Evaluar la efectividad de los absorbedores en las diferentes condiciones de

amortiguamiento óptimo.

• Analizar y comparar los resultados de los valores y las gráficas entre los

métodos de optimización.
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1.5. METAS

Las metas que se desean lograr son:

• Desarrollar ecuaciones simplificadas para el diseño teórico de los absorbe-

dores NIDVA-C3, C4 y C5 para el control óptimo de la vibración, en sistemas

rotor-cojinete tipo Jeffcott.

• Determinar los parámetros de diseño óptimos de forma numérica de los

absorbedores NIDVA-C3, C4 y C5 para el control de vibración en sistemas rotor-

cojinete tipo Jeffcott utilizando el ı́ndice de rendimiento H∞.

• Realizar la comparación entre la técnica de los puntos fijos extendida y la

técnica H∞ utilizadas en este trabajo de investigación.

1.6. METODOLOGÍA

Para alcanzar las metas planteadas en este trabajo de investigación, se utili-

zará la metodologı́a de Canales[4]. Este autor plantea que este método es una

solución a la variabilidad de problemas en la formulación de métodos dispersos

en investigación, especı́ficamente para trabajos de investigación tecnológica en

el campo de la ingenierı́a, esta responde a la necesidad urgente de las diferen-

tes escuelas de ingenierı́a y de posgrado. Esta metodologı́a está formada por 7

etapas, como se muestra en la Figura 1.1 y se describen a continuación.

Documentación: Esta fase de la metodologı́a se basa en recolección de in-

formación acerca del tema principal, términos, definiciones, antecedentes, datos

numéricos, toda información o documento que pueda ser de utilidad en esta in-

vestigación. En este trabajo de investigación se indagará acerca de los sistemas

de reducción o mitigación de vibraciones que existen y que han sido aplicados en
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la ingenierı́a, haciendo énfasis en sistemas DVA, NDVA, IDVA, NIDVA, inersores,

rotores tipo Jeffcott.

Figura 1.1: Metodoloǵıa de Canales.

En 2015, Hu y Chen [2] propusieron tres configuraciones de IDVAs, C3, C4

y C6, que demostraron una mejora mayor al 20 % con respecto al DVA tradicio-

nal implementando la técnica de optimización H∞. A partir de esto, se utilizaron

estas tres configuraciones como objeto de estudio en la mitigación de vibracio-

nes con absorbedores dinámicos. Debido a la efectividad y desempeño de estas

configuraciones C3, C4 y C6, se eligieron para ser implementadas en un NIDVA

para rotor tipo Jeffcott.

Con la finalidad de conocer las limitaciones que existen en dichos sistemas,

ası́ como su rendimiento y compararlos con los resultados de esta investigación,

se elige un sistema rotor-cojinete tipo Jeffcott ya que es considerado un mode-

lo simplificado de un sistema rotodinámico y permite comprender los principios

básicos de las vibraciones en rotores.

Determinación del problema: En la industria de maquinaria rotodinámica,

el control de vibraciones es un factor clave para la eficiencia y durabilidad de
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los sistemas. Sin embargo, los métodos tradicionales presentan dificultades para

minimizar la respuesta en frecuencia de sistemas rotodinámicos. Esto genera un

aumento en el desgaste de componentes, mayores costos de mantenimiento y

reducción de la vida útil del sistema.

Actualmente, la implementación de NIDVAs optimizados se ha propuesto co-

mo una solución efectiva para el control de vibraciones. Sin embargo, aún no ha

sido explorada la optimización de estos dispositivos y su impacto en sistemas

rotodinámicos.

Por lo tanto, esta investigación busca abordar esta problemática mediante la

determinación y análisis de parámetros óptimos para NIDVAs C3, C4 y C6 en

rotores tipo Jeffcott.

Creación de la hipótesis: En esta fase se tiene que describir lo que se espe-

ra obtener como resultado del trabajo de investigación. Para este caso, la hipóte-

sis es:

“Se espera que la implementación de técnicas de optimización y ajuste en

los NIDVAs C3, C4 y C6 de un rotor tipo Jeffcott mejore el rendimiento de estas

configuraciones, reduciendo la amplitud de la función de respuesta en frecuencia

(FRF) del sistema y permitiendo un mejor control de las vibraciones en sistemas

rotodinámicos”.

Definición del método: Se debe elegir la metodologı́a general para abordar

la investigación y el método concreto a utilizar, para alcanzar las metas propues-

tas.

Por lo tanto, en este trabajo se utilizarán las ecuaciones de Euler-Lagrange

con el fin de obtener el modelo matemático que rige el comportamiento dinámico

de los sistemas NIDVA C3, C4 y C6 en un rotor tipo Jeffcott. Posteriormente,

mediante el análisis modal y un tratamiento matemático complejo, se obtendrá la

función de respuesta en frecuencia de los sistemas antes mencionados.

Posteriormente, se utilizará la técnica de los puntos fijos extendida y el criterio
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1.6. METODOLOGÍA CAPÍTULO 1. INTRODUCCIÓN

H∞ para determinar los parámetros óptimos de los sistemas NIDVA C3, C4 y C6

en un rotor tipo Jeffcott.

La técnica de los puntos fijos extendida es un método de optimización eurı́sti-

co y cuasi-óptimo pues, se basa en la observación de como se comporta un

sistema. Además, permite encontrar ecuaciones simplificadas de los parámetros

óptimos de dichos sistemas.

Por otro lado, el criterio H∞ proporciona una solución óptima debido a que

su formulación matemática es robusta y bien definida, y minimiza las máximas

amplitudes de vibración en las frecuencias resonantes del sistema. Además, el

criterio H∞ optimiza el rendimiento en todo el rango de frecuencias, lo que lo

hace más flexible y adecuado para sistemas complejos.

Debido a esto, se emplearán ambos métodos en esta investigación. Pues,

mientras la técnica de los puntos fijos extendida proporciona ecuaciones simplifi-

cadas de los parámetros del sistema, el criterio H∞ al proporcionar una solución

óptima, respaldará los resultados del método de optimización anterior.

Resolución, validación y verificación: Se utilizará como herramienta ma-

temática el software Maple para desarrollar ecuaciones complejas con la finali-

dad de simplificar las ecuaciones, obtener parámetros y graficar la respuesta en

frecuencia de los NIDVAs C3, C4 y C6 en rotor tipo Jeffcott.

Debido a que esta investigación se basa en el análisis modal y tratamiento

matemático para obtener parámetros óptimos sin la construcción de un prototipo

fı́sico. La validación de los resultados se realizará mediante modelos matemáti-

cos, ecuaciones simplificadas y representaciones gráficas obtenidas a partir del

software Maple.

Análisis de resultados y conclusiones: Después de obtener los resultados,

se analizarán a detalle para compararlos con las limitaciones y ventajas de ab-

sorbedores dinámicos de vibración anteriores a los NIDVAs, reportados en esta

investigación. Además, se planteará si los resultados obtenidos afirman o refutan
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la hipótesis. Esto dará paso a nuevas investigaciones y trabajos futuros.

Redacción del informe final: Luego de la obtención de resultados, se es-

cribirá de forma detallada la metodologı́a de investigación, resultados, análisis y

conclusiones de este trabajo de investigación. Esto, con el fin de comunicar de

manera clara y precisa al lector los resultados, análisis y conclusiones obtenidas

de la optimización de NIDVAs C3, C4 y C6 para supresión de vibraciones en sis-

temas rotor-cojinete tipo Jeffcott.
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Capı́tulo 2

ESTADO DEL ARTE

2.1. ROTORES

El rotor, en ingenierı́a mecánica, es un elemento de una máquina que gira al-

rededor de su propio eje. Su función principal es rotar para transmitir movimiento

o energı́a. El tamaño y la forma del rotor varı́an dependiendo de la aplicación del

mismo. A continuación se presentan las aplicaciones de un rotor.

-Turbina. Se emplean en los generadores y motores de un avión. Este tipo de

rotores transforma la energı́a de fluidos en energı́a mecánica;

Figura 2.1: Diseño en 3D de un rotor de freno para automóvil [5].

-Freno. Son los más comunes en los vehı́culos y trabajan junto con las pasti-

llas de freno. Su objetivo es detener o reducir la velocidad de un coche a través
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de la fricción. Por ejemplo, en la Figura 2.1 se observa un rotor de freno para

automovil.

-Motores eléctricos. Estos rotores transforman la energı́a eléctrica en un mo-

vimiento rotacional. Por ejemplo, el motor ilustrado en la Figura 2.2;

Figura 2.2: Motor eléctrico [10].

-Compresores. Los rotores compresores son los que más se utilizan en los

dispositivos y sistemas de climatización y refrigeración. Lo que hacen es compri-

mir gases para elevar la presión y temperatura [6].

2.2. ROTOR TIPO JEFFCOTT

El rotor Jeffcott fue introducido en 1919 por H.H. Jeffcott y se compone por un

único disco montado simétricamente sobre un eje elástico uniforme. Además, es

considerado el modelo de rotor más simple.

En la Figura 2.3 se puede ver que Jeffcott fundamentó su diseño en un ro-

tor rı́gido simétrico caracterizado porque su velocidad de régimen no supera su

primera velocidad crı́tica. Además, consideró los parámetros de la siguiente ma-

nera: la rigidez del sistema incluye la sumatoria de las rigideces de soportes y

disco; la masa de todos los componentes participa en el movimiento vibratorio. El
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Figura 2.3: Rotor tipo Jeffcott [7].

rotor contemplaba un disco de masa desbalanceada montado en la parte central

del eje flexible, soportado en extremos rı́gidos y donde la viscosidad actúa como

medio de amortiguamiento [8].

Figura 2.4: Rotor de Jeffcott [9].

El estudio y análisis de parámetros del rotor de Jeffcott fue el punto de partida

de los fundamentos de la dinámica de los rotores flexibles. Este rotor ilustrado en

la Figura 2.4, permite tener una buena percepción y comprensión de los fenóme-

nos fı́sicos que se presentan en la maquinaria rotatoria, como la presencia de

una velocidad crı́tica y el efecto del amortiguamiento en respuesta del sistema.

Para las fuerzas que actúan sobre el sistema, se considera normalmente que

el eje no tiene masa y que el disco tiene una masa M. Sin embargo, la masa del

eje puede incluirse colocándola agrupada con el disco sin pérdida de precisión.

Dado que el disco está centrado en el eje, no se incluyen los momentos giroscópi-

cos del disco para el análisis de la 1ª velocidad crı́tica del rotor. Los cojinetes se

consideran soportes simples y no proporcionan amortiguación. Se supone que el
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amortiguamiento del rotor actúa en el centro del eje.

El funcionamiento de un compresor o turbina multietapa en su primer modo es

similar al de un rotor Jeffcott. A través del análisis de la velocidad crı́tica, es posi-

ble simplificar un compresor o turbina a un rotor Jeffcott, calculando la masa y la

rigidez modal del rotor en su primer modo. Estas caracterı́sticas son fundamen-

tales para evaluar de manera rápida las propiedades óptimas de los rodamientos

correspondientes a este rotor, como se ilustra en la Figura 2.5, donde se muestra

una bomba centrı́fuga representativa de este tipo de sistemas rotodinámicos.

Figura 2.5: Bomba Centŕıfuga Helicoidal [11].

El rotor de Jeffcott se diferencia de otros ya que tiene un eje elástico y porque

el comportamiento de este es similar al de un compresor o una turbina. Además,

su capacidad para representar el comportamiento de un rotor en su primer mo-

do de vibración permite una evaluación efectiva de las propiedades mecánicas,

como la masa y la rigidez. Esto es fundamental para optimizar el diseño de ro-

damientos y mejorar la estabilidad y el rendimiento de la maquinaria rotativa. Sin

embargo, existen vibraciones mecánicas en el sistema provocadas por desba-

lance y, con el tiempo, producen desgaste hasta llegar a afectar la eficacia del

mismo.
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2.3. SISTEMA ROTOR-COJINETE JEFFCOTT

Los elementos básicos de un sistema rotor-cojinete son: el disco, el eje, los

cojinetes y los sellos, además de las masas de desbalance [12] [13]. Mientras en

el rotor de Jeffcott no se toman en cuenta los cojintes y resulta ser un modelo

teórico, en este tipo de rotor se toma en cuenta el sistema completo para realizar

el análisis con mayor precisión de la dinámica del rotor, como se ilustra en la

Figura 2.6, un sistema rotor-cojinete tipo Jeffcott.

Figura 2.6: Sistema Rotor-Cojinete Jeffcott [14].

La causa más frecuente de vibraciones en máquinas rotatorias es el desba-

lance. Cuando el eje principal de inercia del rotor no coincide con el eje geométri-

co del sistema se genera el desbalance, este provoca vibraciones que producen

fuerzas indeseables que se transmiten directamente a los elementos mecánicos,

como los cojinetes del rotor.
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Además, existen las vibraciones causadas por resonancia, esto ocurre cuan-

do la frecuencia de excitación se encuentra a la par con la frecuencia natural

del rotor. Dichas vibraciones generan efectos de desbalance catastróficos para

el sistema. Por ello, existen métodos y/o dispositivos para atenuar este tipo de

vibraciones [15]. A continuación se presentan algunos modelos de absorbedores

de vibración dinámica importantes para contrarrestar estos efectos.

2.4. DVA

Debido a los efectos de resonancia en el campo de la mecánica, Frahm [16]

presentó un dispositivo con el fin de minimizar las amplitudes de vibración en un

sistema, llamado absorbedor dinámico de vibración.

Absorbedor dinámico de vibraciones, por sus siglas en inglés DVA (Dynamic

Vibrations Absorber). También conocido como amortiguador de masa sintoniza-

da, TMD (Tuned Mass Damper). Un sistema con DVA clásico se compone de dos

partes principales: el sistema primario o estructura principal y el sistema secun-

dario o el absorbedor.

Figura 2.7: DVA, a) No amortiguado y b) Amortiguado [17].
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Un absorbedor de vibraciones es un sistema vibratorio masa-resorte relativa-

mente pequeño acoplado a la masa principal M1, y sintonizado de tal manera

que su frecuencia natural k2
m2

1/2 sea igual a la frecuencia w de la fuerza excitatriz

o perturbadora del sistema principal.

Tabla 2.1: Cuadro comparativo de DVA no amortiguado y amortiguado.

Los absorbedores dinámicos de vibraciones son dispositivos diseñados para

reducir o eliminar vibraciones indeseadas en estructuras y maquinaria.

En la Figura 2.7 se puede observar la primera clasificación de los DVA’s. En
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la Tabla 2.1 se presentan las diferencias de comportamiento y rendimiento entre

un DVA no amortiguado y un DVA amortiguado.

Se puede concluir que el DVA no amortiguado tiene mejor desempeño a de-

terminada frecuencia, es propenso a la resonancia y cuenta con un diseño más

simple. Por otro lado, el DVA amortiguado es eficaz para un amplio rango de fre-

cuencias; el control de picos de la vibración es más sencillo, por lo tanto, es más

estable [17].

A pesar de las soluciones analı́ticas presentadas por Ormondroyd y Den Har-

tog para el diseño óptimo del DVA por medio de la técnica de los puntos fijos, en

este punto aún existen limitaciones, ya que los DVA pueden tener un desempeño

deficiente si no están sintonizados a determinada frecuencia de vibración. Esto

disminuye la eficacia de los DVA en sistemas donde las condiciones cambian

debido a variaciones en las propiedades del sistema o desgaste de los compo-

nentes [18].

2.5. NDVA

Figura 2.8: Absorbedor dinámico de vibraciones a) tradicional, b) no tradicional
[17].
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Un absorbedor dinámico de vibración no tradicional, por sus siglas en inglés

NDVA (Non traditional Dynamic Vibration Absorber) se ilustra en la Figura 2.9. En

2001, Ren [19] presentó un diseño variante del DVA clásico. El sistema consiste

en un amortiguador conectado directamente a tierra, en lugar de estar conectado

al sistema principal. La Figura 2.8 se muestra la comparación del DVA y NDVA.

Figura 2.9: Absorbedor dinámico de vibraciones no tradicional, NDVA [19].

También se realizó la comparación de estos absorbedores respecto a su ren-

dimiento para reducir las vibraciones en un sistema. El DVA clásico se sintoniza a

frecuencia más baja que la frecuencia de funcionamiento del sistema; el NDVA se

sintoniza a frecuencia ligeramente más alta que la frecuencia de funcionamien-

to del sistema. Ası́, el NDVA tiene mayor rango de frecuencias para interactuar

con el sistema en distintas condiciones, brindando mayor efectividad. También, el

NDVA utiliza un coeficiente de amortiguamiento mayor que el DVA. Por lo tanto,

el NDVA tiene mayor capacidad para disipar la energı́a de vibraciones y como

resultado, mejor rendimiento que el DVA.

De acuerdo con Ren, la principal ventaja del NDVA radica en que sin la ne-
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cesidad de aumentar la masa, se reducen de manera eficaz las vibraciones del

sistema en comparación con el DVA convencional. Por lo tanto, el NDVA tiene ma-

yor eficiencia y rendimiento al reducir vibraciones, comparado con el DVA clásico

[19].

Tabla 2.2: Cuadro comparativo de los parámetros óptimos de, A) DVA y B) ND-
VA [20].

Posteriormente, Liu y Liu [20] propusieron el principio de optimización del ND-

VA, en términos de minimizar la respuesta de la amplitud media normalizada del

sistema principal bajo excitación armónica. Aplicando el método de Brock, en-

contraron los parámetros óptimos para el NDVA, como se muestra en la Tabla

2.2.

Figura 2.10: Gráfica de respuesta de la amplitud media normalizada del, DVA
(ĺınea sólida) y NDVA (ĺınea discontinua) [20].

Los resultados demostraron que el NDVA es más efectivo en la supresión de

vibraciones del sistema principal, en comparación con el DVA tradicional, como

20
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se observa en la Figura 2.10.

En la Tabla 2.2 se observan los parámetros óptimos del DVA y NDVA, modelo

A y modelo B respectivamente. Dónde, G es la respuesta de la amplitud media

normalizada del sistema principal. Luego, en la Figura 2.11 se muestra la gráfica

de la respuesta de la amplitud media normalizada del DVA y NDVA. Dónde, la

lı́nea sólida es el modelo A (DVA) y la lı́nea punteada es el modelo B (NDVA).

Por otra parte, Cheung [21] logró la sintonización óptima del NDVA mediante

la teorı́a de los puntos fijos. Además, se demostró analı́ticamente que el NDVA

brinda mayor supresión a la respuesta de la velocidad máxima de vibración del

sistema principal, comparado con el DVA clásico.

Figura 2.11: Comparación de gráficas de la relación de amplitud de velocidad en-
tre la vibración del DVA y NDVA en la relación de masas [21].

El desempeño del NDVA puede ser mejor que el del DVA, en ciertas aplica-

ciones. Sin embargo, existen aplicaciones dónde no se puede utilizar el NDVA.

Pues, es imposible conectar el absorbedor a tierra mediante un amortiguador.

Por ello, se recomienda utilizar el absorbedor dinámico de vibración no tradicio-

nal (NDVA), siempre y cuando su configuración sea práctica para aplicaciones

que requieran minimizar la respuesta de la velocidad máxima de vibración del
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sistema principal [21].

Más tarde, Heidari y Monjezi aplicaron el DVA y el NDVA a un rotor tipo Jeffcott

para supresión de vibraciones, como se muestra en la Figura 2.12. Obtuvieron

los parámetros óptimos de ambos sistemas mediante la teorı́a de los puntos fijos

[22].

Figura 2.12: Absorbedor dinámico de vibraciones no tradicional, NDVA, imple-
mentado en Rotor tipo Jeffcott [22].

Figura 2.13: Respuesta en frecuencia del Rotor tipo Jeffcott con DVA y NDVA,
relación de masa similar [22].

Los resultados indican que el NDVA tiene mejor control de vibraciones en
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rotores tipo Jeffcott, en comparación con el DVA tradicional, como se observa en

la Figura 2.13.

En 2022, Mendoza Larios et al. [23] realizaron un estudio para la supresión de

vibraciones en una estructura sometida a excitación inercial ilustrada en la Figura

2.14. Donde obtuvieron ecuaciones simplificadas para los parámetros de diseño

óptimo del NDVA, mediante la técnica de los puntos fijos.

También, implementaron la optimización del ı́ndice de rendimiento H∞ para

dicho sistema. También obtuvieron los parámetros de diseño óptimos del NDVA

de forma numérica utilizando el método de Nishihara, los resultados de dicha

optimización se ilustran en la Figura 2.15.

Figura 2.14: Sistema con NDVA bajo excitación inercial [23].

Además, expusieron el incremento de supresión de vibración que proporciona

el NDVA en comparación con el DVA clásico. Para la relación de masa, tomaron

el rango de valores 1% ≤ µ ≤ 20%. En base a este rango el NDVA presenta una

mejora de 0.36 – 15.7 % en la supresión de vibración, comparado con el DVA.

Existen distintas fuentes de vibración en sistemas mecánicos; en sistemas

rotodinámicos, la fuente principal es el desbalance de masas y los rodamientos

defectuosos utilizados en el sistema.
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El diseño del absorbedor dinámico de vibración no tradicional (NDVA) es efi-

caz en el control de vibraciones de sistemas sometidos a fuerzas periódicas y

siempre que su configuración sea práctica en las aplicaciones.

Figura 2.15: Comparación de las curvas FRF óptimas del NDVA y el DVA clásico,
norma H(Ω)∞ y puntos fijos [23].

Sin embargo, en este punto siguen existiendo obstáculos para el desempeño

óptimo de máquinas rotatorias con NDVA. Como la capacidad para mitigar vibra-

ciones usando el absorbedor limitado a una frecuencia especı́fica. Esto resulta

ser un inconveniente en máquinas rotodinámicas con un amplio rango de opera-

ción, como turbinas, compresores, bombas, etc. Por ejemplo, una turbina ilustra-

da en la Figura 2.16.

Figura 2.16: Turbina de un motor de avión. [24]
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Más adelante, se presentan dispositivos, investigaciones y estudios que me-

joran el desempeño dinámico de los absorbedores dinámicos de vibración amor-

tiguados. Tal como el inersor, redes mecánicas con inersor y la técnica de los

puntos fijos extendida.

2.6. ANALOGÍA FUERZA-CORRIENTE

En mecánica, el control de vibraciones es análogo al filtrado de señales en

electricidad. Su implementación es con el fin de reducir o eliminar curvas no

deseadas. En mecánica, llamadas vibraciones mecánicas o vibraciones de reso-

nancia, y en electricidad, las señales de ruido o interferencia. Su objetivo común

es aplanar las curvas de las gráficas correspondientes, ya sea en términos de

amplitud de vibraciones o amplitud de las señales de interferencia. Logrando es-

tabilizar el comportamiento del sistema y alcanzar un rendimiento óptimo.

Figura 2.17: Analoǵıa de la red eléctrica y mecánica [25].

El filtrado de señales en electricidad es implementado mediante circuitos eléctri-

cos o redes eléctricas, integradas por componentes eléctricos (resistor, inductor,

capacitor, etc.). De la misma forma, para supresión de vibraciones en el campo
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de la mecánica, se utilizan redes mecánicas, esto se refiere a la analogı́a fuerza-

corriente ilustrada en la Figura 2.17.

Una red mecánica es un sistema integrado por elementos mecánicos: masa,

resorte, amortiguador. Unidos fijamente con el propósito de atenuar fuerza, mo-

vimiento o energı́a dentro de un sistema. En una red mecánica se restringe a que

el movimiento sea paralelo a un eje fijo y relativo a un punto fijo, llamado suelo o

tierra. Cada elemento mecánico como el resorte, consta de dos puntos extremos,

conocidos como nodos o terminales.

Figura 2.18: Diagrama de cuerpo libre del resorte, el resistor y la masa. [26]

En el caso de la masa, una de las terminales es al centro de gravedad y la

otra es a tierra, como se observa en la Figura 2.18.

Firestone [26] introdujo una nueva analogı́a: fuerza - corriente. Donde la fuer-

za mecánica se relaciona con la corriente eléctrica, mientras que la velocidad se

relaciona con el voltaje. También, estableció equivalencias entre componentes de

redes mecánicas y eléctricas.

Figura 2.19: Diagrama de cuerpo libre de una red mecánica. [27]

Smith [27] en la Figura 2.19 presenta un diagrama de cuerpo libre de una red

mecánica de un puerto (dos terminales). En esta red existe una convención de

signos: una fuerza F positiva, que representa una fuerza de compresión y una

velocidad relativa positiva (v = v2 − v1, con v2 > v1), esto indica que los nodos se
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mueven juntos en la misma dirección. El producto de la fuerza F y la velocidad re-

lativa v tiene unidades de potencia ([W ]), conocido como par fuerza-velocidad. El

par fuerza-velocidad describe la transferencia de energı́a en el sistema. Además,

no es necesario que los nodos del puerto estén conectados a tierra, lo que per-

mite un amplio análisis de la red mecánica.

Tabla 2.3: Analoǵıa fuerza-corriente.

Por lo tanto, la analogı́a fuerza-corriente definida como la movilidad en siste-

mas mecánicos y eléctricos, se organiza de la forma presentada en la Tabla 2.3.

La equivalencia masa-capacitor se omite ya que no es tan general, para ello

existe un nuevo elemento llamado inersor.

2.7. INERSOR

Malcom Smith [27] presentó un dispositivo mecánico de dos terminales, llama-

do inersor. Este dispositivo es considerado equivalente al capacitor en la relación

mecánica-eléctrica.

Smith define el inersor como un elemento mecánico de dos terminales (como
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Figura 2.20: Śımbolo del inersor [28].

se ilustra en la Figura 2.20) y tiene la propiedad de que la fuerza que es aplicada

a los nodos, es proporcional a la aceleración relativa entre ellos [27].

Figura 2.21: Elementos de la red mecánica y eléctrica [29].

Debido a las caracterı́sticas del inersor: es innecesario unir el inersor a la

masa mecánica; el inersor funciona adecuadamente en cualquier orientación;

tiene masa pequeña; es independiente del valor requerido de la inertancia. Por

lo tanto, su elemento eléctrico análogo es el capacitor como se observa en la

Figura 2.21.
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La fuerza desarrollada en el inersor, esta dada por la siguiente ecuación:

F = b · (v̇2 − v̇1) (2.1)

Donde b es la inertancia y se encuentra en unidades de masa. v̇1 y v̇2 son la

aceleración en cada nodo del inersor.

Por lo tanto, en la ecuación (2.1) se observa que la fuerza aplicada igual y

opuesta en cada nodo es proporcional a la aceleración relativa entre los nodos.

Desde la introducción del inersor en 2001, se han desarrollado distintas confi-

guraciones para la construcción del inersor práctico. A continuación se presentan

los diseños más comunes de inersor.

2.7.1. Inersor Piñon Cremallera

Figura 2.22: Esquema del modelo mecánico del inersor piñón-cremallera [28].

En la Figura 2.22 se presenta la configuración del inersor piñon cremallera, el

cual está integrado principalmente por cremallera, piñones, engranes, volante y

terminales.
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También, se presenta en la Figura 2.23 una implementación fı́sica del inersor

piñon cremallera, realizado en la Universidad de Cambridge.

Figura 2.23: Implementación f́ısica del inersor realizada en el Departamento de
Ingenieŕıa de la Universidad de Cambridge [28].

2.7.2. Inersor Husillo de Bolas

Figura 2.24: Inersor Husillo de Bolas [30]

El inersor husillo de bolas o ball-screw es un dispositivo de dos terminales

integrado por una varilla roscada, una tuerca y un volante conectado rı́gidamente

a la tuerca que puede girar dentro de la carcasa como se observa en las Figuras
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2.24 y 2.25. La carcasa está unida a la terminal 1 y la varilla roscada a la terminal

2, y no pueden girar una respecto a otra [30].

Figura 2.25: Esquema mecánico del inersor husillo de bolas [30].

2.7.3. Inersor Bomba de Engranajes

Las propiedades no lineales del inersor discutidas en [31] perjudicaron el ren-

dimiento y beneficios alcanzados de las configuraciones del inersor. Por ello, se

desarrolló el inersor bomba de engranajes (ilustrado en la Figura 2.26), utilizando

elementos hidráulicos con el fin de incorporar un mayor nivel de amortiguación

natural [32] [33].

Figura 2.26: Esquema mecánico del inersor bomba de engranajes [30].
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2.7.4. Inersor Hidráulico

En la Figura 2.27 se ilustra el inersor inspirado en la configuración bomba de

engranajes, en 2010 se realizó un prototipo de inersor hidráulico.

Figura 2.27: Prototipo de inersor hidráulico [33].

2.7.5. Inersor de Fluido

En el inersor de fluido, el flujo del canal helicoidal actúa como un volante de

inercia, suministrando la fuerza inercial necesaria.

Figura 2.28: Prototipo de inersor de fluido [34].

La Figura 2.28 muestra que el cilindro hidráulico y la varilla del pistón actúan

como los nodos o terminales del inersor. Por otro lado, cuando el pistón empuja

el fluido en la parte izquierda del cilindro hidráulico, el fluido es forzado a través
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del canal helicoidal hacia la parte derecha del cilindro. Este flujo a través del ca-

nal helicoidal ayuda a compensar la pérdida de presión, generando la respuesta

inercial caracterı́stica del sistema [34].

2.7.6. Inersor Rotacional

El inersor rotacional es un dispositivo mecánico rotacional de dos nodos, con

la propiedad de que los pares iguales y opuestos T(t) en los nodos son propor-

cionales a la aceleración angular relativa entre ellos [30]. Dicho inersor se ilustra

en la Figura 2.29.

Figura 2.29: Diagrama mecánico del inersor rotacional [30].

2.8. REDES MECÁNICAS CON INERSOR

Una red mecánica convencional consta de elementos como masas, resortes

y amortiguadores unidos rı́gidamente, entre dos nodos (terminales) a y b. Hu y

Chen [28] realizaron un estudio donde el uso de inersores en redes mecánicas

mejora en la supresión de vibraciones, comparándolos con las redes mecánicas

resorte-amortiguador.

Entre dos nodos pueden existir distintas configuraciones de redes mecánicas.

Las combinaciones de amortiguador, resorte e inersor para control de vibraciones

resultaron en 8 redes mecánicas efectivas, presentadas en la Figura 2.30.

C1 : Red mecánica integrada por un inersor y un amortiguador en paralelo.

33
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C2 : Red mecánica integrada por un inersor y un amortiguador en serie.

C3 : Red mecánica integrada por un resorte, un inersor y un amortiguador en

serie.

Figura 2.30: Redes mecánicas basadas en inersor [28].

C4 : Red mecánica integrada por un resorte y un amortiguador en paralelo,

en serie con un inersor.

C5 : Red mecánica integrada por un resorte y un inersor en paralelo, en serie

con un amortiguador.

C6 : Red mecánica integrada por un inersor y un amortiguador en paralelo,

en serie con un resorte.

Liu et. al. [35] implementaron dichas redes mecánicas en el modelo de un
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cuarto de vehı́culo. Debido a que el inersor y el amortiguador no poseen la carac-

terı́stica de carga estática, estas 8 redes mecánicas tienen un mejor desempeño

en el modelo de un cuarto de vehı́culo, añadiendo un resorte en paralelo a cada

red mecánica. Ası́, se obtuvieron las 8 redes mecánicas optimizadas, ilustradas

en la Figura 2.31.

Figura 2.31: Ocho redes mecánicas optimizadas. [36].

2.9. IDVA

Un Absorbedor Dinámico de Vibraciones basado en Inersor (IDVA), es la sus-

titución de una red mecánica basada en inersor, en el lugar del amortiguador de

un Absorbedor Dinámico de Vibraciones Tradicional (TDVA), como se observa en

la Figura 2.32.

Hu y Chen propusieron tres configuraciones de IDVAs, C3, C4 y C6 [37].

IDVA - C3: integrado por un resorte, un inersor y un amortiguador en serie.
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Figura 2.32: a) TDVA, b) IDVA [28].

IDVA - C4: consta de un inerter en serie con una conexión en paralelo de un

resorte y un amortiguador.

IDVA - C6: formado por un resorte en serie con una conexión en paralelo de

un inerter y un amortiguador.

Se demostró que el desempeño de estas configuraciones tiene una mejora

de más del 20 % implementando el método H∞, en comparación con el TDVA.

Añadiendo que, gracias al inersor existe un amplio rango de frecuencias efectivas

para estos absorbedores.

A continuación se presenta evidencia gráfica de la supresión de vibraciones

con IDVAs, mediante el método H∞.

Los IDVAs C4 y C6 tienen una respuesta en frecuencia similar al IDVA C3,

en la Figura 2.33 se presenta la respuesta en frecuencia del IDVA-C4. Por lo

tanto, los IDVAs presentan una curva de la respuesta en frecuencia, reducida en

comparación con los dos primeros DVAs.
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.

En el caso del IDVA C5, la respuesta en frecuencia del sistema sigue perma-

neciendo alta, en comparación con los IDVAs C3, C4 y C6.

Figura 2.33: Respuesta en frecuencia del IDVA-C4 [38].

Por ello, se eligieron estas tres configuraciones para implementarlas en apli-

caciones de control de vibraciones, como en suspensiones de vehı́culos, vigas y

cables.

Por otro lado, Barredo et. al [38] presenta la técnica de los puntos fijos exten-

dida, con la finalidad de encontrar soluciones analı́ticas para los IDVAs C3, C4 y

C6. La técnica de los puntos fijos extendida permitió encontrar expresiones ma-

temáticas de forma cerrada, obteniendo los parámetros óptimos para los IDVAs

C3, C4 y C6.

En la Figura 2.34 se observa que la curva de la respuesta en frecuencia del

sistema, disminuye con el amortiguamiento óptimo obtenido mediante la técnica

de los puntos fijos extendida. Del mismo modo muestra los resultados del método

H∞.
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2.10. NIDVA CAPÍTULO 2. ESTADO DEL ARTE

Comparando con la técnica de optimización H∞, en la Figura 2.34 se observa

que las curvas son similares.

Figura 2.34: Comparación entre la técnica de los puntos fijos extendida y la técni-
ca de optimización H∞ de las curvas de la respuesta en frecuencia del NIDVA C4
[38].

Concluyendo que la técnica de optimización H∞ tiene mejores resultados pa-

ra valores β menores a 0,1. Además, en [38] se demostró que, con la implemen-

tación de la ténica de los puntos fijos extendida es posible obtener ecuaciones

simplificadas para el diseño de los absorbedores dinámicos de vibración basados

en inersor.

Sin embargo, a pesar de las mejoras y beneficios de los IDVAs, la relación de

masas fija sigue siendo un obstáculo para su desempeño.

2.10. NIDVA

Debido a la limitante de los IDVAs, Zhou et al. idearon un IDVA no tradicional,

que consta de la red mecánica C3 conectada entre la masa del DVA clásico y el

suelo (en lugar de estar conectado al sistema primario) [39], como se ilustra en la
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Figura 2.35. Este dispositivo fue inspirado en los DVAs no tradicionales (NDVAs)

que introdujo Ren en 2001 [19].

Figura 2.35: a) TDVA, b) NIDVA-C3 [39].

Se demostró que el absorbedor dinámico de vibraciones basado en inersor

(IDVA-C3) y el absorbedor dinámico de vibraciones basado en inersor no tradicio-

nal (NIDVA-C3), implementando la técnica de los puntos fijos extendida (EFPT),

tienen un comportamiento similar en el control de vibraciones, Figura 2.36.

Figura 2.36: Respuesta en frecuencia normalizada del sistema primario, optimiza-
do mediante la técnica de los puntos fijos extendida, cuando µ = 0,05 [39].
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Sin embargo, el NIDVA C3 puede atenuar las perturbaciones transitorias con

mayor rapidez. Debido a que, cuando se optimiza mediante el criterio de maximi-

zación de estabilidad, el NIDVA C3 presenta valores mayores en sus ı́ndices de

desempeño, comparado con el IDVA C3.

Por lo tanto, se mostró cómo el NIDVA tiene ventaja sobre el IDVA y el DVA

tradicional. Pues, con el NIDVA se logra una reducción del 29.1 % en la amplitud

máxima de vibración de la respuesta en frecuencia del sistema primario, y una

reducción del 14 % en la longitud de carrera del absorbedor, en comparación con

el TDVA ( mediante el criterio de maximización de estabilidad) [39].

Más tarde, Barredo et al. presentaron un diseño de absorbedor dinámico de

vibración basado en inersor no tradicional utilizando la red mecánica C4, NIDVA-

C4 [40].

En la Figura 2.37 se observa que el NIDVA-C4 fue inspirado en el TID (amor-

tiguador sintonizado con inersor) conectado a tierra.

Figura 2.37: Red mecánica C4 o TID [40].

Optimizando el dispositivo NIDVA-C4, presentado en la Figura 2.38, mediante

la técnica de los puntos fijos, se demostró que se obtienen mejoras en el ren-

dimiento dinámico del 2-15 % y del 23-33 % comparando el NIDVA-C4 con el

IDVA-C6 y el DVA clásico, respectivamente.

En cambio, el rendimiento dinámico del NIDVA-C3 con respecto al IDVA-C6 y

al DVA clásico es del 1-6 % y del 22-26 %, respectivamente.

Luego, se calculó el ı́ndice máximo de supresión de banda para NIDVA-C4

como 16 % y 50 % con respecto al IDVA-C6 y al DVA clásico. Por lo tanto, el
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Figura 2.38: Dispositivo de alto rendimiento NIDVA-C4 [40].

NIDVA-C4 de alto rendimiento supera a NIDVA-C3, y en consecuencia a los ID-

VAs y al DVA clásico, como se observa en la Figura 2.39.

Figura 2.39: Gráfica de la respuesta en frecuencia del sistema mediante la técnica
de los puntos fijos [40].

Sin embargo, la implementación del dispositivo propuesto no es tan común

como el uso de absorbedores dinámicos de vibraciones basados en inersor ya

que, el NIDVA-C4 solo puede usarse para mitigar vibraciones en estructuras de

ingenierı́a civil o estructuras mecánicas estacionarias, según lo concluido en [40].

Debido a esta limitante, en este proyecto se proponen los modelos NIDVA C3,
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C4 y C6 implementados en sistemas rotodinámicos. Especı́ficamente para un

sistema rotor cojinete tipo Jeffcott.

2.11. NIDVAs EN ROTOR TIPO JEFFCOTT

Con el fin de atender la limitante de NIDVAs de solo poder implementarse en

sistemas estacionarios y al mismo tiempo minimizar la curva de la función de

respuesta en frecuencia (FRF) en sistemas rotodinámicos. En esta investigación

se realiza la implementación y optimización de los NIDVAs C3, C4 y C6, en un

sistema rotor-cojinete tipo Jeffcott, mediante la técnica de los puntos fijos exten-

dida (EFPT) y la técnica de optimización H∞.

A continuación, se presentan los esquemas mecánicos de los modelos NIDVA

C3, C4 y C6 aplicados en un rotor tipo Jeffcott, ilustrados en las Figuras 2.40, 2.41

y 2.42.

Figura 2.40: NIDVA-C3 en Sistema Rotor-Cojinete Tipo Jeffcott.
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Figura 2.41: NIDVA-C4 en Sistema Rotor-Cojinete Tipo Jeffcott.

Figura 2.42: NIDVA-C6 en Sistema Rotor-Cojinete Tipo Jeffcott.
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Capı́tulo 3

MARCO TEÓRICO

3.1. ANÁLISIS DIMENSIONAL

El análisis dimensional permite estudiar las relaciones entre distintas magni-

tudes fı́sicas, mediante unidades fundamentales. Las dimensiones de una mag-

nitud fı́sica (mecánica) son expresadas en términos de tres cantidades elementa-

les: longitud (L), masa (M ) y tiempo (T ), expresadas en unidades de metros (m),

kilogramos (kg) y segundos (s), respectivamente, según el sistema internacional

de unidades (SI) [41].

El fundamento del análisis dimensional es garantizar que ambos lados de

una ecuación tengan las mismas dimensiones. Por ejemplo para la ecuación de

movimiento rectilı́neo uniforme x = v·t, la comprobación de sus dimensiones es

la siguiente,

[L] = [LT−1][T ] (3.1)

[L] = [L] (3.2)

Por lo tanto, la ecuación es fı́sicamente consistente.

De esta manera, el análisis dimensional permite convertir unidades de una

magnitud a otra, deducir fórmulas y comprobar errores en ecuaciones.
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A continuación se observa en la Tabla 3.1 algunas variables fı́sicas, sus di-

mensiones y abreviaturas, expresadas en términos de las dimensiones funda-

mentales L, M, T.

Tabla 3.1: Dimensiones y abreviaturas de algunas variables f́ısicas, en unidades del
SI [17].

Ası́, el análisis dimensional permite la comprensión de los fenómenos fı́sicos

sin necesidad de realizar experimentos directos, el desarrollo de modelos teóri-

cos y la simplificación de problemas complejos. Su aplicación es esencial en el

desarrollo de nuevas ecuaciones, la validación de fórmulas y la resolución de

problemas en diversas áreas cientı́ficas y tecnológicas.
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3.2. TEOREMA Π DE BUCKINGHAM

Teorema π de Buckingham, también conocido como el método de repetición

de variables. Introducido por el cientı́fico ruso Dimitri Riabouchinski en 1911, di-

cho teorema se popularizó en 1912 por los estudios del ingeniero Edgar Buc-

kingham.

El teorema π de Buckingham es parte fundamental del análisis dimensional,

pues dicho teorema permite describir un fenómeno fı́sico con una cantidad menor

o igual de parámetros fı́sicos, en comparación con los parámetros adimensiona-

les involucrados inicialmente [42].

Teorema 1. Si q1, q2, ..., qn son n variables fı́sicas involucradas en un problema

particular y si existe entre dichas variables una relación funcional de la forma:

ϕ(q1, q2, ..., qn) = 0. (3.3)

Entonces, las n variables se pueden combinar para formar exactamente (n −

j) variables adimensionales independientes, donde j es el rango de la matriz

dimensional.

Cada variable adimensional es llamada un número Π o factor adimensional. El

sı́mbolo Π se utiliza debido a que las variables adimensionales se pueden escribir

como un producto de las variables q1, q2, ..., qn elevadas a alguna potencia [42].

Entonces, reescribiendo la ecuación 3.3 se tiene,

Φ(Π1,Π2, ...,Πn−r) = 0. (3.4)
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La ecuación que permite cálcular los números Πi es:

Πi = V Di

j∏
k=1

V akFk, con i = 1, 2, . . . , n− j. (3.5)

Donde VD son las variables fı́sicas relevantes en el problema y VF son las

variables dinámicas que hacen las veces de variables fundamentales (variables

repetidas) y los ak se escogen de manera tal que cada Πi sea adimensional.

Finalmente, se puede establecer una relación entre los números Πi, de la forma:

Π1 = ϕ(Π2,Π3, ...,Πn−j) (3.6)

La forma arbitraria de escoger las variables repetidas lleva a diferentes con-

juntos de factores adimensionales; sin embargo, en cada caso (n - j) son inde-

pendientes y, de acuerdo con el álgebra lineal, forman un conjunto completo.

3.3. ECUACIONES DE EULER-LAGRANGE

Las ecuaciones de Euler-Lagrange surgieron a raı́z de la idea de que la evo-

lución de un sistema puede determinarse minimizando una integral, denominada

integral de acción. En esta integral, el integrando es conocido como la lagrangia-

na L, y hace referencia a la diferencia entre las energı́as cinéticas y las energı́as

potenciales asociadas al sistema en estudio [17] [43]. Debido a esto, el formulis-

mo de Lagrange y el principio de Hamilton son las bases de la mecánica clásica.

El principio de Hamilton establece que la evolución de un sistema fı́sico se

determina con ayuda de un principio variacional, que se basa en la lagrangiana

L del sistema, la cual contiene toda la información sobre las variables del sistema

y las fuerzas que actúan sobre él [44].
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De este modo, las ecuaciones que rigen el movimiento de un sistema mecáni-

co se obtienen mediante el método Euler-Lagrange. A continuación, se presenta

la ecuación de Euler-Lagrange para sistemas mecánicos conservativos.

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 (3.7)

Donde L es el lagrangiano y qi es la i-ésima variable generalizada del siste-

ma. Luego, el lagrangiano es la resta de la energı́a cinética T menos la energı́a

potencial U del sistema.

L = T − U (3.8)

Por otra parte, para sistemas no conservativos la ecuación de Euler-Lagrange

es:

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= Fi −

∂Di

∂q̇i
(3.9)

Donde Fi representa la i-ésima fuerza ejercida sobre el sistema, y Di es la disi-

pación de energı́a del sistema [45].

3.4. TEOREMA DE VIETA

El Teorema de Vieta, formulado por François Viéte en el siglo XVI, es una serie

de relaciones entre los coeficientes de un polinomio y sus raı́ces. Este teorema

es fundamental en el campo del álgebra y proporciona herramientas útiles para

el análisis de polinomios.

Mediante el teorema de Vieta, es posible resolver ecuaciones complejas, en-

contrar raı́ces faltantes y construir ecuaciones polinómicas a partir de sus raı́ces.

En el teorema de Vieta, se considera un polinomio mónico (donde el coefi-
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ciente del término de mayor grado es igual a 1, (an = 1), de la forma [46]:

anx
n + an−1x

n−1 + · · · + a1x
1 + a0 = 0 (3.10)

En la ecuación (3.10) existen n raı́ces x1, x2, ..., xn. Dichas raı́ces se pueden

encontrar en los términos independientes del polinomio: a0, a1, a2, ..., an−1.

Relacionando las raı́ces con los términos independientes, se tiene:

an−1 = −(x1 + · · · + xn) (3.11)

an−2 = (x1x2 + · · · + x1xn + x2x3 + · · · + xn−1xn) (3.12)

an−j = (−1)j
∑

1≤i1≤···≤ij≤n

xi1xi2 · · · xij (3.13)

a0 = (−1)nx1x2 · · · xn (3.14)

En el caso de un polinomio mónico cuártico, de la forma:

x4 + a3x
3 + a2x

2 + a1x + a0 = 0 (3.15)

Los coeficientes de la ecuación (3.15) pueden ser expresados en función de

las sumas y productos de sus raı́ces x1, x2, x3, x4, presentados a continuación:

a3 = −(x1 + x2 + x3 + x4) (3.16)

a2 = (x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4) (3.17)
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a1 = −(x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4) (3.18)

a0 = x1x2x3x4 (3.19)

3.5. OPTIMIZACIÓN

La optimización es un proceso que se centra en identificar y mejorar la res-

puesta frente a un problema. Los problemas de optimización se clasifican en

lineales y no lineales.

Los problemas de optimización principalmente se integran por:

-Un conjunto de restricciones.

-Un conjunto de soluciones factibles que tenga todas las combinaciones po-

sibles de valores de variables independientes que satisfacen el conjunto de res-

tricciones.

-Una función objetivo, que vincula las soluciones factibles con el desempeño-

rendimiento del sistema [47].

En problemas de optimización, es importante identificar las primeras y segun-

das derivadas de la función en estudio. La información que se obtiene al calcular

la primera derivada de una función es:

- Proporciona una trayectoria de máxima inclinación de la función objetivo.

- Indica si se ha alcanzado la trayectoria óptima.

Y la información obtenida a través de la segunda derivada es:

- Indicará si es un máximo cuando f ′′(x) es negativa o un mı́nimo cuando

f ′′(x) es positiva [48].
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3.6. TÉCNICA DE LOS PUNTOS FIJOS

La técnica de los puntos fijos fue presentada por Den Hartog y tiene la finali-

dad de minimizar la amplitud máxima de la respuesta adimensional de un sistema

mecánico en los puntos invariantes [49].

Esta técnica de optimización se basa en dos condiciones de amortiguamiento,

cuando ζ → 0 y, cuando ζ → ∞, como se observa en la Figura 3.1.

Figura 3.1: Gráfica del comportamiento del sistema cuando los coeficientes amorti-
guamiento de un DVA son: ζ → 0 y ζ → ∞ [17].

Mediante dichas condiciones de amortiguamiento, se obtienen los puntos fi-

jos o puntos invariantes que se determinan a través de la respuesta en estado

estable del sistema.

Den Hartog establece que todas las curvas pasan a través de los puntos fijos

y son independientes del amortiguamiento.

Esto quiere decir que todas las funciones de respuesta en frecuencia del sis-

tema intersectan estos puntos fijos, sin importar cuánto varı́e el amortiguamiento,

como se observa en la Figura 3.2.
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Figura 3.2: Gráfica de la FRF del sistema primario de un DVA clásico, consideran-
do distintos coeficientes de amortiguamiento [17].

Esta técnica se emplea con el fin obtener los parámetos óptimos mediante un

tratamiento matemático y ası́, encontrar la curva FRF óptima del sistema, la cual

será la curva más plana en todo el rango de frecuencias de excitación.

3.7. TÉCNICA DE LOS PUNTOS FIJOS EXTENDIDA

La técnica de los puntos fijos extendida (EFPT), desarrollada por Barredo et.

al. [38], es empleada para el desarrollo de expresiones algebraicas de forma

cerrada con el fin de obtener el diseño óptimo de absorbedores dinámicos de

vibración basados en inersor.

La técnica de optimización de los puntos fijos extendida se basa en ajustar los

puntos invariantes del sistema para determinar parámetros óptimos. Estas varia-

bles están vinculadas a la respuesta del sistema R(s) y a su norma euclidiana

||H||. Su representación matemática es la siguiente:

R(s) = ||H|| (3.20)
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A continuación se presenta la metodologı́a a seguir en esta técnica de optimi-

zación.

1. Obtener el modelo matemático del sistema, la ecuación de movimiento re-

sultante se encontrará en el dominio s de Laplace.

2. Encontrar la función de transferencia H(s) del sistema, llamada también la

respuesta R(s) del sistema, ecuación (3.20).

3. Sustituir la siguiente expresión s = jw, en la función de transferencia H(s).

Donde j representa la unidad imaginaria. Debido a que solo nos interesa la

respuesta en estado estable del sistema.

4. Reescribir la función de transferencia H(s), de la forma:

H(s) =
A + jB

C + jD
(3.21)

5. Definir las variables A, B, C, D y sustituir los parámetros encontrados con

el teorema Pi de Buckingham.

6. Determinar el módulo de la ecuación H(s) mediante la multiplicación del

conjugado complejo.

|H(s)|2 = A2 +B2

C2 +D2
(3.22)
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7. Implementar las condiciones de amortiguamiento ζ → 0 y ζ → ∞.

ĺım
ζ→0

|H(s)|2 = A2

C2
(3.23)

ĺım
ζ→∞

|H(s)|2 = B2

D2
(3.24)

8. Igualar las ecuaciones cuando ζ → 0 y ζ → ∞.

9. Realizar el siguiente cambio de variable λ = Ω2 con el fin de reducir el gra-

do de la ecuación.

10. Transformar la ecuación anterior en un polinomio mónico.

11. Obtener soluciones óptimas mediante el teorema de Vieta.

12. Encontrar valores numéricos de los parámetros óptimos, sustituyendo el

valor de β.

13. Sustituir los valores de los parámetros óptimos en la aproximación de la

norma H∞, que es la amplitud de la vibración en los puntos invariantes ||H∞||.

14. Determinar la solución óptima para el factor de amortiguamiento ζopt a

partir de la teorı́a de Steen Krenk [50].
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En la Figura 3.3 se puede observar que la técnica de los puntos fijos es más

eficiente que la técnica de Den Hartog al aplanar la curva FRF y, por lo tanto,

mejor en la supresión de vibraciones.

Figura 3.3: Gráfica de la FRF vs. la relación de frecuencias Ω del IDVA-C3, com-
parando la técnica de Den Hartog y la técnica de los puntos fijos extendida [38].

3.8. CRITERIO H∞

Este criterio de optimización es para obtener soluciones efectivas para lograr

estabilizar la respuesta vibratoria del sistema mediante el método de Nishihara

[51]. Las admitancias para cada red mecánica basada en inersor se presentan

en la Tabla 3.2.

Tabla 3.2: Admitancias Y(s) para cada red mecánica basada en inersor [37].

La técnica de optimización H∞ tiene el objetivo de minimizar la magnitud máxi-

ma de la respuesta en frecuencia del sistema |Hi(jλ)|, i = 1, . . . , 6, también
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conocida como la norma H∞ de Hi(s) donde s = jλ [37].

Esta técnica de optimización es común en la minimización de la respuesta

vibratoria en DVA’s. Esto garantiza que el sistema mantenga un desempeño es-

table ante incertidumbres y perturbaciones externas. Al minimizar la norma H∞

se mejora la respuesta del estado estable del sistema. En consecuencia, se tiene

el siguiente problema de optimización.

mı́n

(
máx
Popt

|HIDVA(Ω)|
)

= máx (|HIDVA(Popt, β,Ω)|) (3.25)

Popt son parámetros a optimizar en el sistema y se limita a que sean solucio-

nes reales y positivas Popt ≥ 0 de la siguiente ecuación:

∂|HIDVA(Ω)|2

∂Ω2
= 0 (3.26)

La ecuación (3.26) se refiere al intervalo fı́sico admisible para analizar la rela-

ción de frecuencias Ω y a las limitaciones fı́sicas de diseño del dispositivo.

Para lograr la optimización en un sistema mediante esta técnica se emplean

las frecuencias de resonancia para minimizar de forma exacta la norma ||H∞||,

como se observa en la Figura 3.4.

Figura 3.4: Gráfica de comparación de resultados entre la técnica de los puntos
fijos y la técnica de optimización H∞ [17].
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Capı́tulo 4

MODELOS MATEMÁTICOS

Dentro de la ingenierı́a mecánica, un modelo matemático es la representación

cuantitativa del comportamiento de sistemas fı́sicos (por ejemplo: mecanismos,

estructuras o fluidos) mediante expresiones matemáticas como funciones, ecua-

ciones algebraicas o ecuaciones diferenciales. Las ecuaciones diferenciales son

de gran importancia debido a que, describen la variación de magnitudes como

la fuerza, velocidad, temperatura o vibración a lo largo del tiempo. Por ejemplo,

dichas ecuaciones permiten estudiar el comportamiento vibratorio de componen-

tes como ejes giratorios en turbinas (ilustrada en la Figura 4.1), generadores o

motores eléctricos.

Figura 4.1: Aplicaciones de Rotor- Cojinete Tipo Jeffcott: Turbina industrial de
vapor [49].

A continuación, se utilizan las ecuaciones de Euler-Lagrange para describir el
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comportamiento dinámico de los sistemas NIDVA-C3, NIDVA-C4 y NIDVA-C6 en

rotor-cojinete tipo Jeffcott.

4.1. NIDVA-C3

A continuación, se presenta el esquema del NIDVA-C3 implementado en un

rotor-cojinete tipo Jeffcott:

Figura 4.2: Diagrama de cuerpo libre del NIDVA-C3 en Sistema Rotor-Cojinete
Tipo Jeffcott.

Con el fin de describir el comportamiento dinámico del sistema ilustrado en

la Figura 4.2, en este caso se utiliza la ecuación (3.9) de Euler-Lagrange para

sistemas no conservativos, donde Fi representa la i-ésima fuerza ejercida sobre

el sistema, y Di es la disipación de energı́a por amortiguamiento en el sistema.

Dicho formalismo permite derivar las ecuaciones de movimiento a partir de el
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análisis basado en la diferencia entre las energı́as cinética y potencial. Para ello,

se define el Lagrangiano L como la diferencia entre la energı́a cinética total T y

la energı́a potencial total U del sistema como se denota en la ecuación (3.8).

Se definen las variables D, T y U a partir de un análisis cinemático del sis-

tema NIDVA-C3 en un rotor-cojinete tipo Jeffcott. Cabe aclarar que el análisis se

realiza en una sola dirección, es decir en el eje y. Considerando que la función

de disipación de Rayleigh se define D = 1
2
c q̇2, la energı́a cinética se expresa

Ec = 1
2
mv2 y que la energı́a potencial asociada a elementos elásticos se denota

Ep = 1
2
k x2, se obtiene:

D =
1

2
Cy(ẏ − ẏ1)

2 +
1

2
Cyẏ

2
3 (4.1)

T =
1

2
Mẏ2 +

1

2
Myẏ

2
1 +

1

2
by(ẏ2 − ẏ3)

2 (4.2)

U =
1

2
kyy

2 +
1

2
ky(y − y1)

2 +
1

2
k2y(y1 − y2)

2 (4.3)

L =
1

2
Mẏ2 +

1

2
Myẏ

2
1 +

1

2
by(ẏ2 − ẏ3)

2

− 1

2
kyy

2 − 1

2
k1y(y − y1)

2 − 1

2
k2y(y1 − y2)

2 (4.4)

∂L

∂ẏ
= Mÿ

∂L

∂y
= −kyy − ky(y − y1) (4.5)

d

dt

(
∂L

∂ẏ

)
= Mÿ

∂D

∂ẏ
= Cy(ẏ − ẏ1) (4.6)

Aplicando el Lagrangiano se obtiene la ecuación (4.4), luego evaluando la

ecuación (3.9) en cada coordenada generalizada y, y1, y2, y3, da como resultado

las ecuaciones diferenciales que rigen la dinámica del sistema.
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∂L

∂ẏ1
= Myÿ1

∂L

∂y1
= k1y(y − y1)− k2y(y1 − y2)

(4.7)

d

dt

(
∂L

∂ẏ1

)
= Myÿ1

∂D

∂ẏ1
= −C1y(ẏ − ẏ1) (4.8)

∂L

∂ẏ2
= by(ẏ2 − ẏ3)

∂L

∂y2
= k2y(y1 − y2) (4.9)

d

dt

(
∂L

∂ẏ2

)
= by(ÿ2 − ÿ3)

∂D

∂ẏ2
= 0 (4.10)

∂L

∂ẏ3
= −by(ẏ2 − ẏ3)

∂L

∂y3
= 0 (4.11)

d

dt

(
∂L

∂ẏ3

)
= by(ÿ2 − ÿ3)

∂D

∂ẏ3
= Cyẏ3 (4.12)

Luego, siguiendo la estructura de la ecuación (3.9) de Euler- Lagrange para

sistemas no conservativos, se obtiene como resultado los siguientes grupos de

ecuaciones, los cuales rigen el comportamiento dinámico del sistema, en el eje y

y eje x respectivamente:



Mÿ + Cy(ẏ − ẏ1) + kyy + k1y(y − y1) = 0

myÿ1 − Cy(ẏ − ẏ1)− k1y(y − y1) + k2y(y1 − y2) = 0

by(ÿ2 − ÿ3)− k2y(y1 − y2) = 0

by(ÿ2 − ÿ3) + Cyẏ3 = 0

(4.13)
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

MẌ + Cx(Ẋ − Ẋ1) + kxX + k1x(X −X1) = 0

mxẌ1 − Cx(Ẋ − Ẋ1)− k1x(X −X1) + k2x(X1 −X2) = 0

bx(Ẍ2 − Ẍ3)− k2x(X1 −X2) = 0

bx(Ẍ2 − Ẍ3) + CxẊ3 = 0

(4.14)

Nuevamente se elige una dirección de movimiento para seguir con el trata-

miento matemático. En este caso se toma el modelo matemático que rige el

comportamiento dinámico del NIDVA-C3 en el eje X de un rotor-cojinete tipo

Jeffcott, ecuaciones (4.14).

Considerando que, la transformada de Laplace convierte las derivadas tem-

porales en expresiones algebraicas de la variable compleja s de la siguiente ma-

nera:

L{x(t)} = X(s), L{ẋ(t)} = sX(s), L{ẍ(t)} = s2X(s) (4.15)

Se procede a convertir el modelo matemático del NIDVA-C3, ecuación (4.14)

al dominio de Laplace. Con ello se obtiene una representación algebraica (ecua-

ciones 4.15-4.18) que permiten analizar el comportamiento dinámico del sistema

y determinar su función de transferencia.

Ms2X +KX +K1(X −X1) = mu dω
2 (4.16)

ms2X1 +K1(X1 −X) +K2(X1 −X2) = 0 (4.17)

bs2(X2 −X3) +K2(X2 −X1) = 0 (4.18)

bs2(X3 −X2) + CsX3 = 0 (4.19)
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4.2. NIDVA-C4

La Figura 4.3 presenta el esquema de NIDVA-C4 implementado en un rotor-

cojinete tipo Jeffcott, el cual esta compuesto por la red mecánica C4 integrada

por un resorte y un amortiguador en paralelo, en serie con un inersor.

Figura 4.3: Diagrama de cuerpo libre del NIDVA-C4 en Sistema Rotor-Cojinete
Tipo Jeffcott.

Siguiendo el procedimiento anterior para la obtención del modelo matemático

del NIDVA-C3, se emplean las ecuaciones de Euler-Lagrange (analizando solo

una direccción de movimiento) para conseguir el modelo matemático del NIDVA-

C4 implementado en un rotor-cojinete tipo Jeffcott.
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Ms2X +K1(X −X1) +KX = mudω
2 (4.20)

ms2X1 + Cs(X1 −X2) +K1(X1 −X) +K2(X1 −X2) = 0 (4.21)

bs2X2 + Cs(X2 −X1) +K2(X2 −X1) = 0 (4.22)

En resumen, el modelo propuesto proporciona una herramienta eficaz para

determinar el comportamiento dinámico del NIDVA-C4 bajo diversas condiciones

de amortiguamiento. Su aplicación resulta fundamental para el diseño, la optimi-

zación y el control del sistema NIDVA-C4 implementado en un rotor-cojinete tipo

Jeffcott.

4.3. NIDVA-C6

Considerando la Figura 4.4, para modelar el comportamiento dinámico de un

sistema masa-resorte-amortiguador incorporado en un absorbedor dinámico de

vibraciones no tradicional (NDVA), se utiliza la red mecánica C6, integrada por un

inersor y un amortiguador en paralelo, en serie con un resorte.

A diferencia de otras configuraciones, como la red mecánica C3 o C4, la red

mecánica C6 puede alcanzar un mejor desempeño en ciertos rangos de frecuen-

cias o condiciones de operación, debido a su capacidad para redistribuir energı́a

vibratoria entre los componentes del absorbedor. Esta caracterı́stica influye direc-

tamente en la amplitud de vibración de la masa principal, permitiendo una mayor

atenuación cuando el sistema es correctamente sintonizado.

De manera análoga al procedimiento seguido para obtener el modelo ma-

temático del NIDVA C3, se desarrolla el modelo matemático correspondiente al

NIDVA-C6 implementado en un rotor-cojinete tipo Jeffcott.
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Por lo tanto, el modelo matemático que rige el comportamiento dinámico del

NIDVA-C6 en un rotor-cojinete tipo Jeffcott, se denota con las siguientes ecua-

ciones (4.23), (4.24) y (4.25):

Figura 4.4: Esquema del NIDVA-C6 en un sistema rotor-cojinete tipo Jeffcott.

Ms2X +KX +K1(X −X1) = mudω
2 (4.23)

ms2X1 + bs2(X1 −X2) + Cs(X1 −X2) +K1(X1 −X) = 0 (4.24)

bs2(X2 −X1) + Cs(X2 −X1) +K2X2 = 0 (4.25)
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4.4. FUNCIÓN DE TRANSFERENCIA

A diferencia de la ecuación diferencial, donde entrada, salida y dinámica del

sistema están combinadas en una sola expresión, la función de transferencia

permite representar estos elementos de manera clara y estructurada, facilitando

su análisis por separado.

Después de convertir el modelo matemático del NIDVA-C3 al dominio de La-

place, se realizó el despeje y sustitución de las variables X3, X2 y X1 (en las

ecuaciones 4.16-4.19), para poder despejar a X. Luego, la función de transfe-

rencia del sistema NIDVA-C3 se denota como:

G(s) =
Y (s)

U(s)
(4.26)

Los valores de G(s), Y (s) y U(s) se encuentran en el apéndice A.

Después de realizar un análisis dimensional a la ecuación (4.26), se obtiene

la función de transferencia del sistema de forma adimensional.

G(r) =
N(r)

D(r)
(4.27)

Los valores de G(r), N(r) y D(r) se encuentran en el apéndice A.

Del mismo modo, para obtener la función de transferencia del NIDVA-C4, se

convierten las ecuaciones (4.20 - 4.22) al dominio de Laplace. Después de rea-

lizar despeje y sustitución, siguiendo el procedimiento utilizado en el NIDVA-C3,

se obtiene la función de transferencia del NIDVA-C4 en rotor-cojinete tipo Jeffcott.

G4(s) =
Y4(s)

U4(s)
(4.28)

Los valores de G4(s), Y4(s) y U4(s) se encuentran en el apéndice A.

Luego, aplicando analisis dimensional a la ecuación (4.28) se tiene la siguien-
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te ecuación, que es la función de transferencia del sistema de forma adimensio-

nal. Donde G4(r), Y4(r) y U4(r) se describen en el apéndice A.

G4(r) =
Y4(r)

U4(r)
(4.29)

En resumen, la función de transferencia del sistema con NIDVA-C4, implementa-

do en un rotor-cojinete tipo Jeffcott, se obtiene mediante la transformación de las

ecuaciones del modelo dinámico al dominio de Laplace, seguida de un proceso

de despeje y sustitución análogo al utilizado para el NIDVA-C3. Posteriormente,

al aplicar análisis dimensional, se expresa la función de transferencia en forma

adimensional lo que permite generalizar el comportamiento dinámico del sistema

independientemente de sus parámetros fı́sicos especı́ficos.

En el caso del NIDVA-C6 implementado en un rotor-cojinete tipo Jeffcott, si-

guiendo el procedimiento anterior, se obtiene la función de transferencia:

G6(s) =
Y6(s)

U6(s)
(4.30)

Por lo tanto, la función de transferencia del NIDVA-C6 de forma adimensional

es:

G6(r) =
Y6(r)

U6(r)
(4.31)

Donde G6(s), Y6(s), U6(s), G6(r), Y6(r) y U6(r) se describen en el apéndice A.
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4.5. RESPUESTA EN FRECUENCIA

La respuesta en frecuencia de un sistema de segundo orden, como un siste-

ma masa-resorte-amortiguador, describe el comportamiento del sistema en es-

tado estacionario cuando se le aplica una entrada sinusoidal. Esta respuesta

permite analizar cómo varı́a la amplitud y fase de la salida en función de las dife-

rentes frecuencias de dicha entrada [50].

Se sustituye s = iω en la función de transferencia porque únicamente interesa

conocer cómo responde el sistema una vez que ya pasó el movimiento transitorio,

es decir, cuando el sistema ya se estabilizó y responde de forma constante a una

señal senoidal.

Ası́, se obtiene la respuesta en frecuencia del sistema de forma adimensio-

nal y en el dominio de la frecuencia, ecuación (4.32) la cual rige el movimiento

dinámico del sistema NIDVA-C3 en un rotor tipo Jeffcott.

H(iω) =
Y (iω)

U(iω)
(4.32)

Los valores de Y (iω) y U(iω) se encuentran en el apéndice A.

Esta sustitución es válida porque, en este estado, el sistema vibra con una

frecuencia fija ω, y analizarlo con s = iω permite conocer la amplitud y fase de

esa respuesta sin tomar en cuenta los efectos transitorios iniciales.

Luego, se definen las variables A, B, C, D, P, (apéndice A) para reescribir la

ecuación de la forma:

H =
(A+ i B)P

(C + iD)
(4.33)

Posteriormente, se sustituyen los siguientes parámetros adimensionales ob-

tenidos mediante el teorema Pi de Buckingham.
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K = M ω2
1 (4.34)

k1 = mω2
2 (4.35)

k2 = b ω2
3 (4.36)

c = 2 ζ mω2 (4.37)

b = mµ (4.38)

M =
m

β
(4.39)

ω3 = ω2 η (4.40)

ω2 = ω1 q (4.41)

ω1 =
ω

Ω
(4.42)

Sustituyendo las ecuaciones (4.34-4.42) en las ecuaciones A, B, C, D, P, se

obtienen las siguientes ecuaciones:

A =
−Ω2η2µq2 − Ω2η2q2 + η2q4 + Ω4 − Ω2q2

η2q4
(4.43)

B = −1

2
µΩ · Ω

2 − q2

ζq3
(4.44)

C = −

Ω2βη2µq4 − Ω4η2µq2 + Ω2βη2q4 − Ω4η2q2 + Ω2η2q4

−Ω4βq2 + Ω2η2µq2 + Ω6 − Ω4q2 + Ω2η2q2 − η2q4 − Ω4 + Ω2q2

η2q4
(4.45)

D =
1

2
µΩ · −Ω2βq2 + Ω4 − Ω2q2 − Ω2 + q2

ζq3
(4.46)
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Asi, se reescribe la ecuación (4.33) de la forma:

H(Ω) =
(A+ iB)P

C + iD
(4.47)

Del mismo modo, siguiendo el procedimiento anterior se obtiene la respuesta

en frecuencia de forma adimensional del NIDVA-C4 implementado en un rotor-

cojinete tipo Jeffcott, la cual rige su comportamiento dinámico.

H4(Ω) =
(A4 + iB4)P4

C4 + iD4

(4.48)

dónde los valores de A,B,C,D y P se encuentran en el apéndice A.

A continuación, se presenta la respuesta en frecuencia de forma adimensional

del NIDVA-C6 implementado en un rotor-cojinete tipo Jeffcott.

H6(Ω) =
(A6 + iB6)P6

C6 + iD6

(4.49)

A,B,C,D y P se describen en el apéndice A.

En resumen, en este apartado se desarrollaron los modelos matemáticos de

cada sistema, mediante el formulismo de Euler-Lagrange. También, se realizó

la obtención de la función de transferencia de cada rotor-cojinete tipo Jeffcott

con NIDVAs C3, C4 Y C6. Posteriormente, se calculó la respuesta en frecuencia

de cada sistema, con el fin de conocer su comportamiento dinámico de forma

adimensional y en el dominio de la frecuencia.
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Capı́tulo 5

RESULTADOS

Implementando la técnica de los puntos fijos extendida, en este capı́tulo se

presentan resultados numéricos de los parámetros óptimos de los sistemas NIDVA-

C3, NIDVA-C4 y NIDVA-C6 en un rotor-cojinete tipo Jeffcott. De la misma manera,

se considera la respuesta en estado estable del sistema y se analiza en solo una

dirección de movimiento.

5.1. TÉCNICA DE LOS PUNTOS FIJOS EXTENDIDA

La técnica de los puntos fijos extendida propuesta por Barredo et. al. [38] es

una metodologı́a analı́tica utilizada en el diseño óptimo de sistemas de control

pasivo de vibraciones, particularmente en absorbedores de vibración dinámica.

Se fundamenta en la teorı́a de puntos fijos aplicada a la función de transferencia

del sistema acoplado, con la finalidad de minimizar la amplitud de respuesta del

sistema primario frente a una exitación inercial, en este caso. De esta manera,

se evalua la respuesta del sistema en los puntos invariantes, cuando el amorti-

guamiento es igual a 0 e ∞.
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5.1.1. NIDVA-C3 En Rotor-Cojinete Tipo Jeffcott

La técnica de los puntos fijos propuesta por Barredo[31], se enfoca en dos

condiciones de operación. Cuando el amortiguamiento es cero ζ −→ 0 y cuando

el amortiguamiento es infinito ζ −→ ∞.

H2 =
(A2 +B2)P 2

C2 +D2
(5.1)

A partir de los valores de amortiguamiento antes mencionados, se obtienen

dos ecuaciones linealmente independientes de la ecuación (5.1).

Cuando ζ −→ 0 :

H2 =
(A2)P 2

C2
(5.2)

Cuando ζ −→ ∞ :

H2 =
(B2)P 2

D2
(5.3)

Se igualan las ecuaciones (5.2) y (5.3). Con la finalidad de eliminar los expo-

nentes de segundo grado en ambos lados de la ecuación, se añade el signo ±

delante del signo igual.

(A2)P 2

C2
= ±(B2)P 2

D2
(5.4)

Evaluando la ecuación (5.4) con el signo positivo, y sustituyendo las variables

A, B, C, D, P, se tiene la siguiente expresión:

−Ω2βη2µq6 = 0 (5.5)

La ecuación (5.5) proporciona un resultado trivial cuando Ω = 0, la ecuación

indica que β = 0, η = 0, µ = 0, q = 0.
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Ahora, considerando la ecuación (5.4) con el signo negativo, resulta una ecua-

ción que depende de β, η, µ,Ω, q y se denota a continuación.

Θ1(β, η, µ,Ω, q) = 0 (5.6)

Con el fin de reducir el grado de la ecuación (5.6), se realiza un cambio de

variable λ = Ω2 y se convierte a polinomio mónico, dividiendo toda la ecuación

entre el coeficiente del término de cuarto grado, ası́ se obtiene la siguiente ecua-

ción y se puede utilizar el Teorema de Vieta.

Θλ1(β, η, µ, λ, q) = 0 (5.7)

Ahora, considerando h = H2, se toma la ecuación (5.3) para obtener el se-

gundo polinomio mónico.

h =
(B2)P 2

D2
(5.8)

La ecuación (5.8) se iguala a cero y después se le aplica el mismo procedi-

miento que a la ecuación (5.6), obteniendo lo siguiente:

Θλ2(β, µ, λ, q, h) = 0 (5.9)

El teorema de Vieta para un polinomio mónico establece una relación directa

entre las raı́ces del polinomio y sus coeficientes. Además, las fórmulas de Vieta

permiten obtener información acerca de las raı́ces de un polinomio al observar

los coeficientes de ese polinomio.

Secuencia 1:

La suma de las raı́ces reales de las ecuaciones cuarticas (5.7) y (5.9) se

pueden expresar de la siguiente forma: (Coeficientes de λ3)
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−1 +
(
(−µ− 1)η2 − β − 2

)
q2 (5.10)

(−2 + (−2β − 2)q2)h+ 2q2

h− 1
(5.11)

Igualando las ecuaciones (5.10) y (5.11), luego despejando para q, se tiene:

q2 =
h+ 1

(µ+ 1)η2(h− 1)− β(h+ 1)
(5.12)

Secuencia 2:

Luego, se toma la ecuación 4 del conjunto de ecuaciones del Teorema de

Vieta para obtener h: (Se igualan términos independientes de λ de las ec. (5.7) y

(5.9) y se despeja para h)

h =
δ1
Ψ1

(5.13)

Secuencia 3:

Ahora, se toma la ecuación 3 del conjunto de ecuaciónes del Teorema de

Vieta, y se repite el procedimiento para obtener h: (Coeficientes de λ de las ec.

(5.7) y (5.9))

h =
δ2
Ψ2

(5.14)

Secuencia 4:

A continuación, se obtiene la última solución para h, a partir de la ecuación 2

del teorema de Vieta: (Coeficientes de λ2 de las ec. (5.7) y (5.9))

h =
δ3
Ψ3

(5.15)
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Secuencia 5:

Considerando, las tres soluciones para h, se igualan las ecuaciones (5.13) y

(5.14), resolviendo para q, se tiene:

q2 =
Φ2

ϕ2

(5.16)

Secuencia 6:

Igualando las ecuaciones (5.13) y (5.15), resolviendo para q, se tiene:

q2 =
Φ3

ϕ3

(5.17)

Secuencia 7:

Se tienen tres soluciones para q2, para calcular η y µ se igualan las ecuaciones

(5.12) y (5.16), despejando para η:

η2 =
1

4
·

√
(−2 + (µ− 2)β)2 ((µ+ 2)2β2 + (−12µ2 − 8µ)β + 4µ2) + (−µ2 + 4)β2 + (−2µ2 − 10µ+ 4)β + 4µ

µ ((µ2 + µ+ 2)β − 2µ+ 2)

(5.18)

Secuencia 8:

Del mismo modo, se igualan las ecuaciones (5.16) y (5.17), despejando η2:

η2 =

√
−(4β − 1)(βµ+ β − 2)2 + 2 + (−µ− 5)β

2(µ+ 1)2β − 4µ+ 4
(5.19)

Secuencia 9:

Luego, igualando las ecuaciones (5.18) y (5.19) se obtiene el valor óptimo

para µ:

µ = −2β − 1 +
√
−4β + 1

β
(5.20)

Para encontrar el siguiente valor óptimo es necesario repetir las secuencias
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1-9, empezando por despejar µ.

Secuencia 1:

−1 +
(
(−µ− 1)η2 − β − 2

)
q2 (5.21)

(−2 + (−2β − 2)q2)h+ 2q2

h− 1
(5.22)

De la misma forma, se igualan las ecuaciones (5.21) y (5.22), dando como

resultado:

µ =
−η2hq2 + βhq2 + η2q2 + βq2 + h+ 1

(h− 1)η2q2
(5.23)

Siguiendo el procedimiento anterior, se obtiene el valor óptimo para q:

q =
1

2
·
√
−4β + 2− 2

√
−4β + 1

β
(5.24)

Después se sustituyen los valores óptimos de µ y q en una ecuación para

despejar η:

η =
1

2

√
2 + 2

√
−4β + 1 (5.25)

Las ecuaciones (5.20), (5.24) y (5.25), son los valores óptimos para µ, q y

η respectivamente. Se sustituyen los valores óptimos para el NIDVA-C3 en la

ecuación (5.13) y el resultado es:

h =
1

2
· 1 +

√
−4β + 1

β
(5.26)

En la ecuación (5.26) h es la aproximación de la norma H∞. Además, h es la

amplitud de la vibración en los puntos invariantes. Por lo tanto, si h = H2:

H =

√
1 +

√
−4β + 1

2β
(5.27)
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Las ecuaciones (5.20), (5.24) y (5.25) determinan los parámetros requeridos

para igualar la amplitud de vibración en las frecuencias invariantes del sistema

NIDVA-C3. No obstante, dichos parámetros por sı́ solos no resultan suficientes

para lograr un aplanamiento completo de la curva de la respuesta en frecuencia

del NIDVA-C3 ante todas las posibles frecuencias de excitación.

Tabla 5.1: Valores establecidos para las variables independientes.

Tabla 5.2: Valores numéricos obtenidos para los parámetros óptimos.

A continuación, se sustituyen los valores de la Tabla 5.1 y Tabla 5.2 en la

ecuación (5.2), dando como resultado la FRF del NIDVA-C3 en rotor-cojinete tipo

Jeffcott cuando ζ −→ 0:

H =

√ (
Ω4 (−2,683482985Ω2 + 1,431498868 + Ω4)2

)
(−3,810499640Ω4 + 4,294496579Ω2 + Ω6 − 1,431498868)2

(5.28)

Del mismo modo, sustituyendo los valores de la Tabla 5.1 y Tabla 5.2 en
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la ecuación (5.3), se obtiene la función de respuesta en frecuencia (FRF) del

NIDVA-C3 cuando ζ −→ ∞:

H =

√
Ω4 (Ω2 − 1,270166550)2

(Ω4 − 2,397183205Ω2 + 1,270166550)2
(5.29)

También, se propone un valor de ζ −→ 0,30 para observar el comportamiento

del sistema en un valor arbitrario de ζ.

H =

√
E

G
(5.30)

Después, se realiza el procedimiento de Steen Krenk con el fin de obtener el

factor de amortiguamiento óptimo ζopt, dando como resultado:

ζ =

√
(−β − 18)

√
−4β + 1− 2β + 18

9β + 108
(5.31)

Sustituyendo β = 0,1 en la ecuación (5.31), se obtiene el valor numérico de

ζopt:

ζopt = 0,1863032740 (5.32)

Una vez obtenido ζopt, se sustituye en la ecuación (5.1), por lo tanto, se obtie-

ne:

H =

√
R

r
(5.33)

En el apéndice B se describen los elementos E, G, R, r. En la siguiente gráfica

se muestra la FRF del sistema utilizando el factor de amortiguamiento óptimo.

En la Figura 5.1 se presenta la gráfica de la respuesta en frecuencia del rotor-

cojinete tipo Jeffcott con el NIDVA-C3 bajo excitación inercial, cuando ζ = 0,30 y

cuando el factor de amortiguamiento es óptimo, ζopt = 0,1863032740, consideran-

do β = 0,1.
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Figura 5.1: Gráfica de la FRF del NIDVA-C3 en Rotor-Cojinete tipo Jeffcott, in-
cluyendo el factor de amortiguamiento óptimo.

La técnica de los puntos fijos extendida permitió obtener la respuesta del sis-

tema de forma estable y precisa. Esto evidencia que el método ha funcionado

adecuadamente para las condiciones planteadas.

5.1.2. NIDVA-C4 En Rotor-Cojinete Tipo Jeffcott.

Tabla 5.3: Valores numéricos de los parámetros óptimos del NIDVA-C4 en Rotor-
Cojinete Tipo Jeffcott.

Para obtener valores numéricos de los parámetros de este sistema, se realiza
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el procedimiento descrito anteriormente. Tomando β = 0,1, los valores óptimos

del sistema se presentan en la Tabla 5.3.

La siguiente gráfica describe el comportamiento de la FRF del NIDVA-C4 en

Rotor-Cojinete Tipo Jeffcott, utilizando los parámetros óptimos.

Del mismo modo, para este rotor-cojinete tipo Jeffcott con el NIDVA-C4, se

obtiene la FRF del sistema, ilustrada en la Figura 5.2. Donde se observa el com-

portamiento dinámico del sistema y de la misma forma la efectividad de la TPFE.

Figura 5.2: Gráfica de la FRF de NIDVA-C4 en Rotor-Cojinete Tipo Jeffcott, con
factor de amortiguamiento óptimo.

5.1.3. NIDVA-C6 En Rotor-Cojinete Tipo Jeffcott.

De la misma forma, en este sistema, siguiendo el procedimiento de la técnica

de los puntos fijos extendida, los valores numéricos de los parámetros óptimos

para este sistema, se presentan en la Tabla 5.4.
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Tabla 5.4: Valores numéricos de los parámetros óptimos para el NIDVA-C6.

Posteriormente, se presenta la gráfica de la FRF del sistema, donde se puede

apreciar el comportamiento dinámico del sistema.

Figura 5.3: Gráfica de la FRF del NIDVA-C6 en Rotor-Cojinete Tipo Jeffcott, con
factor de amortiguamiento óptimo.

Para el sistema rotor-cojinete tipo Jeffcott con el NIDVA-C6, se obtiene la FRF

con los parámetros óptimos obtenidos mediante la TPFE, ilustrada en la Figura

5.3. Donde se observa nuevamente la minimización de la curva de la FRF del

sistema.
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A continuación, se presenta la gráfica de la FRF de los tres sistemas de es-

tudio, NIDVA-C3, NIDVA-C4 y NIDVA-C6 implementados en un rotor-cojinete tipo

Jeffcott.

Se presentan las FRF de los sistemas en la Figura 5.4, donde se observa el

comportamiento dinámico de los mismos.

Figura 5.4: FRF de NIDVA-C3, NIDVA-C4 y NIDVA-C6 obtenida mediante la
técnica de los puntos fijos.

En la Figura 5.4 se observa que el NIDVA-C4 mantiene una FRF más contro-

lada en el rango de frecuencias analizado.

5.2. CRITERIO H∞

El método H∞ es una técnica de optimización utilizada en sistemas dinámi-

cos para minimizar la ganancia máxima de la función de transferencia entre una

entrada y una salida, es decir, su norma H∞. Este criterio tiene como objetivo

asegurar que la respuesta del sistema se mantenga limitada, aún si es perturba-

do por distintas señales dentro de un rango previamente definido. Debido a esto,

el criterio H∞ es una herramienta robusta para el diseño y análisis de control pa-

sivo de vibraciones.
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Por lo tanto, el método de optimización H∞ ofrece una validación robusta de

los parámetros determinados a través de la técnica de los puntos fijos extendi-

da, al garantizar un comportamiento dinámico óptimo frente a las variaciones de

frecuencia, es decir, al demostrar que el sistema mantiene un comportamiento

controlado incluso frente a variaciones paramétricas o perturbaciones dentro del

rango considerado.

5.3. NIDVA-C3

Una vez formulado el modelo dinámico del sistema, compuesto por la estruc-

tura principal y el Absorbedor de Vibraciones Dinámico No Tradicional basado en

Inersor (NIDVA-C3), se aplica el método de optimización H∞ con el fin de mini-

mizar la respuesta del sistema ante excitación inercial.

Se tiene la función de respuesta en frecuencia (FRF) del NIDVA-C3 imple-

mentado en un rotor tipo Jeffcott y se eleva al cuadrado de la forma:

H2(Ω) =
(A2 + iB2)P 2

C2 + iD2
(5.34)

Luego, se definen numerador y denominador de la ecuación (5.34)

Num = Y (Ω) (5.35)

Den = U(Ω) (5.36)

Dónde A,B,C,D, P, Y (Ω), U(Ω) se definen en el apéndice C.

Posteriormente, se emplea la ecuación propuesta por Nishihara [17], la cual

se denota de la forma:
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h =

√
1

−r2 + 1
(5.37)

Den − Num

h2
= 0 (5.38)

Sustituyendo las ecuaciones anteriores en la ecuación (5.38), se obtiene una

ecuación polinómica de grado 12, de la forma:

a12x
12 + a11x

11 + · · ·+ a1x+ a0 = 0 (5.39)

Por lo tanto, se convierte la ecuación (5.39) en polinomio mónico, obteniendo

como resultado,

x12 + a11x
11 + · · ·+ a1x+ a0 = 0 (5.40)

Las variables a1, a2, ...an se definen en el apéndice C. Considerando que las

sumas y productos de las raı́ces de la ecuación (5.40) se pueden expresar me-

diante el siguiente sistema de ecuaciones,

f1 :
(
−c21 + 4c2

)√
c6 + 4c5 = 0 (5.41)

f2 : c1c5 + 4c6 + 2c3
√
c6 = 0 (5.42)

f3 : 4c6 (c1
√
c6 + c4)− c25 = 0 (5.43)

Ahora, se definen las variables c1, c2, c3, c4, c5, c6 presentadas en el apéndice

C. Sustituyendo las variables anteriores en las ecuaciones (5.41), (5.42), (5.43),

y simplificando a su minima expresión, se obtienen los siguientes resultados,
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f1 :

[
η2(βµr − β − 1)q4 + r

(
1 + (µ+ 1)η2

)
q2 − 1

2
r2 − 1

2
r
]
(r − 1) ζ42

− 1

8
η2r
(
η2
(
(µ+ 1)η2 − β − 1

)
q2 − η2 + r

)
q2µ2 ζ22

+
1

128
η8µ4q4r = 0

(5.44)

f2 :

− 8
[(
(βµr − β − 1)q2 + r(µ+ 1)

)
(µ+ 1)q2η4

+
(
(β + 1)(βµr − β − 1)q4 + (−βµr2 + ((β + 2)µ+ β + 3)r − β − 1)q2 − r2(µ+ 1)

)
η2

+
(
(β + 1)q2 − r

)
r
]
(r − 1) ζ42

+ η2
[(
(βµr2 + β + 1)q2 + r2(µ+ 1)

)
q2η4

− r
(
(β + 1)2q4 + ((−µ− 2)r + 2β + 4)q2 + r2

)
η2 + r2(1 + (β + 1)q2)

]
µ2 ζ22

− 1

8
q2r2µ4η6 = 0

(5.45)

f3 :

(
2r3 − 2r2

(
(µ+ 1)η2 + β + 1

)
q2 + q4η2(β + 1)2r + q4η2(β + 1)2

)
(r − 1) ζ42

+
1

4
r2
[(
q2µη2β + 1 + (µ− 1)η2

)
r2 + q2rη4 − q2η2(β + 1)

]
µ2 ζ22

− 1

64
r4µ4η2 = 0

(5.46)

Luego, con el fin de facilitar la visualización de las relaciones entre los diferentes

elementos del sistema, se tienen las siguientes matrices,

N :=


A1 B1 C1

A2 B2 C2

A3 B3 C3

 (5.47)
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M :=


D1 A1 C1

D2 A2 C2

D3 A3 C3

 (5.48)

Después de encontrar las variables A1, A2, A3, B1, B2, B3, C1, C2, C3, D1, D2D3,

definidas en el apéndice C, se obtiene el determinante de cada matriz.

Det(N) = 0

A1B2C3 − A1B3C2 − A2B1C3 + A2B3C1 + A3B1C2 − A3B2C1 = 0 (5.49)

Det(M) = 0

A1C2D3 − A1C3D2 − A2C1D3 + A2C3D1 + A3C1D2 − A3C2D1 = 0 (5.50)

A continuación, se obtienen las funciones f4 y f5 apartir de la sustitución

de variables A1, A2, A3, B1, B2, B3, C1, C2, C3, D1, D2D3 en las ecuaciones (5.49)

y (5.50). Obteniendo como resultado:

f4 : (µ, q, η, r, ζ, β) = 0 (5.51)

f5 : (µ, q, η, r, ζ2, β) = 0 (5.52)

Considerando las ecuaciones 5.44, 5.45, 5.46, 5.51, 5.52, se realiza la sustitu-

ción de β = 0,1, posteriormente se resuelve el sistema de ecuaciones resultante,

mediante Maple software. Por lo tanto, se obtienen los parámetros óptimos para

el NIDVA-C3 implementado en un rotor-cojinete tipo Jeffcott, presentados en la

Tabla 5.5.

Los parámetros óptimos del NIDVA-C3 mı́nimizan la respuesta máxima del

sistema en el dominio de la frecuencia.
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Figura 5.5: Gráfica de la FRF del NIDVA-C3 mediante el criterio H∞.

En la Figura 5.5 se presenta la función de respuesta en frecuencia del NIDVA-

C3, obtenida a apartir del criterio H∞.

Tabla 5.5: Parámetros óptimos del NIDVA-C3 por el criterio H∞, cuando β = 0.

Se observa en la Figura 5.5 el comportamiento de la FRF del NIDVA-C3, cuan-

do el factor de amortiguamiento es trivial y cuando el factor de amortiguamiento

es óptimo.
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Además, se realiza la comparación entre ambos métodos de optimización,

para el NIDVA-C3 la gráfica es la siguiente:

Figura 5.6: FRF del NIDVA-C3 mediante dos técnicas de optimización.

Considerando que, el criterio H∞ es una técnica de optimización robusta, en

la Figura 5.6 se observa que la FRF del NIDVA-C3 obtenida con el criterio H∞,

tiene mejor comportamiento dinámico que la FRF obtenida con la TPFE.

5.4. NIDVA-C4

Tabla 5.6: Valores numéricos para los parámetros óptimos del NIDVA-C4.

Siguiendo el procedimiento anterior, se obtienen los valores numéricos para
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los parámetros óptimos del NIDVA-C4, tomando distintos valores para β, como

se presenta en la Tabla 5.6.

La gráfica para la FRF del NIDVA-C4 implementado en un rotor-cojinete tipo

Jeffcott, se ilustra en la Figura 5.7.

Figura 5.7: FRF del NIDVA-C4 implementado en un rotor tipo Jeffcott.

Se observa que el criterio H∞ es un método de optimización robusto, pues en

distintas condiciones muestra una minimización de la FRF máxima del NIDVA-

C4.

En este trabajo, el criterio H∞ se empleó como método complementario de

validación, brindando respaldo a los parámetros obtenidos mediante la técnica

de los puntos fijos extendida.

De la misma forma, para comparar ambos enfoques, dónde se observó una

cercanı́a entre los valores de los parámetros óptimos, lo cual refuerza la confiabi-

lidad del diseño de los NIDVAs C3 y C4 implementados en un rotor-cojn¡inete tipo

Jeffcott. Para el NIDVA-C6 no se encontraron soluciones mediante el criterio H∞.

Debido a que el software no pudo resolver el sistema de ecuaciones relacionado

a este sistema.

En la Figura 5.8, se presenta la gráfica de la FRF del NIDVA-C4 implemen-
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Figura 5.8: FRF del NIDVA-C4 mediante los dos métodos de optimización TPFE
y Criterio H∞,

tado en un rotor-cojinete tipo Jeffcott, dónde se observa la efectividad de ambas

técnicas de optimización en el diseño de obsorbedores de vibración no tradicio-

nales basados en inersor, como el NIDVA-C4.

La técnica de los puntos fijos extendida es un método heurı́stico y análiti-

co, por su parte el criterio H∞ es una técnica de optimización robusta ue busca

minimizar la ganancia máxima del sistema (la norma H∞ de la función de trans-

ferencia). Asegura que la respuesta en frecuencia del sistema sea lo más baja

posible en las frecuencias resonantes.
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Capı́tulo 6

CONCLUSIONES

En el presente trabajo se obtuvieron los modelos matemáticos mediante las

ecuaciones de Euler- Lagrange, de los sistemas NIDVA-C3, NIDVA-C4 y NIDVA-

C6 implementados en un rotor- cojinete tipo Jeffcott, Ası́ mismo, se presenta el

desarrollo matemático que muestra el comportamiento dinámico de los sistemas

antes mencionados. El modelo propuesto, NIDVA-C3 considera un rotor montado

sobre un eje flexible, el cual está acoplado a un sistema de absorción de vibracio-

nes compuesto por una masa conectada en serie con un inersor, un resorte y un

amortiguador. Además, de esta configuración se tiene el NIDVA-C4, formado por

la masa del absobedor conectado en serie a un amortiguador que a su vez esta

conectado en paralelo a un resorte y conectado en serie a un inersor. Del mismo

modo, el NIDVA-C6 es formado por un resorte conectado en serie a un arreglo

en paralelo de inersor y amortiguador, conectados a la masa del absorbedor.

Las ecuaciones de movimiento fueron obtenidas utilizando la formulación de

Euler-Lagrange, y posteriormente transformadas a una forma adimensional, lo

que facilitó su análisis en el dominio de la frecuencia. La formulación resultante

permitió identificar las condiciones necesarias para lograr una respuesta vibrato-

ria uniforme en las frecuencias crı́ticas del sistema.

El modelo fue validado numéricamente y mostró concordancia con resulta-

dos reportados en la literatura. Además, se abordó un problema de optimización
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enfocado en minimizar la función de respuesta en frecuencia del sistema (FRF).

Para ello, se empleó la técnica de los puntos fijos extendida, mediante el Teore-

ma de Vieta y del Teorema de Steen Krenk, con el fin de obtener los parámetros

óptimos de los NIDVA-C3, NIDVA-C4 y NIDVA-C6.

Se empleó una segunda técnica de optimización con el propósito de validar

y otorgar mayor fiabilidad a los resultados obtenidos mediante la técnica de los

puntos fijos extendida. Para ello, mediante el criterio H∞ se determinaron los

parámetros óptimos de los sistemas rotor-cojinete tipo Jeffcott con los NIDVAs

C3 y C4, donde se observó similitud entre los valores numéricos de los paráme-

tros óptimos obtenidos mediante ambas técnicas de optimización, sobresaliendo

el comportamiento dinámico del sistema NIDVA-C4 con los parámetros óptimos

obtenidos mediante el criterio H∞ . En el caso del NIDVA-C6, no se encontraron

soluciones mediante dicho criterio.

Los resultados obtenidos demuestran que la implementación de NIDVAs C3,

C4 y C6 en rotores permite mejorar significativamente el control pasivo de vibra-

ciones, ampliando el rango de frecuencias de operación estable y reduciendo el

riesgo de resonancia estructural, lo cual resulta especialmente útil en aplicacio-

nes de alta velocidad o condiciones variables de funcionamiento.

6.1. TRABAJOS FUTUROS

El estudio y desarrollo de absorbedores dinámicos de vibración no tradiciona-

les basados en inersor representa una lı́nea de investigación y aplicación con un

alto potencial de crecimiento en los próximos años. Estos dispositivos, al incor-

porar elementos inerciales no convencionales, permiten una mejora significativa

en el rendimiento de los sistemas de supresión de vibraciones, tanto en términos

de eficiencia como de adaptabilidad frente a diversas frecuencias.

Los resultados obtenidos en este proyecto respaldan la proyección de futuras
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oportunidades laborales y cientı́ficas en torno a la implementación de NIDVAs

en dispositivos rotodinámicos. Existe un creciente interés por explorar las propie-

dades dinámicas de estos sistemas, principalmente en el diseño de estructuras

civiles antisı́smicas, en la dinámica vehicular y en la optimización de maquina-

ria de precisión. Además, los absorbedores con inersor han demostrado un gran

desempeño en comparación con el DVA clásico.

En resumen, los NIDVAs constituyen una solución innovadora y efectiva fren-

te a los retos que presentan los sistemas mecánicos contemporáneos. Sus apli-

caciones abarcan desde la protección sı́smica hasta la industria automotriz y la

generación de energı́a, lo que posiciona a esta tecnologı́a como una vı́a promete-

dora para el desarrollo profesional, tecnológico y cientı́fico en el corto y mediano

plazo.
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BIBLIOGRAFÍA BIBLIOGRAFÍA
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Apéndice

Apéndice A

Funciones de Transferencia.

NIDVA-C3 en rotor-cojinete tipo Jeffcott.

G(s) =
X

mu dω2

Y (s) = Cbms4 +K2bms3 + (CK1b+ CK2b+ CK2m)s2 +K1K2bs+ CK1K2

U(s) = CMbms6 +K2Mbms5 + (CKbm+ CK1Mb+ CK1bm+ CK2Mb+ CK2Mm)s4

+ (KK2bm+K1K2Mb+K1K2bm)s3

+ (CKK1b+ CKK2b+ CKK2m+ CK1K2M + CK1K2b+ CK1K2m)s2

+KK1K2bs+ CKK1K2 (A.1)
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APÉNDICE A. FUNCIONES DE TRANSFERENCIA.

G(r) =
XM

mu d

N(r) = Mω2

(
bms4

K1K2

+
bms3

CK1

+
(CK1b+ CK2b+ CK2m)s2

CK1K2

+
bs

C
+ 1

)
D(r) = K

(
Mbms6

KK1K2

+
Mbms5

CKK1

+
(CKbm+ CK1Mb+ CK1bm+ CK2Mb+ CK2Mm)s4

CKK1K2

+
(KK2bm+K1K2Mb+K1K2bm)s3

CKK1K2

+
(CKK1b+ CKK2b+ CKK2m+ CK1K2M + CK1K2b+ CK1K2m)s2

CKK1K2

+
bs

C
+ 1

)
(A.2)

Y (iω) = Mω2

(
bmω4

K1K2

− i
bmω3

CK1

− (CK1b+ CK2b+ CK2m)ω2

CK1K2

+ i
bω

C
+ 1

)
D(iω) = K

(
− Mbmω6

KK1K2

+ i
Mbmω5

CKK1

+
(CKbm+ CK1Mb+ CK1bm+ CK2Mb+ CK2Mm)ω4

CKK1K2

− i
(KK2bm+K1K2Mb+K1K2bm)ω3

CKK1K2

− (CKK1b+ CKK2b+ CKK2m+ CK1K2M + CK1K2b+ CK1K2m)ω2

CKK1K2

+ i
bω

C
+ 1

)
(A.3)
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A =
bmω4

K1K2

− (CK1b+ CK2b+ CK2m)ω2

CK1K2

+ 1 (A.4)

B = −bmω3

CK1

+
bω

C
(A.5)

C = − Mbmω6

KCK1K2

+
1

KCK1K2

(
CKbm+ CK1Mb+ CK1bm

)
ω4

+
1

KCK1K2

(
CK2Mb+ CK2Mm

)
ω4

− 1

KCK1K2

(
CKK1b+ CKK2b+ CKK2m

)
ω2

− 1

KCK1K2

(
CK1K2M + CK1K2b+ CK1K2m

)
ω2 + 1 (A.6)

D =
Mbmω5

KCK1

− (KK2bm+K1K2Mb+K1K2bm)ω3

KCK1K2

+
bω

C
(A.7)

P =
Mω2

K
(A.8)

NIDVA-C4 en rotor-cojinete tipo Jeffcott.

G4(s) =
X

mu dω2

Y4(s) =
(
bm s4 + (bc+ cm) s3 + (bk1 + bk2 +mk2) s

2

+ csk1 + k1k2
)

U4(s) = Mbms6 + (Mbc+Mcm) s5

+ (Kbm+Mbk1 +Mbk2 +Mmk2 + bmk1) s
4

+ (Kbc+Kcm+Mck1 + bck1 + cmk1) s
3

+ (Kbk1 +Kbk2 +Kmk2 +Mk1k2 + bk1k2 +mk1k2) s
2

+Kcsk1 +Kk1k2 (A.9)

102
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G4(r) =
XM

mu d

Y4(r) =

(
bm s4

k1k2
+

(bc+ cm) s3

k1k2
+

(bk1 + bk2 +mk2) s
2

k1k2
+

c s

k2
+ 1

)
Mω2

U4(r) =

(
Mbms6

Kk1k2
+

(Mbc+Mcm) s5

Kk1k2
+

(Kbm+Mbk1 +Mbk2 +Mmk2 + bmk1) s
4

Kk1k2

+
(Kbc+Kcm+Mck1 + bck1 + cmk1) s

3

Kk1k2

+
(Kbk1 +Kbk2 +Kmk2 +Mk1k2 + bk1k2 +mk1k2) s

2

Kk1k2
+

c s

k2
+ 1

)
K

(A.10)

A =
−Ω2η2µq2 − Ω2η2q2 + η2q4 + Ω4 − Ω2q2

q4η2
(A.11)

B = −2ζΩ(Ω2µ+ Ω2 − q2)

q3µη2
(A.12)

C = − 1

q4η2

(
Ω2βη2µq4 − Ω4η2µq2 + Ω2βη2q4 − Ω4η2q2 + Ω2η2q4 − Ω4βq2

+ Ω2η2µq2 + Ω6 − Ω4q2 + Ω2η2q2 − η2q4 − Ω4 + Ω2q2
)

(A.13)

D =
1

q3µη2

(
2ζΩ

(
− Ω2βµq2 + Ω4µ− Ω2βq2 + Ω4 − Ω2q2

− Ω2µ− Ω2 + q2
))

(A.14)

P = Ω2 (A.15)

103
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NIDVA-C6 en rotor-cojinete tipo Jeffcott.

G6(s) =
X

mu dω2

Y6(s) =
(
bms4 + Cms3 + (K1b+K2m)s2 + (CK1 + CK2)s+K1K2

)
U6(s) = Mbms6 + CMms5 + (Kbm+K1Mb+K1bm+K2Mm) s4

+ (CKm+ CK1M + CK1m+ CK2M) s3

+ (KK1b+KK2m+K1K2M +K1K2m) s2

+ (CKK1 + CKK2 + CK1K2) s+KK1K2 (A.16)

G6(r) =
XM

mu d

Y6(r) = Mω2

(
bm s4

K1K2

+
Cms3

K1K2

+
(K1b+K2m) s2

K1K2

+
(CK1 + CK2) s

K1K2

+ 1

)
U6(r) = K

(
Mbms6

KK1K2

+
CMms5

KK1K2

+
(Kbm+K1Mb+K2Mm+K1bm) s4

KK1K2

+
(CKm+ CK1M + CK2M + CmK1) s

3

KK1K2

+
(KK1b+KK2m+K1K2M +K1K2m) s2

KK1K2

+
(CKK1 + CKK2 + CK1K2) s

KK1K2

+ 1

)
(A.17)
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A =
−Ω2η2q2 + η2q4 + Ω4 − Ω2q2

q4η2
(A.18)

B = −2Ωζ(−η2µq2 + Ω2 − q2)

q3µη2
(A.19)

C = − 1

q4η2
(
Ω2(βη2q4 − Ω2η2q2 + η2q4 − Ω2βq2 + Ω4 − Ω2q2 + η2q2 − Ω2 + q2)

)
(A.20)

D =
1

q3µη2
(
2Ωζ(βη2µq4 − Ω2η2µq2 − Ω2βq2 + η2µq2 + Ω4 − Ω2q2 − Ω2 + q2)

)
(A.21)

P = Ω2 (A.22)
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Apéndice B

Técnica de los puntos fijos extendida.

Para sistema rotor-cojinete tipo Jeffcott con el NIDVA-C3:

(A2)P2

C2
=

Ω4
(
Ω4 −

(
1 + (µ+ 1)η2

)
q2Ω2 + q4η2

)2
[Ω6 + (−1 + (−µ− 1)η2 − β − 1) q2Ω4 + (η2(βµ+ β + 1)q2 + 1 + (µ+ 1)η2) q2Ω2 − q4η2]2

(B.1)

(B2)P2

D2
=

Ω4
(
−Ω2 + q2

)2
(−Ω4 + (1 + (β + 1)q2) Ω2 − q2)2

(B.2)

δ1
Ψ1

=
η2q2

η2q2 − 1
(B.3)

δ2
Ψ2

=
q2
[
(2 + (µ+ 2)β) η2q2 + 2 + (2µ+ 4)η2

]
−4 + (2 + (µ+ 2)β) η2q4 + ((2µ+ 4)η2 − 4β − 2) q2

(B.4)

δ3
Ψ3

=
q2
[(
((µ+ 1)β + µ+ 2)η2 + β

)
q2 + 2 + (µ+ 1)η2

]
−1 + (((µ+ 1)β + µ+ 2)η2 − β2 − β) q4 + ((µ+ 1)η2 − 2β − 2) q2

(B.5)

Φ2

ϕ2
=

−2η2µ− 2

(−2 + (µ− 2)β) η2
(B.6)
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APÉNDICE B. TÉCNICA DE LOS PUNTOS FIJOS EXTENDIDA.

Φ3

ϕ3
=

1

2
·
√

((µ+ 1)2β2 + (2µ2 + 2µ+ 4)β + (µ− 2)2) η4 + 2β ((µ+ 3)β + µ+ 6) η2 + β2

βη2(β + 2)

+

(
1 + (µ− 1)η2

)
β + η2(µ− 2)

βη2(β + 2)

(B.7)

η2 =
1

4
· 1

µ ((µ2 + µ+ 2)β − 2µ+ 2)
·


√
(−2 + (µ− 2)β)2 ((µ+ 2)2β2 + (−12µ2 − 8µ)β + 4µ2)

+
(
−µ2 + 4

)
β2 + (−2µ2 − 10µ+ 4)β + 4µ


(B.8)

η2 =

√
−(4β − 1)(βµ+ β − 2)2 + 2 + (−µ− 5)β

2(µ+ 1)2β − 4µ+ 4
(B.9)

E =

(
0,4879979332

(
−2,683482985Ω2 + 1,431498868 + Ω4

)2
+ 0,08747759057Ω2

(
Ω2 − 1,270166550

)2)
Ω4

(B.10)

G =

(
0,4879979332

(
−3,810499640Ω4 + 4,294496579Ω2 +Ω6 − 1,431498868

)2
+ 0,08747759057Ω2

(
Ω4 − 2,397183205Ω2 + 1,270166550

)2) (B.11)

R =

(
0,4879979332

(
−2,683482985Ω2 + 1,431498868 + Ω4

)2
+ 0,2268288797Ω2

(
Ω2 − 1,270166550

)2)
Ω4

(B.12)

r =

(
0,4879979332

(
−3,810499640Ω4 + 4,294496579Ω2 +Ω6 − 1,431498868

)2
+ 0,2268288797Ω2

(
Ω4 − 2,397183205Ω2 + 1,270166550

)2) (B.1)
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Apéndice C

Criterio H∞

Para sistema rotor-cojinete tipo Jeffcott con el NIDVA-C3:

A =
−Ω2η2µq2 − Ω2η2q2 + η2q4 +Ω4 − Ω2q2

η2q4
(C.1)

B = −1

2
µΩ · Ω

2 − q2

ζq3
(C.2)

C = −

Ω2βη2µq4 − Ω4η2µq2 +Ω2βη2q4 − Ω4η2q2 +Ω2η2q4

−Ω4βq2 +Ω2η2µq2 +Ω6 − Ω4q2 +Ω2η2q2 − η2q4 − Ω4 +Ω2q2

η2q4
(C.3)

D =
1

2
µΩ · −Ω2βq2 +Ω4 − Ω2q2 − Ω2 + q2

ζq3
(C.4)

Num = Y (Ω) = Ω4

[
Ω8µ2 + 2Ω6q2

(
2a2 − η2µ3 − µ2(η2 + 1)

)
+Ω4q4

(
−8a2 + η4µ4 + 2η2µ3(η2 + 1) + µ2(η4 + 4η2 + 1)

)
+ 2Ω2q6

(
2a2 − η4µ3 − η2µ2(η2 + 1)

)
+ η4µ2q8

] (C.5)
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Den = U(Ω) = 4Ω12ζ22 +
((
(−8µ− 8) η2 − 8β − 8

)
ζ22 + µ2η4

)
q2Ω10 − 8ζ22Ω

10

+

[ (
4(µ+ 1)2η4 + ((16β + 8)µ+ 16β + 16) η2 + 4(β + 1)2

)
ζ22

− 2µ2η4(β + 1)

]
q4Ω8

+
(
((16µ+ 16)η2 + 8β + 16)ζ22 − 2µ2η4

)
q2Ω8 + 4ζ22Ω

8

+ q6η4
[
−8
(
(µ+ 1)η2 + β + 1

)
(βµ+ β + 1)ζ22 + µ2η2(β + 1)2

]
Ω6

+ q4
(
−8(µ+ 1)2η4 + ((−16β − 16)µ− 16β − 32) η2 − 8β − 8

)
ζ22

+ 2µ2η4(β + 2)Ω6

+
(
−8 + (−8µ− 8)η2

)
ζ22 + µ2η4Ω6

+ q4Ω4

{
4η4ζ22 (βµ+ β + 1)2 + 2η2

[
(µ+ 1)(βµ+ β + 2)η2 + βµ+ 2β + 2

]
ζ22

− 1

2
µ2η4(β + 1) +

(
1 + (µ+ 1)2η4 + (2µ+ 4)η2

)
ζ22 − 1

2
µ2η4

}

− q6η2Ω2

[
8

(
η2ζ22 (βµ+ β + 1)q2 +

(
1 + (µ+ 1)η2

)
ζ22 − 1

8
µ2η2

)]
+ 4q8η4ζ22

(C.6)

c1 = a10 =

(((
(−8µ− 8)η2 − 8β − 8

)
ζ22 + µ2η4

)
q2 − 8ζ22

)
4ζ22

(C.7)

c2 = a8 =
1

4ζ22

(((
4(µ+ 1)2η4 + ((16β + 8)µ+ 16β + 16)η2 + 4(β + 1)2

)
ζ22

− 2µ2η4(β + 1)

)
q4 +

(
((16µ+ 16)η2 + 8β + 16)ζ22 − 2µ2η4

)
q2

+ 4ζ22 − 4ζ22 (−r2 + 1)

) (C.8)
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APÉNDICE C. CRITERIO H∞

c3 = a6 =
1

4
· 1

ζ22

(
− 8

((
(βµ+ β + 1)

(
(µ+ 1)η2 + β + 1

)
ζ22 − 1

8
µ2η2(β + 1)2

)
η2q4

+
(
(µ+ 1)2η4 + ((2β + 2)µ+ 2β + 4)η2 + β + 1

)
ζ22 − 1

4
µ2η4(β + 2)

)
q2

+
(
1 + (µ+ 1)η2

)
ζ22 − 1

8
µ2η4

)
q2

+ 8

(
q2µη2ζ22β +

(
1 + (µ+ 1)η2

)
ζ22 − 1

8
µ2η4

)
q2(−r2 + 1)

)
(C.9)

c4 = a4 =
1

4
· 1

ζ22

(
4

(
η4ζ22 (βµ+ β + 1)2q4 + 2

(
((µ+ 1)(βµ+ β + 2)η2 + βµ+ 2β + 2)ζ22 − 1

4
µ2η2(β + 1)

)
η2q2

)

+
(
1 + (µ+ 1)2η4 + (2µ+ 4)η2

)
ζ22 − 1

2
µ2η4

)
q4

− 4

(
q4µ2η4ζ22β

2 + 2η2(1 + (µ+ 1)η2)ζ22µβq
2

)

− 4
(
1 + (µ+ 1)2η4 + (2µ+ 4)η2

)
ζ22q

4(−r2 + 1) + 2µ2η4q4(−r2 + 1)

)
(C.10)

c5 = a2 =
1

4
· 1

ζ22

(
− 8η2

(
η2ζ22 (βµ+ β + 1)q2 + (1 + (µ+ 1)η2)ζ22 − 1

8
µ2η2

)
q6

+ 8
(
q2µη2ζ22β + (1 + (µ+ 1)η2)ζ22 − 1

8
µ2η2

)
η2q6(−r2 + 1)

) (C.11)

c6 = a1 = q8η4r2 (C.12)
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A1 =
∂f1
∂q

=
(
4η2(βµr − β − 1)q3 + 2r(1 + (µ+ 1)η2)q

)
(r − 1)ζ42

− 1

4
η4r

(
(µ+ 1)η2 − β − 1

)
q3µ2ζ22

− 1

4
η2r

(
η2
(
(µ+ 1)η2 − β − 1

)
q2 − η2 + r

)
qµ2ζ22

+
1

32
η8µ4q3r

(C.13)

A2 =
∂f2
∂q

=− 8
(
2(βµr − β − 1)q3(µ+ 1)η4 + 2

(
(βµr − β − 1)q2 + r(µ+ 1)

)
(µ+ 1)qη4

+
(
4(β + 1)(βµr − β − 1)q3 + 2

(
−βµr2 + ((β + 2)µ+ β + 3)r − β − 1

)
q
)
η2

+ 2(β + 1)qr
)
(r − 1)ζ42

+ η2

(
2(βµr2 + β + 1)q3η4 + 2

(
(βµr2 + β + 1)q2 + r2(µ+ 1)

)
qη4

− r
(
4(β + 1)2q3 + 2 ((−µ− 2)r + 2β + 4) q

)
η2

+ 2r2(β + 1)q

)
µ2ζ22

− 1

4
qr2µ4η6

(C.14)

A3 =
∂f3
∂q

=
(
− 4r2((µ+ 1)η2 + β + 1)q + 4q3η2(β + 1)2r + 4q3η2(β + 1)2

)
(r − 1)ζ42

+
1

4
r2
(
2qµη2βr2 + 2qrη4 − 2qη2(β + 1)

)
µ2ζ22

(C.15)

111
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B1 =
∂f1
∂η

=
(
2η(βµr − β − 1)q4 + 2r(µ+ 1)ηq2

)
(r − 1)ζ42

− 1

4
ηr
(
η2((µ+ 1)η2 − β − 1)q2 − η2 + r

)
q2µ2ζ22

− 1

8
η2r

(
2η((µ+ 1)η2 − β − 1)q2 + 2η3(µ+ 1)q2 − 2η

)
q2µ2ζ22

+
1

16
η7µ4q4r

(C.16)

B2 =
∂f2
∂η

= −8

(
4
(
(βµr − β − 1)q2 + r(µ+ 1)

)
(µ+ 1)q2η3

+ 2
(
(β + 1)(βµr − β − 1)q4 +

(
−βµr2 + ((β + 2)µ+ β + 3)r − β − 1

)
q2 − r2(µ+ 1)

)
η

)
(r − 1)ζ42

+ 2η

((
(βµr2 + β + 1)q2 + r2(µ+ 1)

)
q2η4 − r

(
(β + 1)2q4 + ((−µ− 2)r + 2β + 4)q2 + r2

)
η2

+ r2(1 + (β + 1)q2)

)
µ2ζ22 + η2

(
4
(
(βµr2 + β + 1)q2 + r2(µ+ 1)

)
q2η3

− 2r
(
(β + 1)2q4 + ((−µ− 2)r + 2β + 4)q2 + r2

)
η

)
µ2ζ22 − 3

4
q2r2µ4η5

(C.17)

B3 =
∂f3
∂η

=
(
−4r2(µ+ 1)ηq2 + 2q4η(β + 1)2r + 2q4η(β + 1)2

)
(r − 1)ζ42

+
1

4
r2
(
(2q2µηβ + 2(µ− 1)η)r2 + 4q2rη3 − 2q2η(β + 1)

)
µ2ζ22 − 1

32
r4µ4η

(C.18)

C1 =
∂f1
∂ζ2

= 4
(
η2(βµr − β − 1)q4 + r(1 + (µ+ 1)η2)q2 − 1

2
r2 − 1

2
r
)
(r − 1)ζ32

− 1

4
η2r

(
η2((µ+ 1)η2 − β − 1)q2 − η2 + r

)
q2µ2ζ2

(C.19)
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C2 =
∂f2
∂ζ2

= − 32

((
(βµr − β − 1)q2 + r(µ+ 1)

)
(µ+ 1)q2η4

+
(
(β + 1)(βµr − β − 1)q4 +

(
−βµr2 + ((β + 2)µ+ β + 3)r − β − 1

)
q2 − r2(µ+ 1)

)
η2

+ ((β + 1)q2 − r)r

)
(r − 1)ζ32

+ 2η2

((
(βµr2 + β + 1)q2 + r2(µ+ 1)

)
q2η4

− r
(
(β + 1)2q4 + ((−µ− 2)r + 2β + 4)q2 + r2

)
η2 + r2(1 + (β + 1)q2)

)
µ2ζ2

(C.20)

C3 =
∂f3
∂ζ2

= 4

(
2r3 − 2r2

(
(µ+ 1)η2 + β + 1

)
q2 + q4η2(β + 1)2r + q4η2(β + 1)2

)
(r − 1)ζ32

+
1

2
r2

((
q2µη2β + 1 + (µ− 1)η2

)
r2 + q2rη4 − q2η2(β + 1)

)
µ2ζ2

(C.21)

D1 =
∂f1
∂µ

=
(
βη2q4r + η2q2r

)
(r − 1)ζ42 − 1

8
η6µ2q4rζ22

− 1

4
η2r

(
η2
(
(µ+ 1)η2 − β − 1

)
q2 − η2 + r

)
q2µζ22 +

1

32
η8µ3q4r

(C.22)
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D2 =
∂f2
∂µ

= − 8

(
(βq2r + r)(µ+ 1)q2η4 + ((βµr − β − 1)q2 + r(µ+ 1))q2η4

+
(
(β + 1)βrq4 +

(
−βr2 + (β + 2)r

)
q2 − r2

)
η2

)
(r − 1)ζ42

+ η2
(
(βq2r2 + r2)q2η4 + η2q2r2

)
µ2ζ22

+ 2η2

((
(βµr2 + β + 1)q2 + r2(µ+ 1)

)
q2η4

− r
(
(β + 1)2q4 + ((−µ− 2)r + 2β + 4)q2 + r2

)
η2 + r2(1 + (β + 1)q2)

)
µζ22

− 1

2
q2r2µ3η6

(C.23)

D3 =
∂f3
∂µ

= − 2η2q2r2(r − 1)ζ42 +
1

4
r4(βη2q2 + η2)µ2ζ22

+
1

2
r2
(
(q2µη2β + 1 + (µ− 1)η2)r2 + q2rη4 − q2η2(β + 1)

)
µζ22

− 1

16
r4µ3η2

(C.24)

114


