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RESUMEN

La presente investigacion se enfoca en la optimizacion de sistemas de control
de vibraciones aplicados a sistemas rotor-cojinete tipo Jeffcott, mediante la im-
plementacién de tres configuraciones de Absorbedores Dinamicos de Vibracion
No Tradicionales basados en Inersor, NIDVAs C3, C4 y C6. Estos dispositivos
han mostrado un desempeno superior al de los amortiguadores convencionales
(DVA, TMD e IDVA), al ampliar la banda de atenuacion de la respuesta vibratoria
del sistema.

El estudio surge de la necesidad de mejorar el control de vibraciones en sis-
temas rotodinamicos, donde las soluciones tradicionales presentan limitaciones
en términos de robustez y efectividad ante variaciones de frecuencia. Para abor-
dar este problema, se emplean dos técnicas de optimizacion: la técnica de los
puntos fijos extendida y el criterio H,, con el objetivo de minimizar la amplitud de
la funcion de respuesta en frecuencia (FRF) de los NIDVAs implementados en
rotores Jeffcott.

La metodologia seguida se basa en el método de Canales, que contempla
desde la documentacién del estado del arte hasta la redaccién del informe final.
Se utilizan modelos matematicos derivados mediante las ecuaciones de Euler-
Lagrange y software de calculo simbdlico (Maple) para simular el comportamiento
de los sistemas y determinar los parametros 6ptimos.

Finalmente, se evalué y comparé la efectividad de ambas técnicas de optimi-
zacion y se demostré que los NIDVAs C3, C4 y C6 representan una alternativa

eficaz para la supresion de vibraciones en sistemas rotodinamicos.



NOMENCLATURA

m,. Masa desbalanceada o masa excentrica.

d: Excentricidad.

wt: Angulo recorrido.

M Masa del disco del rotor tipo Jeffcott.

m,: Masa de los absorbedores en la direccién x.

b.: Inertancia de las redes mecanicas en la direccion x.

c.: Amortiguamiento de las redes mecanicas en la direccion x.
c1.. Amortiguamiento de los absorbedores en la direccion x.
k1.: Rigidez de los absorbedores en la direccion x.

k+.: Rigidez de las redes mecanicas en la direccion x.

K ,: Rigidez del rotor tipo Jeffcott en la direccion x.

x: Desplazamiento del disco del rotor tipo Jeffcott.

x1: Desplazamiento de las masas de los absorbedores.

xo: Desplazamiento interno de las redes mecanicas.

x3: Desplazamiento interno de las redes mecanicas.

m,: Masa de los absorbedores en la direccion y.

b,: Inertancia de las redes mecanicas en la direccion y.

¢,: Amortiguamiento de las redes mecanicas en la direccion y.
c1,- Amortiguamiento de los absorbedores en la direccion y.
k1,: Rigidez de los absorbedores en la direccion y.

ko,: Rigidez de las redes mecénicas en la direccion y.

K,: Rigidez del rotor tipo Jeffcott en la direccidn y.

y: Desplazamiento del disco del rotor tipo Jeffcott.

y1: Desplazamiento de las masas de los absorbedores.

y2: Desplazamiento interno de las redes mecanicas.

y3: Desplazamiento interno de las redes mecanicas.
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Capitulo 1

INTRODUCCION

Los rotores tipo Jeffcott son un modelo simplificado de sistemas rotodinami-
cos para el analisis de vibraciones de maquinas rotatorias. Este modelo es utiliza-
do para estudiar los efectos de vibraciones, resonancia y estabilidad en maquinas
rotatorias como turbinas, generadores y motores.

En 1911 se identifico un fendmeno llamado vibraciones de resonancia, el cual
puede llegar a afectar significativamente estructuras como barcos y edificios. De-
bido a este problema, se propuso el uso de cuerpos auxiliares cuya vibracién es
opuesta a la estructura principal y ayuda a reducir la amplitud de las oscilaciones
mediante un efecto de cancelacion. Este principio fue el inicio para el desarrollo
de dispositivos de control pasivo de vibraciones.

Mas tarde, se realiz6 la comparacion del desemperio en el control de vibra-
ciones entre el Amortiguador de Masa Sintonizada (TMD) y seis Absorbedores
Dinamicos de Vibracion basados en Inersor (IDVAs) para una torre de desulfura-
cién [1]. Los resultados demostraron que los IDVAs pueden mitigar significativa-
mente la respuesta vibratoria, ademas, el inersor hace que la banda de frecuen-
cia efectiva de los IDVAs sea mas amplia que la del TMD. De la misma forma, se
obtuvieron mejoras mediante el criterio H,, en la implementacion de los absor-
bedores dinamicos de vibracion basados en inersor (IDVAs) ampliando la banda

de frecuencias efectiva mediante el uso del inersor[2].
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Después, en consecuencia de que la relacién de masas fijas en IDVAs fue un
obstaculo para su desemperio, idearon un IDVA no tradicional. Se demostré que
el NIDVA tiene ventaja sobre el IDVA y el DVA tradicional [3].

En este contexto, existe la limitante de solo poder usarse para mitigar vibra-
ciones en estructuras de ingenieria civil o estructuras mecanicas estacionarias.
Por ello, el estudio y modelado de los absorbedores dinamicos de vibracion no
tradicionales basados en inersor (NIDVASs) en sistemas rotor-cojinete tipo Jeffcott
tiene gran importancia, ya que estos dispositivos han mostrado un desempeno
superior al de los DVA tradicionales y los IDVAs.

La presente investigacion trata de analizar y optimizar el rendimiento en la
respuesta en frecuencia de los sistemas rotor-cojinete tipo Jeffcott, utilizando las
redes mecanicas no tradicionales basadas en inersor denominadas NIDVA-C3,
C4 y C6 como objeto de estudio para mejorar la eficiencia en la supresion de

vibraciones de este tipo de sistemas.

1.1. PLANTEAMIENTO DEL PROBLEMA

Las vibraciones mecanicas constituyen un problema critico en diversos cam-
pos de la ingenieria, afectando el desempeno y la estabilidad de estructuras
y maquinas. En el caso de sistemas rotodinamicos, como los sistemas rotor-
cojinete tipo Jeffcott, estas vibraciones pueden deberse al desbalance, desali-
neacién, desgaste de componentes o fuerzas externas. La presencia de vibra-
ciones excesivas puede reducir la vida util de los componentes, provocar fallas
prematuras y afectar la seguridad y eficiencia del sistema.

Tradicionalmente, el control de vibraciones en estos sistemas se ha abordado
mediante Amortiguadores de Masa Sintonizada (TMDs) y amortiguadores visco-
sos. Sin embargo, estos dispositivos presentan limitaciones:

Los TMDs son eficaces solo en rangos de frecuencia especificos y su rendi-
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miento se degrada cuando la frecuencia de excitacion varia.

Los amortiguadores viscosos pueden no ser suficientes para aplicaciones que
requieren un control preciso en un amplio espectro de frecuencias o bajo condi-
ciones dinamicas cambiantes.

Para superar estas limitaciones, el uso de inersores en absorbedores dinami-
cos representa una solucion innovadora. En particular, los NIDVAs han mostrado
un desempeno superior en la mitigacion de vibraciones debido a su configuracion
mecanica mejorada. No obstante, su aplicacion en sistemas rotodinamicos aun
no ha sido explorada.

Por lo tanto, la presente investigacion se centra en el analisis y optimizacion
de NIDVAs en sistemas rotor-cojinete tipo Jeffcott, evaluando su efectividad en la
reduccién de vibraciones. Asi mismo, impulsar la implementacion de NIDVAs en
sistemas rotodinamicos, mejorando la estabilidad y eficiencia de estos dispositi-

vos en el campo de la ingenieria mecanica.

1.2. JUSTIFICACION

Las vibraciones en embarcaciones pueden originarse por diversas causas,
como el desbalanceo en la hélice, la desalineacién del eje de propulsion, el des-
gaste de componentes mecanicos (rodamientos o cojinetes), las vibraciones del
motor o las fuerzas hidrodinamicas generadas por la interaccion de la hélice con
el agua. Estas vibraciones no se limitan inicamente a los barcos, también afectan
aeronaves, aviones, vehiculos ferroviarios y automoviles, reduciendo su desem-
peno y seguridad estructural.

Las vibraciones mecanicas se pueden encontrar en nuestra vida cotidianay a
pesar de los distintos estudios e investigaciones, siguen existiendo limitantes en
el control de vibraciones.

Sin embargo, un novedoso dispositivo surgié en los Ultimos anos, el inersor.
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Se ha demostrado que el inersor mejora significativamente el rendimiento de los
absorbedores de vibracién tradicionales y no tradicionales (DVA y NDVA). Por
ello, se eligieron tres configuraciones de redes mecanicas basadas en inersor,
C3, C4 y C6. Estas configuraciones se implementaron en DVAs y NDVAs, crean-
do asi nuevos disefios de absorbdores para el control de vibraciones, IDVAs y
NIDVAs.

Se demostrd que los NIDVAs C3, C4 y C6 superaron en rendimiento y en
minimizacién de la curva de la funcion de la respuesta en frecuencia del sistema
(FRF), a los DVAs y NDVAs. No obstante, existe la limitante de solo poder utilizar
estos NIDVAs en sistemas mecanicos estacionarios.

Con el fin de abordar esta limitante, se pretende realizar en este trabajo, la
implementacién de los NIDVAs C3, C4 y C6 en un sistema rotor-cojinete tipo
Jeffcott. Ademas, se minimizara la curva de la funcién de la respuesta en fre-
cuencia (FRF) del sistema, mediante la técnica de los puntos fijos extendida y la

técnica de optimizaciéon H..

1.3. HIPOTESIS

Se espera que la implementacion de técnicas de optimizacion y ajuste en los
NIDVAs C3, C4 y C6 de un rotor tipo Jeffcott mejore el rendimiento de estas
configuraciones, reduciendo la amplitud de la funcidén de respuesta en frecuencia
(FRF) del sistema y permitiendo un mejor control de las vibraciones en sistemas

rotodinamicos.
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1.4. OBJETIVOS

1.4.1. Objetivo General.

Determinar el diseno 6ptimo de los NIDVA-C3, C4 y C6 implementados en un
sistema rotor cojinete tipo Jeffcott, para minimizar la amplitud de la funcion de la
respuesta en frecuencia de los sistemas y asi mejorar el control de vibraciones

en sistemas rotodinamicos.

1.4.2. Objetivos Especificos.

» Obtener los modelos matematicos del sistema rotor-cojinete tipo Jeffcott con

los dispositivos NIDVA-C3, C4 y C6..

» Obtener y graficar la respuesta en frecuencia de los sistemas rotor-cojinete

tipo Jeffcott con los dispositivos NIDVA-C3, C4 y C6.

 Determinar valores 6ptimos para el disefio del rotor-cojinete tipo Jeffcott con
los dispositivos NIDVA-C3, C4 y C6. mediante la técnica de los puntos fijos ex-

tendida.

 Determinar valores 6ptimos para el diseno del rotor-cojinete tipo Jeffcott con

los dispositivos NIDVA-C3, C4 y C6 mediante la técnica de optimizacion H.,..

» Evaluar la efectividad de los absorbedores en las diferentes condiciones de

amortiguamiento 6ptimo.

* Analizar y comparar los resultados de los valores y las graficas entre los

métodos de optimizacion.



1.5. METAS CAPITULO 1. INTRODUCCION

1.5. METAS

Las metas que se desean lograr son:

« Desarrollar ecuaciones simplificadas para el disefno tedrico de los absorbe-
dores NIDVA-C3, C4 y C5 para el control éptimo de la vibracion, en sistemas
rotor-cojinete tipo Jeffcott.

» Determinar los parametros de diseno 6ptimos de forma numérica de los
absorbedores NIDVA-C3, C4 y C5 para el control de vibracion en sistemas rotor-
cojinete tipo Jeffcott utilizando el indice de rendimiento H...

* Realizar la comparacién entre la técnica de los puntos fijos extendida y la

técnica H,, utilizadas en este trabajo de investigacion.

1.6. METODOLOGIA

Para alcanzar las metas planteadas en este trabajo de investigacion, se utili-
zara la metodologia de Canales[4]. Este autor plantea que este método es una
solucion a la variabilidad de problemas en la formulacién de métodos dispersos
en investigacion, especificamente para trabajos de investigacion tecnoldgica en
el campo de la ingenieria, esta responde a la necesidad urgente de las diferen-
tes escuelas de ingenieria y de posgrado. Esta metodologia esta formada por 7
etapas, como se muestra en la Figura 1.1 y se describen a continuacion.

Documentacion: Esta fase de la metodologia se basa en recoleccién de in-
formacién acerca del tema principal, términos, definiciones, antecedentes, datos
numeéricos, toda informacién o documento que pueda ser de utilidad en esta in-
vestigacion. En este trabajo de investigacion se indagara acerca de los sistemas

de reduccion o mitigacion de vibraciones que existen y que han sido aplicados en
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la ingenieria, haciendo énfasis en sistemas DVA, NDVA, IDVA, NIDVA, inersores,

rotores tipo Jeffcott.

RESOLUCION,
DETERMINAGION > > VALIDACION, ANALISIS DE
DOCUMENTACION e CREACIONDE | DEFINICION | /- o\ n 6Ny | RESULTADOS Y

REDACCION
DEL

LA HIPOTESIS | DEL METODO . INFORME
PROBLEMA RESOLUCION | CONCLUSIONES FINAL

V&V

Figura 1.1: Metodologia de Canales.

En 2015, Hu y Chen [2] propusieron tres configuraciones de IDVAs, C3, C4
y C6, que demostraron una mejora mayor al 20 % con respecto al DVA tradicio-
nal implementando la técnica de optimizacién H,.. A partir de esto, se utilizaron
estas tres configuraciones como objeto de estudio en la mitigacidén de vibracio-
nes con absorbedores dinamicos. Debido a la efectividad y desempeniio de estas
configuraciones C3, C4 y C6, se eligieron para ser implementadas en un NIDVA
para rotor tipo Jeffcott.

Con la finalidad de conocer las limitaciones que existen en dichos sistemas,
asi como su rendimiento y compararlos con los resultados de esta investigacion,
se elige un sistema rotor-cojinete tipo Jeffcott ya que es considerado un mode-
lo simplificado de un sistema rotodinamico y permite comprender los principios
basicos de las vibraciones en rotores.

Determinacion del problema: En la industria de maquinaria rotodinamica,

el control de vibraciones es un factor clave para la eficiencia y durabilidad de
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los sistemas. Sin embargo, los métodos tradicionales presentan dificultades para
minimizar la respuesta en frecuencia de sistemas rotodinamicos. Esto genera un
aumento en el desgaste de componentes, mayores costos de mantenimiento y
reduccion de la vida util del sistema.

Actualmente, la implementacion de NIDVAs optimizados se ha propuesto co-
mo una solucién efectiva para el control de vibraciones. Sin embargo, aun no ha
sido explorada la optimizacién de estos dispositivos y su impacto en sistemas
rotodinamicos.

Por lo tanto, esta investigacion busca abordar esta problematica mediante la
determinacion y analisis de parametros 6ptimos para NIDVAs C3, C4 y C6 en
rotores tipo Jeffcott.

Creacion de la hipotesis: En esta fase se tiene que describir lo que se espe-
ra obtener como resultado del trabajo de investigacion. Para este caso, la hipote-
sis es:

“Se espera que la implementacion de técnicas de optimizacion y ajuste en
los NIDVAs C3, C4 y C6 de un rotor tipo Jeffcott mejore el rendimiento de estas
configuraciones, reduciendo la amplitud de la funcién de respuesta en frecuencia
(FRF) del sistema y permitiendo un mejor control de las vibraciones en sistemas
rotodinamicos”.

Definicion del método: Se debe elegir la metodologia general para abordar
la investigacion y el método concreto a utilizar, para alcanzar las metas propues-
tas.

Por lo tanto, en este trabajo se utilizaran las ecuaciones de Euler-Lagrange
con el fin de obtener el modelo matematico que rige el comportamiento dinamico
de los sistemas NIDVA C3, C4 y C6 en un rotor tipo Jeffcott. Posteriormente,
mediante el analisis modal y un tratamiento matematico complejo, se obtendra la
funcion de respuesta en frecuencia de los sistemas antes mencionados.

Posteriormente, se utilizara la técnica de los puntos fijos extendida y el criterio
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H,, para determinar los parametros 6ptimos de los sistemas NIDVA C3, C4 y C6
en un rotor tipo Jeffcott.

La técnica de los puntos fijos extendida es un método de optimizacion euristi-
co y cuasi-Optimo pues, se basa en la observacién de como se comporta un
sistema. Ademas, permite encontrar ecuaciones simplificadas de los parametros
optimos de dichos sistemas.

Por otro lado, el criterio H,, proporciona una solucion optima debido a que
su formulacion matematica es robusta y bien definida, y minimiza las maximas
amplitudes de vibracion en las frecuencias resonantes del sistema. Ademas, el
criterio H,, optimiza el rendimiento en todo el rango de frecuencias, lo que lo
hace mas flexible y adecuado para sistemas complejos.

Debido a esto, se emplearan ambos métodos en esta investigacion. Pues,
mientras la técnica de los puntos fijos extendida proporciona ecuaciones simplifi-
cadas de los parametros del sistema, el criterio H,, al proporcionar una solucién
optima, respaldara los resultados del método de optimizacién anterior.

Resolucidn, validacion y verificacion: Se utilizara como herramienta ma-
tematica el software Maple para desarrollar ecuaciones complejas con la finali-
dad de simplificar las ecuaciones, obtener parametros y graficar la respuesta en
frecuencia de los NIDVAs C3, C4 y C6 en rotor tipo Jeffcott.

Debido a que esta investigacion se basa en el analisis modal y tratamiento
matematico para obtener parametros dptimos sin la construccion de un prototipo
fisico. La validacion de los resultados se realizara mediante modelos matemati-
cos, ecuaciones simplificadas y representaciones graficas obtenidas a partir del
software Maple.

Analisis de resultados y conclusiones: Después de obtener los resultados,
se analizaran a detalle para compararlos con las limitaciones y ventajas de ab-
sorbedores dinamicos de vibracion anteriores a los NIDVAs, reportados en esta

investigacion. Ademas, se planteara si los resultados obtenidos afirman o refutan
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la hipdtesis. Esto dara paso a nuevas investigaciones y trabajos futuros.
Redaccion del informe final: Luego de la obtencion de resultados, se es-
cribira de forma detallada la metodologia de investigacion, resultados, analisis y
conclusiones de este trabajo de investigacion. Esto, con el fin de comunicar de
manera clara y precisa al lector los resultados, analisis y conclusiones obtenidas
de la optimizacion de NIDVAs C3, C4 y C6 para supresion de vibraciones en sis-

temas rotor-cojinete tipo Jeffcott.
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Capitulo 2

ESTADO DEL ARTE

2.1. ROTORES

El rotor, en ingenieria mecanica, es un elemento de una maquina que gira al-
rededor de su propio eje. Su funcidn principal es rotar para transmitir movimiento
o energia. El tamano y la forma del rotor varian dependiendo de la aplicacion del
mismo. A continuacion se presentan las aplicaciones de un rotor.

-Turbina. Se emplean en los generadores y motores de un avion. Este tipo de

rotores transforma la energia de fluidos en energia mecanica;

Figura 2.1: Diseno en 3D de un rotor de freno para automévil [5].

-Freno. Son los mas comunes en los vehiculos y trabajan junto con las pasti-

llas de freno. Su objetivo es detener o reducir la velocidad de un coche a través

11
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de la friccién. Por ejemplo, en la Figura 2.1 se observa un rotor de freno para
automovil.
-Motores eléctricos. Estos rotores transforman la energia eléctrica en un mo-

vimiento rotacional. Por ejemplo, el motor ilustrado en la Figura 2.2;

Figura 2.2: Motor eléctrico [10].

-Compresores. Los rotores compresores son los que mas se utilizan en los
dispositivos y sistemas de climatizacion y refrigeracion. Lo que hacen es compri-

mir gases para elevar la presion y temperatura [6].

2.2. ROTOR TIPO JEFFCOTT

El rotor Jeffcott fue introducido en 1919 por H.H. Jeffcott y se compone por un
Unico disco montado simétricamente sobre un eje elastico uniforme. Ademas, es
considerado el modelo de rotor mas simple.

En la Figura 2.3 se puede ver que Jeffcott fundamento su disefio en un ro-
tor rigido simétrico caracterizado porque su velocidad de régimen no supera su
primera velocidad critica. Ademas, considerd los parametros de la siguiente ma-
nera: la rigidez del sistema incluye la sumatoria de las rigideces de soportes y

disco; la masa de todos los componentes participa en el movimiento vibratorio. El

12
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A i==s8

Figura 2.3: Rotor tipo Jeffcott [7].

rotor contemplaba un disco de masa desbalanceada montado en la parte central
del eje flexible, soportado en extremos rigidos y donde la viscosidad actiia como

medio de amortiguamiento [8].

Eje elastico

Disco
Desbalanceado ““““ﬁﬁ. l

Soportes

/

Figura 2.4: Rotor de Jeffcott [9].

El estudio y analisis de parametros del rotor de Jeffcott fue el punto de partida
de los fundamentos de la dinamica de los rotores flexibles. Este rotor ilustrado en
la Figura 2.4, permite tener una buena percepciéon y comprension de los fenéme-
nos fisicos que se presentan en la maquinaria rotatoria, como la presencia de
una velocidad critica y el efecto del amortiguamiento en respuesta del sistema.

Para las fuerzas que actian sobre el sistema, se considera normalmente que
el eje no tiene masa y que el disco tiene una masa M. Sin embargo, la masa del
eje puede incluirse colocandola agrupada con el disco sin pérdida de precision.
Dado que el disco esta centrado en el eje, no se incluyen los momentos giroscopi-
cos del disco para el analisis de la 12 velocidad critica del rotor. Los cojinetes se

consideran soportes simples y no proporcionan amortiguacion. Se supone que el

13
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amortiguamiento del rotor actua en el centro del eje.

El funcionamiento de un compresor o turbina multietapa en su primer modo es
similar al de un rotor Jeffcott. A través del analisis de la velocidad critica, es posi-
ble simplificar un compresor o turbina a un rotor Jeffcott, calculando la masa y la
rigidez modal del rotor en su primer modo. Estas caracteristicas son fundamen-
tales para evaluar de manera rapida las propiedades optimas de los rodamientos
correspondientes a este rotor, como se ilustra en la Figura 2.5, donde se muestra

una bomba centrifuga representativa de este tipo de sistemas rotodinamicos.

Figura 2.5: Bomba Centrifuga Helicoidal [11].

El rotor de Jeffcott se diferencia de otros ya que tiene un eje elastico y porque
el comportamiento de este es similar al de un compresor o una turbina. Ademas,
su capacidad para representar el comportamiento de un rotor en su primer mo-
do de vibracién permite una evaluacion efectiva de las propiedades mecanicas,
como la masa y la rigidez. Esto es fundamental para optimizar el disefo de ro-
damientos y mejorar la estabilidad y el rendimiento de la maquinaria rotativa. Sin
embargo, existen vibraciones mecanicas en el sistema provocadas por desba-
lance vy, con el tiempo, producen desgaste hasta llegar a afectar la eficacia del

mismo.

14
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2.3. SISTEMA ROTOR-COJINETE JEFFCOTT

Los elementos béasicos de un sistema rotor-cojinete son: el disco, el eje, los
cojinetes y los sellos, ademas de las masas de desbalance [12] [13]. Mientras en
el rotor de Jeffcott no se toman en cuenta los cojintes y resulta ser un modelo
teorico, en este tipo de rotor se toma en cuenta el sistema completo para realizar
el andlisis con mayor precision de la dinamica del rotor, como se ilustra en la

Figura 2.6, un sistema rotor-cojinete tipo Jeffcott.

COJINETE
;‘ DERECHO

COJINETE IZQUIERDO

o
S <
—

Figura 2.6: Sistema Rotor-Cojinete Jeffcott [14].

La causa mas frecuente de vibraciones en maquinas rotatorias es el desba-
lance. Cuando el eje principal de inercia del rotor no coincide con el eje geométri-
co del sistema se genera el desbalance, este provoca vibraciones que producen
fuerzas indeseables que se transmiten directamente a los elementos mecanicos,

como los cojinetes del rotor.
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Ademas, existen las vibraciones causadas por resonancia, esto ocurre cuan-
do la frecuencia de excitacién se encuentra a la par con la frecuencia natural
del rotor. Dichas vibraciones generan efectos de desbalance catastréficos para
el sistema. Por ello, existen métodos y/o dispositivos para atenuar este tipo de
vibraciones [15]. A continuacion se presentan algunos modelos de absorbedores

de vibracion dinamica importantes para contrarrestar estos efectos.

24. DVA

Debido a los efectos de resonancia en el campo de la mecanica, Frahm [16]
presentd un dispositivo con el fin de minimizar las amplitudes de vibracion en un
sistema, llamado absorbedor dinamico de vibracion.

Absorbedor dinamico de vibraciones, por sus siglas en inglés DVA (Dynamic
Vibrations Absorber). También conocido como amortiguador de masa sintoniza-
da, TMD (Tuned Mass Damper). Un sistema con DVA clasico se compone de dos
partes principales: el sistema primario o estructura principal y el sistema secun-

dario o el absorbedor.

ABSORBEDOR DINAMICO DE VIBRACION

m

ESTRUCTURA PRINCIPAL

Figura 2.7: DVA, a) No amortiguado y b) Amortiguado [17].
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Un absorbedor de vibraciones es un sistema vibratorio masa-resorte relativa-

mente pequeno acoplado a la masa principal M1, y sintonizado de tal manera

/

. 1/2 . . . .
que su frecuencia natural % sea igual a la frecuencia w de la fuerza excitatriz

o perturbadora del sistema principal.

DVA No Amortiguado

DVA Amortiguado

No presenta mecanismos de disipacion de
energia, lo que significa que toda la energia

de vibracion se transfiere al sistema.

Incorpora un mecanismo de
amortiguamiento que disipa la energia de las
vibraciones. Esto puede ser a través de
materiales viscoelasticos o mecanismos

mecanicos.

Tiene un comportamiento mas susceptible a

la resonancia. Si la frecuencia de excitacion

coincide con la frecuencia natural del
sistema, puede generar vibraciones
amplificadas.

Su respuesta es mas efectiva en una gama
mas amplia de frecuencias, ya que el
amortiguamiento ayuda a controlar picos de

vibracion y reduce la resonancia.

Tiende a ser mas eficiente en un rango de
frecuencia especifico, donde se puede
ajustar la frecuencia natural del absorbedor

para coincidir con la de la vibracion a mitigar.

Generalmente, es mas estable en su
comportamiento, evitando el fendmeno de
resonancia que puede ocurrir en sistemas no

amortiguados.

Suele ser mas simple en términos de disefio

y construccidn, ya que no requiere

mecanismos adicionales para el

amortiguamiento.

Puede ser sintonizado para ser efectivo en
un rango de frecuencias mas amplio, lo que

permite su uso en diversas aplicaciones.

Tabla 2.1: Cuadro comparativo de DVA no amortiguado y amortiguado.

Los absorbedores dinamicos de vibraciones son dispositivos disefiados para
reducir o eliminar vibraciones indeseadas en estructuras y maquinaria.

En la Figura 2.7 se puede observar la primera clasificacién de los DVA’s. En
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la Tabla 2.1 se presentan las diferencias de comportamiento y rendimiento entre
un DVA no amortiguado y un DVA amortiguado.

Se puede concluir que el DVA no amortiguado tiene mejor desempeno a de-
terminada frecuencia, es propenso a la resonancia y cuenta con un disefio mas
simple. Por otro lado, el DVA amortiguado es eficaz para un amplio rango de fre-
cuencias; el control de picos de la vibracion es mas sencillo, por lo tanto, es mas
estable [17].

A pesar de las soluciones analiticas presentadas por Ormondroyd y Den Har-
tog para el disefio éptimo del DVA por medio de la técnica de los puntos fijos, en
este punto aun existen limitaciones, ya que los DVA pueden tener un desempeno
deficiente si no estan sintonizados a determinada frecuencia de vibracion. Esto
disminuye la eficacia de los DVA en sistemas donde las condiciones cambian
debido a variaciones en las propiedades del sistema o desgaste de los compo-

nentes [18].

2.5. NDVA

ABSORBEDOR DINAMICO DE VIBRACION

P

d (') : Tx F(r) ‘lx
| g 3 L3

EH ¢ M

§K T\//” — |

b)
ESTRUCTURA PRINCIPAL

Figura 2.8: Absorbedor dindmico de vibraciones a) tradicional, b) no tradicional
[17].
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Un absorbedor dinamico de vibracion no tradicional, por sus siglas en inglés
NDVA (Non traditional Dynamic Vibration Absorber) se ilustra en la Figura 2.9. En
2001, Ren [19] present6 un diseno variante del DVA clasico. El sistema consiste
en un amortiguador conectado directamente a tierra, en lugar de estar conectado

al sistema principal. La Figura 2.8 se muestra la comparacién del DVA y NDVA.

I

fl k c =1

M
xll

K

L/

Figura 2.9: Absorbedor dindmico de vibraciones no tradicional, NDVA [19].

mn

También se realizé la comparacién de estos absorbedores respecto a su ren-
dimiento para reducir las vibraciones en un sistema. El DVA clasico se sintoniza a
frecuencia mas baja que la frecuencia de funcionamiento del sistema; el NDVA se
sintoniza a frecuencia ligeramente mas alta que la frecuencia de funcionamien-
to del sistema. Asi, el NDVA tiene mayor rango de frecuencias para interactuar
con el sistema en distintas condiciones, brindando mayor efectividad. También, el
NDVA utiliza un coeficiente de amortiguamiento mayor que el DVA. Por lo tanto,
el NDVA tiene mayor capacidad para disipar la energia de vibraciones y como
resultado, mejor rendimiento que el DVA.

De acuerdo con Ren, la principal ventaja del NDVA radica en que sin la ne-
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cesidad de aumentar la masa, se reducen de manera eficaz las vibraciones del
sistema en comparacién con el DVA convencional. Por lo tanto, el NDVA tiene ma-
yor eficiencia y rendimiento al reducir vibraciones, comparado con el DVA clasico

[19].

Comparison of the two models

Model # Lopt G(r) = G(r)* G(r=f") G
A 0.8696 0.1923 3.786 3.476 2.522
B 1.085 0.2675 3.104 2.795 2376

%r1 = 0.7999, r; = 1.049 for Model A; r; = 0.9243, r, = 1.224 for Model B.

Tabla 2.2: Cuadro comparativo de los pardmetros 6ptimos de, A) DVA y B) ND-
VA [20].

Posteriormente, Liu y Liu [20] propusieron el principio de optimizacion del ND-
VA, en términos de minimizar la respuesta de la amplitud media normalizada del
sistema principal bajo excitacion armoénica. Aplicando el método de Brock, en-
contraron los parametros éptimos para el NDVA, como se muestra en la Tabla

2.2.

0.5 1 ! L ! ! 1
05 06 07 08 09 1 1.1 12 13 14 15

r

Figura 2.10: Grafica de respuesta de la amplitud media normalizada del, DVA
(linea sélida) y NDVA (linea discontinua) [20].

Los resultados demostraron que el NDVA es mas efectivo en la supresion de

vibraciones del sistema principal, en comparaciéon con el DVA tradicional, como

20
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se observa en la Figura 2.10.

En la Tabla 2.2 se observan los parametros éptimos del DVA y NDVA, modelo
A 'y modelo B respectivamente. Dénde, G es la respuesta de la amplitud media
normalizada del sistema principal. Luego, en la Figura 2.11 se muestra la grafica
de la respuesta de la amplitud media normalizada del DVA y NDVA. Dénde, la
linea sdlida es el modelo A (DVA) y la linea punteada es el modelo B (NDVA).

Por otra parte, Cheung [21] logré la sintonizacion optima del NDVA mediante
la teoria de los puntos fijos. Ademas, se demostrd analiticamente que el NDVA
brinda mayor supresion a la respuesta de la velocidad maxima de vibracion del

sistema principal, comparado con el DVA clasico.

3.5

Velocity

amplitude ratio 3}

2.5F

0.5

1 Il 1 L 1
0 1 2 3 4 5 6 7 8 9 10

Frequency ratio, r

Figura 2.11: Comparacion de graficas de la relacién de amplitud de velocidad en-
tre la vibracién del DVA y NDVA en la relacién de masas [21].

El desempeno del NDVA puede ser mejor que el del DVA, en ciertas aplica-
ciones. Sin embargo, existen aplicaciones donde no se puede utilizar el NDVA.
Pues, es imposible conectar el absorbedor a tierra mediante un amortiguador.
Por ello, se recomienda utilizar el absorbedor dinamico de vibracién no tradicio-
nal (NDVA), siempre y cuando su configuracion sea practica para aplicaciones

gue requieran minimizar la respuesta de la velocidad maxima de vibraciéon del
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sistema principal [21].
Mas tarde, Heidari y Monjezi aplicaron el DVA y el NDVA a un rotor tipo Jeffcott
para supresion de vibraciones, como se muestra en la Figura 2.12. Obtuvieron

los parametros Optimos de ambos sistemas mediante la teoria de los puntos fijos

[22].
Y
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Figura 2.12: Absorbedor dinamico de vibraciones no tradicional, NDVA, imple-
mentado en Rotor tipo Jeffcott [22].
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Figura 2.13: Respuesta en frecuencia del Rotor tipo Jeffcott con DVA y NDVA,
relacién de masa similar [22].

Los resultados indican que el NDVA tiene mejor control de vibraciones en
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rotores tipo Jeffcott, en comparacién con el DVA tradicional, como se observa en
la Figura 2.13.

En 2022, Mendoza Larios et al. [23] realizaron un estudio para la supresion de
vibraciones en una estructura sometida a excitacion inercial ilustrada en la Figura
2.14. Donde obtuvieron ecuaciones simplificadas para los parametros de diseno
optimo del NDVA, mediante la técnica de los puntos fijos.

También, implementaron la optimizacion del indice de rendimiento H,, para
dicho sistema. También obtuvieron los parametros de diseno 6ptimos del NDVA
de forma numérica utilizando el método de Nishihara, los resultados de dicha

optimizacion se ilustran en la Figura 2.15.

K Hc
JSTT77 7777777777777 77

Figura 2.14: Sistema con NDVA bajo excitacién inercial [23].

Ademas, expusieron el incremento de supresion de vibracidén que proporciona
el NDVA en comparacion con el DVA clasico. Para la relacion de masa, tomaron
el rango de valores 1% < 1 < 20 %. En base a este rango el NDVA presenta una
mejora de 0.36 — 15.7 % en la supresion de vibracion, comparado con el DVA.

Existen distintas fuentes de vibracién en sistemas mecanicos; en sistemas
rotodinamicos, la fuente principal es el desbalance de masas y los rodamientos

defectuosos utilizados en el sistema.
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2.5. NDVA CAPITULO 2. ESTADO DEL ARTE

El disefio del absorbedor dinamico de vibracion no tradicional (NDVA) es efi-
caz en el control de vibraciones de sistemas sometidos a fuerzas perioddicas y

siempre que su configuracion sea practica en las aplicaciones.

T
Puntos fijos

- = = {=cero
- = = {=inflinito
—— Criterio Hw

6

5

|H(u, q, ¢, Q)|
{Fy] o

N

pa—
T

1.8

Figura 2.15: Comparacién de las curvas FRF éptimas del NDVA y el DVA clésico,
norma H (), y puntos fijos [23].

Sin embargo, en este punto siguen existiendo obstaculos para el desempefo
optimo de maquinas rotatorias con NDVA. Como la capacidad para mitigar vibra-
ciones usando el absorbedor limitado a una frecuencia especifica. Esto resulta
ser un inconveniente en maquinas rotodinamicas con un amplio rango de opera-
cién, como turbinas, compresores, bombas, etc. Por ejemplo, una turbina ilustra-

da en la Figura 2.16.

Figura 2.16: Turbina de un motor de avién. [24]
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Mas adelante, se presentan dispositivos, investigaciones y estudios que me-
joran el desempefo dinamico de los absorbedores dinamicos de vibracién amor-
tiguados. Tal como el inersor, redes mecanicas con inersor y la técnica de los

puntos fijos extendida.

2.6. ANALOGIA FUERZA-CORRIENTE

En mecanica, el control de vibraciones es analogo al filtrado de senales en
electricidad. Su implementacion es con el fin de reducir o eliminar curvas no
deseadas. En mecanica, llamadas vibraciones mecanicas o vibraciones de reso-
nancia, y en electricidad, las senales de ruido o interferencia. Su objetivo comun
es aplanar las curvas de las graficas correspondientes, ya sea en términos de
amplitud de vibraciones o amplitud de las senales de interferencia. Logrando es-

tabilizar el comportamiento del sistema y alcanzar un rendimiento éptimo.

RED ELECTRICA RED MECANICA
1/R T c
i / | /gz
)i @ )I( %)
U ---f ........... V) f
Pros H 54
L/ ANALOGIA 7
VES--10N—E 2> (E—l7

N4

Figura 2.17: Analogia de la red eléctrica y mecanica [25].

Elfiltrado de senales en electricidad es implementado mediante circuitos eléctri-
cos o redes eléctricas, integradas por componentes eléctricos (resistor, inductor,

capacitor, etc.). De la misma forma, para supresion de vibraciones en el campo
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2.6. ANALOGIA FUERZA-CORRIENTE CAPITULO 2. ESTADO DEL ARTE

de la mecanica, se utilizan redes mecanicas, esto se refiere a la analogia fuerza-
corriente ilustrada en la Figura 2.17.

Una red mecanica es un sistema integrado por elementos mecanicos: masa,
resorte, amortiguador. Unidos fijamente con el propdésito de atenuar fuerza, mo-
vimiento o energia dentro de un sistema. En una red mecanica se restringe a que
el movimiento sea paralelo a un eje fijo y relativo a un punto fijo, llamado suelo o
tierra. Cada elemento mecanico como el resorte, consta de dos puntos extremos,

conocidos como nodos o terminales.

f — f —= f—

-—fomvmm—- YWYYYYYY‘-' ykviahi

+v +Vv v m
Earth

Figura 2.18: Diagrama de cuerpo libre del resorte, el resistor y la masa. [26]

En el caso de la masa, una de las terminales es al centro de gravedad y la
otra es a tierra, como se observa en la Figura 2.18.

Firestone [26] introdujo una nueva analogia: fuerza - corriente. Donde la fuer-
za mecanica se relaciona con la corriente eléctrica, mientras que la velocidad se
relaciona con el voltaje. También, establecié equivalencias entre componentes de

redes mecanicas y eléctricas.

F Red F
lL Mecanica .L
Vg vy

Figura 2.19: Diagrama de cuerpo libre de una red mecénica. [27]

Smith [27] en la Figura 2.19 presenta un diagrama de cuerpo libre de una red
mecanica de un puerto (dos terminales). En esta red existe una convencion de
signos: una fuerza F positiva, que representa una fuerza de compresion y una

velocidad relativa positiva (v = v, — vy, CON v5 > v7), esto indica que los nodos se
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mueven juntos en la misma direccion. El producto de la fuerza F'y la velocidad re-
lativa v tiene unidades de potencia ([I/]), conocido como par fuerza-velocidad. El
par fuerza-velocidad describe la transferencia de energia en el sistema. Ademas,
no es necesario que los nodos del puerto estén conectados a tierra, lo que per-

mite un amplio analisis de la red mecanica.

Sistema mecanico Equivalencia Sistema eléctrico
fuerza — corriente
velocidad < voltaje
tierra mecanica — tierra eléctrica
resorte — inductor
amortiguador +— resistencia
energia cinética < energia eléctrica
energia potencial <o energia magnética
palanca — transformador
velocidad en el punto cero [ potencial en el punto cero

Tabla 2.3: Analogia fuerza-corriente.

Por lo tanto, la analogia fuerza-corriente definida como la movilidad en siste-
mas mecanicos y eléctricos, se organiza de la forma presentada en la Tabla 2.3.
La equivalencia masa-capacitor se omite ya que no es tan general, para ello

existe un nuevo elemento llamado inersor.

2.7. INERSOR

Malcom Smith [27] presentd un dispositivo mecanico de dos terminales, llama-
do inersor. Este dispositivo es considerado equivalente al capacitor en la relacion
mecanica-eléctrica.

Smith define el inersor como un elemento mecanico de dos terminales (como
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I F

-T{: L

b

Figura 2.20: Simbolo del inersor [28].

se ilustra en la Figura 2.20) y tiene la propiedad de que la fuerza que es aplicada

a los nodos, es proporcional a la aceleracion relativa entre ellos [27].

Mechanical Electrical

7 = k i i 1

W == —e! 25 tj is Lo Y(s) = —
[ L LBt 4 Vs e
Vo Vi d

dF : [

Tt ) Spring L(V2 Vi) Inductor

F

LL—H—E Y(s) = bs 4—{ }—.— Y(s) =
Vo V1

F= bd(v2 ) Inerter f= c—df L Capacitor

e WE oo | e b vaod
L L Z V4 R
Vo V1

F=o(vo—vy) Damper | /= %(Vg =) Resistor

Figura 2.21: Elementos de la red mecénica y eléctrica [29)].

Debido a las caracteristicas del inersor: es innecesario unir el inersor a la
masa mecanica; el inersor funciona adecuadamente en cualquier orientacion;
tiene masa pequena; es independiente del valor requerido de la inertancia. Por
lo tanto, su elemento eléctrico analogo es el capacitor como se observa en la

Figura 2.21.

28
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La fuerza desarrollada en el inersor, esta dada por la siguiente ecuacion:

F=b- (05— 1) (2.1)

Donde b es la inertancia y se encuentra en unidades de masa. v; y 7, son la
aceleracion en cada nodo del inersor.

Por lo tanto, en la ecuacion (2.1) se observa que la fuerza aplicada igual y
opuesta en cada nodo es proporcional a la aceleracion relativa entre los nodos.

Desde la introduccion del inersor en 2001, se han desarrollado distintas confi-
guraciones para la construccién del inersor practico. A continuacién se presentan

los disennos mas comunes de inersor.

2.7.1. Inersor Pinon Cremallera

CREMALLERA PINONES

/|

. le
|

TERMINAL 2 ’ TERMINAL 1
ENGRANES VOLANTE :

Figura 2.22: Esquema del modelo mecanico del inersor pinén-cremallera [28].

En la Figura 2.22 se presenta la configuracion del inersor pifion cremallera, el
cual esta integrado principalmente por cremallera, pifones, engranes, volante y

terminales.
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2.7. INERSOR CAPITULO 2. ESTADO DEL ARTE

También, se presenta en la Figura 2.23 una implementacion fisica del inersor

pifilon cremallera, realizado en la Universidad de Cambridge.

Figura 2.23: Implementacion fisica del inersor realizada en el Departamento de
Ingenierfa de la Universidad de Cambridge [28].

2.7.2. Inersor Husillo de Bolas

Figura 2.24: Inersor Husillo de Bolas [30]

El inersor husillo de bolas o ball-screw es un dispositivo de dos terminales
integrado por una varilla roscada, una tuerca y un volante conectado rigidamente

a la tuerca que puede girar dentro de la carcasa como se observa en las Figuras
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2.24y 2.25. La carcasa esta unida a la terminal 1 y la varilla roscada a la terminal

2, y no pueden girar una respecto a otra [30].

s e T L] . <
L. - | L,

X1
Carcasa

Figura 2.25: Esquema mecénico del inersor husillo de bolas [30].

2.7.3. Inersor Bomba de Engranajes

Las propiedades no lineales del inersor discutidas en [31] perjudicaron el ren-
dimiento y beneficios alcanzados de las configuraciones del inersor. Por ello, se
desarroll6 el inersor bomba de engranajes (ilustrado en la Figura 2.26), utilizando
elementos hidraulicos con el fin de incorporar un mayor nivel de amortiguacién

natural [32] [33].

Amortiguador-resorte Cilindro Pistén
X2 *

L

> @

— —

Barra
Tubo

Engranaje

Motor de bomba
Engranaje

Figura 2.26: Esquema mecdnico del inersor bomba de engranajes [30].
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2.7.4. Inersor Hidraulico

En la Figura 2.27 se ilustra el inersor inspirado en la configuracién bomba de

engranajes, en 2010 se realizd un prototipo de inersor hidraulico.

Indicador de presién |

Pistén

Figura 2.27: Prototipo de inersor hidrdulico [33].

2.7.5. Inersor de Fluido

En el inersor de fluido, el flujo del canal helicoidal actia como un volante de

inercia, suministrando la fuerza inercial necesaria.

Canal helicoidal

:%F lx ‘Fﬁ
Om = I =0

Biela Piston Cilindro hidraulico

Figura 2.28: Prototipo de inersor de fluido [34].

La Figura 2.28 muestra que el cilindro hidraulico y la varilla del piston actian
como los nodos o terminales del inersor. Por otro lado, cuando el piston empuja

el fluido en la parte izquierda del cilindro hidraulico, el fluido es forzado a través
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del canal helicoidal hacia la parte derecha del cilindro. Este flujo a través del ca-
nal helicoidal ayuda a compensar la pérdida de presion, generando la respuesta

inercial caracteristica del sistema [34].

2.7.6. Inersor Rotacional

El inersor rotacional es un dispositivo mecanico rotacional de dos nodos, con
la propiedad de que los pares iguales y opuestos T(t) en los nodos son propor-
cionales a la aceleracion angular relativa entre ellos [30]. Dicho inersor se ilustra

en la Figura 2.29.

o
VARV v U

Volante Cubierta Cajade cambios

Figura 2.29: Diagrama mecénico del inersor rotacional [30].

2.8. REDES MECANICAS CON INERSOR

Una red mecanica convencional consta de elementos como masas, resortes
y amortiguadores unidos rigidamente, entre dos nodos (terminales) a y b. Hu y
Chen [28] realizaron un estudio donde el uso de inersores en redes mecanicas
mejora en la supresion de vibraciones, comparandolos con las redes mecanicas
resorte-amortiguador.

Entre dos nodos pueden existir distintas configuraciones de redes mecanicas.
Las combinaciones de amortiguador, resorte e inersor para control de vibraciones
resultaron en 8 redes mecanicas efectivas, presentadas en la Figura 2.30.

C1 : Red mecanica integrada por un inersor y un amortiguador en paralelo.
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C2 : Red mecanica integrada por un inersor y un amortiguador en serie.

C3 : Red mecanica integrada por un resorte, un inersor y un amortiguador en

serie.

ki

.

c C
) l
c1 c2 c3
ki b—F
b1 c¢
ki
b ¢ ki
ca cs ceé

Figura 2.30: Redes mecdanicas basadas en inersor [28].

C4 : Red mecanica integrada por un resorte y un amortiguador en paralelo,

en serie con un inersor.

C5 : Red mecanica integrada por un resorte y un inersor en paralelo, en serie

con un amortiguador.

C6 : Red mecanica integrada por un inersor y un amortiguador en paralelo,

en serie con un resorte.

Liu et. al. [35] implementaron dichas redes mecanicas en el modelo de un
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cuarto de vehiculo. Debido a que el inersor y el amortiguador no poseen la carac-
teristica de carga estatica, estas 8 redes mecanicas tienen un mejor desempefo
en el modelo de un cuarto de vehiculo, anadiendo un resorte en paralelo a cada
red mecanica. Asi, se obtuvieron las 8 redes mecanicas optimizadas, ilustradas

en la Figura 2.31.
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| ¢ b ; 1 X,
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Figura 2.31: Ocho redes mecénicas optimizadas. [36].

2.9. IDVA

Un Absorbedor Dinamico de Vibraciones basado en Inersor (IDVA), es la sus-
titucion de una red mecanica basada en inersor, en el lugar del amortiguador de
un Absorbedor Dinamico de Vibraciones Tradicional (TDVA), como se observa en
la Figura 2.32.

Hu y Chen propusieron tres configuraciones de IDVAs, C3, C4 y C6 [37].

IDVA - C3: integrado por un resorte, un inersor y un amortiguador en serie.
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Figura 2.32: a) TDVA, b) IDVA [28].

IDVA - C4: consta de un inerter en serie con una conexion en paralelo de un

resorte y un amortiguador.

IDVA - C6: formado por un resorte en serie con una conexion en paralelo de

un inerter y un amortiguador.

Se demostré que el desempenio de estas configuraciones tiene una mejora
de mas del 20 % implementando el método H,,, en comparacién con el TDVA.
Anadiendo que, gracias al inersor existe un amplio rango de frecuencias efectivas
para estos absorbedores.

A continuacién se presenta evidencia grafica de la supresion de vibraciones
con IDVAs, mediante el método H...

Los IDVAs C4 y C6 tienen una respuesta en frecuencia similar al IDVA C3,
en la Figura 2.33 se presenta la respuesta en frecuencia del IDVA-C4. Por lo
tanto, los IDVAs presentan una curva de la respuesta en frecuencia, reducida en

comparacion con los dos primeros DVAs.
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En el caso del IDVA C5, la respuesta en frecuencia del sistema sigue perma-

neciendo alta, en comparacién con los IDVAs C3, C4 y C6.

12[ I
—(=zero |
= 10| — (=infinity ||
- — ¢=optimal
N 8 | (=optimal||
& —(=0.015 |
&) —_— i
: o
S 4 = i
=
o
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0.6 0.8 1 1.2 14 1.6 1.8
Q Qg Qg Qg . )
— w_M

Figura 2.33: Respuesta en frecuencia del IDVA-C4 [38].

Por ello, se eligieron estas tres configuraciones para implementarlas en apli-
caciones de control de vibraciones, como en suspensiones de vehiculos, vigas y
cables.

Por otro lado, Barredo et. al [38] presenta la técnica de los puntos fijos exten-
dida, con la finalidad de encontrar soluciones analiticas para los IDVAs C3, C4 y
C6. La técnica de los puntos fijos extendida permitio encontrar expresiones ma-
tematicas de forma cerrada, obteniendo los parametros dptimos para los IDVAs
C3, C4y C6.

En la Figura 2.34 se observa que la curva de la respuesta en frecuencia del
sistema, disminuye con el amortiguamiento 6ptimo obtenido mediante la técnica
de los puntos fijos extendida. Del mismo modo muestra los resultados del método

H.
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Comparando con la técnica de optimizacion H., en la Figura 2.34 se observa

que las curvas son similares.
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Figura 2.34: Comparacion entre la técnica de los puntos fijos extendida y la técni-
ca de optimizacién H,, de las curvas de la respuesta en frecuencia del NIDVA C4
[38].

Concluyendo que la técnica de optimizacion H,, tiene mejores resultados pa-
ra valores 5 menores a 0,1. Ademas, en [38] se demostr6 que, con la implemen-
tacion de la ténica de los puntos fijos extendida es posible obtener ecuaciones
simplificadas para el diseno de los absorbedores dinamicos de vibracion basados
en inersor.

Sin embargo, a pesar de las mejoras y beneficios de los IDVAs, la relacion de

masas fija sigue siendo un obstaculo para su desempeno.

2.10. NIDVA

Debido a la limitante de los IDVAs, Zhou et al. idearon un IDVA no tradicional,
que consta de la red mecanica C3 conectada entre la masa del DVA clasico y el

suelo (en lugar de estar conectado al sistema primario) [39], como se ilustra en la
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Figura 2.35. Este dispositivo fue inspirado en los DVAs no tradicionales (NDVAs)

que introdujo Ren en 2001 [19].
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Figura 2.35: a) TDVA, b) NIDVA-C3 [39].

Se demostré que el absorbedor dinamico de vibraciones basado en inersor
(IDVA-C3) y el absorbedor dinamico de vibraciones basado en inersor no tradicio-
nal (NIDVA-C3), implementando la técnica de los puntos fijos extendida (EFPT),

tienen un comportamiento similar en el control de vibraciones, Figura 2.36.

* Sin control
—-—- IDVAC3

—— NIDVAC3| -

0.6 0.8 1 1.2 1.4
A

Figura 2.36: Respuesta en frecuencia normalizada del sistema primario, optimiza-
do mediante la técnica de los puntos fijos extendida, cuando p = 0,05 [39].
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Sin embargo, el NIDVA C3 puede atenuar las perturbaciones transitorias con
mayor rapidez. Debido a que, cuando se optimiza mediante el criterio de maximi-
zacion de estabilidad, el NIDVA C3 presenta valores mayores en sus indices de
desempeno, comparado con el IDVA C3.

Por lo tanto, se mostr6 cémo el NIDVA tiene ventaja sobre el IDVA y el DVA
tradicional. Pues, con el NIDVA se logra una reduccion del 29.1 % en la amplitud
maxima de vibracion de la respuesta en frecuencia del sistema primario, y una
reduccion del 14 % en la longitud de carrera del absorbedor, en comparacion con
el TDVA ( mediante el criterio de maximizacién de estabilidad) [39].

Mas tarde, Barredo et al. presentaron un diseno de absorbedor dinamico de
vibracion basado en inersor no tradicional utilizando la red mecanica C4, NIDVA-
C4 [40].

En la Figura 2.37 se observa que el NIDVA-C4 fue inspirado en el TID (amor-

tiguador sintonizado con inersor) conectado a tierra.

C

b =m, :U:
(o

ks

Figura 2.37: Red mecénica C4 o TID [40].

Optimizando el dispositivo NIDVA-C4, presentado en la Figura 2.38, mediante
la técnica de los puntos fijos, se demostré que se obtienen mejoras en el ren-
dimiento dinamico del 2-15% y del 23-33% comparando el NIDVA-C4 con el
IDVA-C6 y el DVA clasico, respectivamente.

En cambio, el rendimiento dinamico del NIDVA-C3 con respecto al IDVA-C6 y
al DVA clasico es del 1-6 % y del 22-26 %, respectivamente.

Luego, se calculd el indice maximo de supresion de banda para NIDVA-C4

como 16% y 50% con respecto al IDVA-C6 y al DVA clasico. Por lo tanto, el
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Figura 2.38: Dispositivo de alto rendimiento NIDVA-C4 [40].

NIDVA-C4 de alto rendimiento supera a NIDVA-C3, y en consecuencia a los ID-

VAs y al DVA clasico, como se observa en la Figura 2.39.
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Figura 2.39: Gréfica de la respuesta en frecuencia del sistema mediante la técnica
de los puntos fijos [40].

Sin embargo, la implementacién del dispositivo propuesto no es tan comun
como el uso de absorbedores dinamicos de vibraciones basados en inersor ya
que, el NIDVA-C4 solo puede usarse para mitigar vibraciones en estructuras de
ingenieria civil o estructuras mecanicas estacionarias, segun lo concluido en [40].

Debido a esta limitante, en este proyecto se proponen los modelos NIDVA C3,
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C4 y C6 implementados en sistemas rotodinamicos. Especificamente para un

sistema rotor cojinete tipo Jeffcott.

2.11. NIDVAs EN ROTOR TIPO JEFFCOTT

Con el fin de atender la limitante de NIDVAs de solo poder implementarse en
sistemas estacionarios y al mismo tiempo minimizar la curva de la funcion de
respuesta en frecuencia (FRF) en sistemas rotodinamicos. En esta investigacion
se realiza la implementacion y optimizacién de los NIDVAs C3, C4 y C6, en un
sistema rotor-cojinete tipo Jeffcott, mediante la técnica de los puntos fijos exten-
dida (EFPT) y la técnica de optimizacion H..

A continuacién, se presentan los esquemas mecanicos de los modelos NIDVA
C3, C4 y C6 aplicados en un rotor tipo Jeffcott, ilustrados en las Figuras 2.40, 2.41
y 2.42.

Figura 2.40: NIDVA-C3 en Sistema Rotor-Cojinete Tipo Jeffcott.
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Figura 2.41: NIDVA-C4 en Sistema Rotor-Cojinete Tipo Jeffcott.
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Figura 2.42: NIDVA-C6 en Sistema Rotor-Cojinete Tipo Jeffcott.
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Capitulo 3

MARCO TEORICO

3.1. ANALISIS DIMENSIONAL

El analisis dimensional permite estudiar las relaciones entre distintas magni-
tudes fisicas, mediante unidades fundamentales. Las dimensiones de una mag-
nitud fisica (mecanica) son expresadas en términos de tres cantidades elementa-
les: longitud (L), masa (M) y tiempo (T'), expresadas en unidades de metros (m),
kilogramos (kg) y segundos (s), respectivamente, segun el sistema internacional
de unidades (Sl) [41].

El fundamento del andlisis dimensional es garantizar que ambos lados de
una ecuacion tengan las mismas dimensiones. Por ejemplo para la ecuacién de
movimiento rectilineo uniforme x = v-t, la comprobacién de sus dimensiones es

la siguiente,

[L] = [LT[T] (3.1)

L] = L] (3.2)

Por lo tanto, la ecuacién es fisicamente consistente.
De esta manera, el analisis dimensional permite convertir unidades de una

magnitud a otra, deducir formulas y comprobar errores en ecuaciones.
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A continuacion se observa en la Tabla 3.1 algunas variables fisicas, sus di-

mensiones y abreviaturas, expresadas en términos de las dimensiones funda-

mentales L, M, T.

Variable fisica Dimension Abreviatura
longitud
velocidad 5‘7 L1
tiempo
longitud
aceleracion 9—2 L2
(tiempo)
masa
densidad — MIL™3
(longitud)3
masa - longitud =
fuerza - MLT
(tiempo)?
masa - (longitud)?
trabajo ( gitud) ML2T 2
(tiempo)?
masa
amortiguamiento _— MT1
tiempo
masa
rigidez SR MT-2
(tiempo)

Tabla 3.1: Dimensiones y abreviaturas de algunas variables fisicas, en unidades del

SI [17].

Asi, el analisis dimensional permite la comprensién de los fenémenos fisicos

sin necesidad de realizar experimentos directos, el desarrollo de modelos teori-

cos y la simplificacién de problemas complejos. Su aplicaciéon es esencial en el

desarrollo de nuevas ecuaciones, la validacion de férmulas y la resolucion de

problemas en diversas areas cientificas y tecnoldgicas.
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3.2. TEOREMA Il DE BUCKINGHAM

Teorema 7 de Buckingham, también conocido como el método de repeticion
de variables. Introducido por el cientifico ruso Dimitri Riabouchinski en 1911, di-
cho teorema se popularizé en 1912 por los estudios del ingeniero Edgar Buc-
kingham.

El teorema 7 de Buckingham es parte fundamental del analisis dimensional,
pues dicho teorema permite describir un fenémeno fisico con una cantidad menor
o igual de parametros fisicos, en comparacion con los parametros adimensiona-
les involucrados inicialmente [42].

Teorema 1. Si ¢, ¢a, ..., ¢, SON n variables fisicas involucradas en un problema

particular y si existe entre dichas variables una relacion funcional de la forma:

o(q1, 92, -y qn) = 0. (3.3)

Entonces, las n variables se pueden combinar para formar exactamente (n —
j) variables adimensionales independientes, donde j es el rango de la matriz
dimensional.

Cada variable adimensional es llamada un numero II o factor adimensional. El
simbolo II se utiliza debido a que las variables adimensionales se pueden escribir
como un producto de las variables ¢, ¢o, ..., ¢, €levadas a alguna potencia [42].

Entonces, reescribiendo la ecuacion 3.3 se tiene,

O(I1y, M, ..., ) = 0. (3.4)
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La ecuacién que permite calcular los numeros II; es:

J
I =VD; [[V*F,, coni=12...n—j (3.5
k=1

Donde VD son las variables fisicas relevantes en el problema y VF son las
variables dinamicas que hacen las veces de variables fundamentales (variables
repetidas) y los a, se escogen de manera tal que cada II; sea adimensional.

Finalmente, se puede establecer una relacion entre los niumeros I1;, de la forma:

[Ty = ¢y, 13, ..., 11, ;) (3.6)

La forma arbitraria de escoger las variables repetidas lleva a diferentes con-
juntos de factores adimensionales; sin embargo, en cada caso (n - j) son inde-

pendientes y, de acuerdo con el algebra lineal, forman un conjunto completo.

3.3. ECUACIONES DE EULER-LAGRANGE

Las ecuaciones de Euler-Lagrange surgieron a raiz de la idea de que la evo-
lucion de un sistema puede determinarse minimizando una integral, denominada
integral de accion. En esta integral, el integrando es conocido como la lagrangia-
na L, y hace referencia a la diferencia entre las energias cinéticas y las energias
potenciales asociadas al sistema en estudio [17] [43]. Debido a esto, el formulis-
mo de Lagrange y el principio de Hamilton son las bases de la mecanica clasica.

El principio de Hamilton establece que la evolucion de un sistema fisico se
determina con ayuda de un principio variacional, que se basa en la lagrangiana
L del sistema, la cual contiene toda la informacion sobre las variables del sistema

y las fuerzas que actian sobre él [44].
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De este modo, las ecuaciones que rigen el movimiento de un sistema mecani-
co se obtienen mediante el método Euler-Lagrange. A continuacién, se presenta

la ecuacion de Euler-Lagrange para sistemas mecanicos conservativos.

4 (oL) oL _
dt \ 9¢; Oqi

Donde L es el lagrangiano y ¢; es la i-ésima variable generalizada del siste-

0 (3.7)

ma. Luego, el lagrangiano es la resta de la energia cinética 7' menos la energia

potencial U del sistema.
L=T-U (3.8)

Por otra parte, para sistemas no conservativos la ecuacion de Euler-Lagrange
es:

d (OL oL 0D;

dt\oq) dq ' 94

Donde F; representa la i-ésima fuerza ejercida sobre el sistema, y D; es la disi-

(3.9)

pacion de energia del sistema [45].

3.4. TEOREMA DE VIETA

El Teorema de Vieta, formulado por Francois Viéte en el siglo XVI, es una serie
de relaciones entre los coeficientes de un polinomio y sus raices. Este teorema
es fundamental en el campo del algebra y proporciona herramientas utiles para
el andlisis de polinomios.

Mediante el teorema de Vieta, es posible resolver ecuaciones complejas, en-
contrar raices faltantes y construir ecuaciones polindmicas a partir de sus raices.

En el teorema de Vieta, se considera un polinomio ménico (donde el coefi-
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ciente del término de mayor grado es igual a 1, (a,, = 1), de la forma [46]:

1

ant" + ap 12" 4t art +ag=0 (3.10)

En la ecuacién (3.10) existen n raices z, z», ..., z,. Dichas raices se pueden

encontrar en los términos independientes del polinomio: ag, ay, as, ..., a,_1.

Relacionando las raices con los términos independientes, se tiene:

an_lz—(ZUl—l—"'—FCUn) (311)
Upo = (129 + -+ -+ 212, + X223+ - - + Tp1x,) (3.12)

Ap—5 = (—1)j Z Li Ly« * LL“l'j (313)

1<y <--<i;<n

ag = (—1)"zyz9 -+ - 1y (3.14)

En el caso de un polinomio monico cuartico, de la forma:

zt + agz® + avr? + a1z +ag =0 (3.15)

Los coeficientes de la ecuacion (3.15) pueden ser expresados en funcion de

las sumas y productos de sus raices x1, 2, 3, x4, Presentados a continuacion:
a3 = —(x1 + o+ x3 + T4) (3.16)

a9 = (xlxg + T1X3 + T1T4 + ToX3 + oy + 333334) (31 7)
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a1 = — (717223 + T1T2T4 + T1T3T4 + T2T3T4) (3.18)

ayg = T1X2X3T4 (31 9)

3.5. OPTIMIZACION

La optimizacion es un proceso que se centra en identificar y mejorar la res-
puesta frente a un problema. Los problemas de optimizacion se clasifican en
lineales y no lineales.

Los problemas de optimizacion principalmente se integran por:

-Un conjunto de restricciones.

-Un conjunto de soluciones factibles que tenga todas las combinaciones po-
sibles de valores de variables independientes que satisfacen el conjunto de res-
tricciones.

-Una funcién objetivo, que vincula las soluciones factibles con el desempeno-
rendimiento del sistema [47].

En problemas de optimizacién, es importante identificar las primeras y segun-
das derivadas de la funcién en estudio. La informacién que se obtiene al calcular
la primera derivada de una funcién es:

- Proporciona una trayectoria de maxima inclinacion de la funcién obijetivo.

- Indica si se ha alcanzado la trayectoria dptima.

Y la informacién obtenida a través de la segunda derivada es:

- Indicara si es un maximo cuando f”(x) es negativa 0 un minimo cuando

f"(z) es positiva [48].
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3.6. TECNICA DE LOS PUNTOS FIJOS

La técnica de los puntos fijos fue presentada por Den Hartog y tiene la finali-
dad de minimizar la amplitud maxima de la respuesta adimensional de un sistema
mecanico en los puntos invariantes [49].

Esta técnica de optimizacion se basa en dos condiciones de amortiguamiento,

cuando ¢ — 0y, cuando ¢ — oo, como se observa en la Figura 3.1.

10

Figura 3.1: Grafica del comportamiento del sistema cuando los coeficientes amorti-
guamiento de un DVA son: ( — 0y ¢ — oo [17].

Mediante dichas condiciones de amortiguamiento, se obtienen los puntos fi-
jos o puntos invariantes que se determinan a través de la respuesta en estado
estable del sistema.

Den Hartog establece que todas las curvas pasan a través de los puntos fijos
y son independientes del amortiguamiento.

Esto quiere decir que todas las funciones de respuesta en frecuencia del sis-
tema intersectan estos puntos fijos, sin importar cuanto varie el amortiguamiento,

como se observa en la Figura 3.2.
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Figura 3.2: Gréfica de la FRF del sistema primario de un DVA clésico, consideran-
do distintos coeficientes de amortiguamiento [17].

Esta técnica se emplea con el fin obtener los parametos éptimos mediante un
tratamiento matematico y asi, encontrar la curva FRF 6ptima del sistema, la cual

sera la curva mas plana en todo el rango de frecuencias de excitacion.

3.7. TECNICA DE LOS PUNTOS FIJOS EXTENDIDA

La técnica de los puntos fijos extendida (EFPT), desarrollada por Barredo et.
al. [38], es empleada para el desarrollo de expresiones algebraicas de forma
cerrada con el fin de obtener el diseno 6ptimo de absorbedores dinamicos de
vibracion basados en inersor.

La técnica de optimizacion de los puntos fijos extendida se basa en ajustar los
puntos invariantes del sistema para determinar parametros 6ptimos. Estas varia-
bles estan vinculadas a la respuesta del sistema R(s) y a su norma euclidiana

||H||. Su representacidon matematica es la siguiente:

R(s) = |[H]] (3.20)
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A continuacion se presenta la metodologia a seguir en esta técnica de optimi-
zacion.
1. Obtener el modelo matematico del sistema, la ecuacién de movimiento re-

sultante se encontrara en el dominio s de Laplace.

2. Encontrar la funcion de transferencia H(s) del sistema, llamada también la

respuesta R(s) del sistema, ecuacion (3.20).

3. Sustituir la siguiente expresion s = jw, en la funcidn de transferencia H (s).
Donde j representa la unidad imaginaria. Debido a que solo nos interesa la

respuesta en estado estable del sistema.

4. Reescribir la funcion de transferencia H(s), de la forma:

A+ B

H(s)=57—7D

(3.21)

5. Definir las variables A, B, C, D y sustituir los parametros encontrados con

el teorema Pi de Buckingham.

6. Determinar el médulo de la ecuacion H(s) mediante la multiplicacion del

conjugado complejo.

A+ B

2
HEl =gy

(3.22)
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7. Implementar las condiciones de amortiguamiento ¢ — 0y { — oo.

), A
gfgg)lH(s)! o2 (3.23)

, B
Ch_{go |H(s)|* = D (3.24)

8. Igualar las ecuaciones cuando ( — 0y ¢ — oc.

9. Realizar el siguiente cambio de variable A = Q2 con el fin de reducir el gra-

do de la ecuacion.

10. Transformar la ecuacién anterior en un polinomio ménico.

11. Obtener soluciones 6ptimas mediante el teorema de Vieta.

12. Encontrar valores numéricos de los parametros optimos, sustituyendo el

valor de £.

13. Sustituir los valores de los parametros 6ptimos en la aproximacion de la

norma H.., que es la amplitud de la vibracidn en los puntos invariantes || Ho||.

14. Determinar la solucion 6ptima para el factor de amortiguamiento (,,: a

partir de la teoria de Steen Krenk [50].
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En la Figura 3.3 se puede observar que la técnica de los puntos fijos es mas
eficiente que la técnica de Den Hartog al aplanar la curva FRF vy, por lo tanto,

mejor en la supresion de vibraciones.

10 I

—Puntos fijos extendida ({=0.16)
Den-Hartog ({=0.21)

——

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Figura 3.3: Gréfica de la FRF vs. la relacion de frecuencias 2 del IDVA-C3, com-
parando la técnica de Den Hartog y la técnica de los puntos fijos extendida [38].

3.8. CRITERIO H

Este criterio de optimizacion es para obtener soluciones efectivas para lograr
estabilizar la respuesta vibratoria del sistema mediante el método de Nishihara

[51]. Las admitancias para cada red mecanica basada en inersor se presentan

en la Tabla 3.2.

le(S) =bs+c YQ(S) —11—1— Yé(s) — 3_11_1_

s te % Tcts
Yi(s) = 1 Ys(s) = ——1 Ye(s) = — =
k—sl—l—c bs le—l—bs c bs+c ' kq

Tabla 3.2: Admitancias Y(s) para cada red mecédnica basada en inersor [37].

La técnica de optimizacion H., tiene el objetivo de minimizar la magnitud maxi-

ma de la respuesta en frecuencia del sistema |H;(j\)|, i=1,...,6, también
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conocida como la norma H,, de H;(s) donde s = jA [37].

Esta técnica de optimizacion es comun en la minimizacidén de la respuesta
vibratoria en DVA’s. Esto garantiza que el sistema mantenga un desempeno es-
table ante incertidumbres y perturbaciones externas. Al minimizar la norma H.,
se mejora la respuesta del estado estable del sistema. En consecuencia, se tiene

el siguiente problema de optimizacion.

min (I’I}I)E’LX ‘HIDVA(Q”) = max (|HIDVA(Popt; 6, Q)|) (325)

opt

Pyt SON parametros a optimizar en el sistema y se limita a que sean solucio-

nes reales y positivas Pot > 0 de la siguiente ecuacion:

0| Hiow ()
0§22

La ecuacion (3.26) se refiere al intervalo fisico admisible para analizar la rela-

—0 (3.26)

cion de frecuencias () y a las limitaciones fisicas de disefo del dispositivo.
Para lograr la optimizacion en un sistema mediante esta técnica se emplean
las frecuencias de resonancia para minimizar de forma exacta la norma ||H||,

como se observa en la Figura 3.4.

‘]0 T T T T
—Puntos fijos extendida

—Nishihara

H()

Figura 3.4: Gréfica de comparacion de resultados entre la técnica de los puntos
fijos y la técnica de optimizacion H, [17].
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Capitulo 4

MODELOS MATEMATICOS

Dentro de la ingenieria mecanica, un modelo matematico es la representacion
cuantitativa del comportamiento de sistemas fisicos (por ejemplo: mecanismos,
estructuras o fluidos) mediante expresiones matematicas como funciones, ecua-
ciones algebraicas o ecuaciones diferenciales. Las ecuaciones diferenciales son
de gran importancia debido a que, describen la variacion de magnitudes como
la fuerza, velocidad, temperatura o vibracion a lo largo del tiempo. Por ejemplo,
dichas ecuaciones permiten estudiar el comportamiento vibratorio de componen-
tes como ejes giratorios en turbinas (ilustrada en la Figura 4.1), generadores o

motores eléctricos.

Figura 4.1: Aplicaciones de Rotor- Cojinete Tipo Jeffcott: Turbina industrial de
vapor [49].

A continuacion, se utilizan las ecuaciones de Euler-Lagrange para describir el
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comportamiento dinamico de los sistemas NIDVA-C3, NIDVA-C4 y NIDVA-C6 en

rotor-cojinete tipo Jeffcott.

4.1. NIDVA-C3

A continuacién, se presenta el esquema del NIDVA-C3 implementado en un

rotor-cojinete tipo Jeffcott:

Y
M m
X3 X, X1 K}, /.u
|_— Cix X C}
wt
FE@wm X
€ b, Kk A K.
X
C1y kly
Y1
e
Y2 ka
Y3 by
Cy

Figura 4.2: Diagrama de cuerpo libre del NIDVA-C3 en Sistema Rotor-Cojinete
Tipo Jeffcott.

Con el fin de describir el comportamiento dinamico del sistema ilustrado en
la Figura 4.2, en este caso se utiliza la ecuacién (3.9) de Euler-Lagrange para
sistemas no conservativos, donde F; representa la i-ésima fuerza ejercida sobre

el sistema, y D; es la disipacidon de energia por amortiguamiento en el sistema.

Dicho formalismo permite derivar las ecuaciones de movimiento a partir de el
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analisis basado en la diferencia entre las energias cinética y potencial. Para ello,
se define el Lagrangiano L como la diferencia entre la energia cinética total 7'y
la energia potencial total U del sistema como se denota en la ecuacion (3.8).

Se definen las variables D, T'y U a partir de un analisis cinematico del sis-
tema NIDVA-C3 en un rotor-cojinete tipo Jeffcott. Cabe aclarar que el analisis se
realiza en una sola direccion, es decir en el eje y. Considerando que la funcion
de disipacion de Rayleigh se define D = 1c¢¢? la energia cinética se expresa
Ec = 3 mv?y que la energia potencial asociada a elementos elasticos se denota

Ep = 1 ka?, se obtiene:

1 L 1.

D = §Cy(y — y1)2 + §ny§ (4.1)
1 .9 1 .9 1 . < \2

T = §My + §Myy1 + éby(yg — U3) (4.2)
15 1 o, 1 2

U= gky” + §/<ry(y — )"+ 5’%(91 — Y2) (4.3)
1. . 1 ) 1 ) )

L = §M?J2 + §Myy% + §by(?/2 — 13)°

1 1 1
- §k‘yy2 - §k1y(y —y)® — §k2y(y1 — y)? (4.4)

oL oL

a_y = My 8_y = _kyy - k?y(y - ?Jl) (4.5)
d (OL . oD L
dt (8_y> = My 8_3/ = Cy(y - yl) (4.6)

Aplicando el Lagrangiano se obtiene la ecuacion (4.4), luego evaluando la
ecuacion (3.9) en cada coordenada generalizada y, i1, y2, y3, da como resultado

las ecuaciones diferenciales que rigen la dinamica del sistema.
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oL oL

o G = by =) = by (01— )

(4.7)

i (%L) = M o = ~Culi— i) (4.8)
g_ng = by(9> = Us) g_yLQ = kay (Y1 — Y2) (4.9)

% (g_ng) = by (ij2 — ij3) g—Z =0 (4.10)
g_ng = ~by(92 = ) 3—; =0 (4.11)

% (%i) = by (32 — ¥is) g—y.DS = Cyis (4.12)

Luego, siguiendo la estructura de la ecuacion (3.9) de Euler- Lagrange para
sistemas no conservativos, se obtiene como resultado los siguientes grupos de
ecuaciones, los cuales rigen el comportamiento dinamico del sistema, en el eje y

y eje = respectivamente:

My + Oy(ig - yl) + kyy + kly(y - yl) =0
myi — Cy(J — v1) — k1y(y — y1) + koy(y1 — 42) =0

(4.13)
by (Y2 — 43) — kay(y1 — y2) =0

by(yo — 93) + Cyyjs = 0
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4

MX +Co(X — X1) + ke X + k(X — X)) =0

mpX1 — Cp(X — X1) — kra(X — X1) 4 koo (X1 — X3) =0
(4.14)

bz<X2 - Xg) - kQI<X1 - XQ) - O

\

Nuevamente se elige una direccion de movimiento para seguir con el trata-
miento matematico. En este caso se toma el modelo matematico que rige el
comportamiento dinamico del NIDVA-C3 en el eje X de un rotor-cojinete tipo
Jeffcott, ecuaciones (4.14).

Considerando que, la transformada de Laplace convierte las derivadas tem-
porales en expresiones algebraicas de la variable compleja s de la siguiente ma-

nera:

L{x(t)} = X(s), L{z(t)} =sX(s), L{&(t)} =3s*X(s) (4.15)

Se procede a convertir el modelo matematico del NIDVA-C3, ecuacion (4.14)
al dominio de Laplace. Con ello se obtiene una representacion algebraica (ecua-
ciones 4.15-4.18) que permiten analizar el comportamiento dinamico del sistema

y determinar su funcién de transferencia.

Ms*’X + KX + Ki(X — X;) = m, dw? (4.16)

ms* X, + Ki(X; — X) + Ko (X1 — X3) =0 (4.17)
bs*( Xy — X3) + Ko(Xo — X1) =0 (4.18)

bs*( X5 — Xo) + CsX3 =0 (4.19)
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4.2. NIDVA-C4

La Figura 4.3 presenta el esquema de NIDVA-C4 implementado en un rotor-
cojinete tipo Jeffcott, el cual esta compuesto por la red mecanica C4 integrada

por un resorte y un amortiguador en paralelo, en serie con un inersor.

Y
xz Xy M K}’ T.Ru
Cx I"' Cix x ‘;/
wt
P G .
y K
b, |k b1y *
Ciym < kiy
-
Y1
Lo,
Y2, €y kzy
b)’

Figura 4.3: Diagrama de cuerpo libre del NIDVA-C4 en Sistema Rotor-Cojinete
Tipo Jeffcott.

Siguiendo el procedimiento anterior para la obtencion del modelo matematico
del NIDVA-C3, se emplean las ecuaciones de Euler-Lagrange (analizando solo
una direcccién de movimiento) para conseguir el modelo matematico del NIDVA-

C4 implementado en un rotor-cojinete tipo Jeffcott.
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Ms*X + Ki(X — X1) + KX = m,dw® (4.20)
ms* X +Cs(X] — Xo) + K1(X] — X))+ Ko(X; — Xo) =0 (4.21)

bS2X2 + CS(XQ — Xl) + KQ(XQ — Xl) =0 (422)

En resumen, el modelo propuesto proporciona una herramienta eficaz para
determinar el comportamiento dindmico del NIDVA-C4 bajo diversas condiciones
de amortiguamiento. Su aplicacion resulta fundamental para el diseno, la optimi-
zacion y el control del sistema NIDVA-C4 implementado en un rotor-cojinete tipo

Jeffcott.

4.3. NIDVA-C6

Considerando la Figura 4.4, para modelar el comportamiento dinamico de un
sistema masa-resorte-amortiguador incorporado en un absorbedor dinamico de
vibraciones no tradicional (NDVA), se utiliza la red mecanica C6, integrada por un
inersor y un amortiguador en paralelo, en serie con un resorte.

A diferencia de otras configuraciones, como la red mecanica C3 o C4, la red
mecanica C6 puede alcanzar un mejor desempeno en ciertos rangos de frecuen-
cias o condiciones de operacion, debido a su capacidad para redistribuir energia
vibratoria entre los componentes del absorbedor. Esta caracteristica influye direc-
tamente en la amplitud de vibracién de la masa principal, permitiendo una mayor
atenuacién cuando el sistema es correctamente sintonizado.

De manera analoga al procedimiento seguido para obtener el modelo ma-
tematico del NIDVA C3, se desarrolla el modelo matematico correspondiente al

NIDVA-C6 implementado en un rotor-cojinete tipo Jeffcott.
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Por lo tanto, el modelo matematico que rige el comportamiento dinamico del
NIDVA-C6 en un rotor-cojinete tipo Jeffcott, se denota con las siguientes ecua-

ciones (4.23), (4.24) y (4.25):

Figura 4.4: Esquema del NIDVA-C6 en un sistema rotor-cojinete tipo Jeffcott.

Ms*X + KX + Ki(X — X1) = m,dw? (4.23)
ms? X, +bs*(X] — Xo) + Os(X; — Xo) + K1(X; — X) =0 (4.24)

bs*( Xy — X1) + Cs(Xy — X1) + K3 Xo =0 (4.25)
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4.4. FUNCION DE TRANSFERENCIA

A diferencia de la ecuacion diferencial, donde entrada, salida y dinamica del
sistema estan combinadas en una sola expresion, la funcion de transferencia
permite representar estos elementos de manera clara y estructurada, facilitando
su analisis por separado.

Después de convertir el modelo matematico del NIDVA-C3 al dominio de La-
place, se realizd el despeje y sustitucion de las variables X3, X, y X; (en las
ecuaciones 4.16-4.19), para poder despejar a X. Luego, la funcion de transfe-

rencia del sistema NIDVA-C3 se denota como:

Y(s)
U(s)

Los valores de G/(s), Y (s) y U(s) se encuentran en el apéndice A.

G(s) = (4.26)

Después de realizar un analisis dimensional a la ecuacion (4.26), se obtiene

la funcion de transferencia del sistema de forma adimensional.

N(r)

“U=50)

(4.27)

Los valores de G(r), N(r) y D(r) se encuentran en el apéndice A.

Del mismo modo, para obtener la funcion de transferencia del NIDVA-C4, se
convierten las ecuaciones (4.20 - 4.22) al dominio de Laplace. Después de rea-
lizar despeje y sustitucion, siguiendo el procedimiento utilizado en el NIDVA-C3,

se obtiene la funcion de transferencia del NIDVA-C4 en rotor-cojinete tipo Jeffcott.

_ Ya(s)
U4(S)

Los valores de G,(s), Yi(s) y Us(s) se encuentran en el apéndice A.

G(s) (4.28)

Luego, aplicando analisis dimensional a la ecuacion (4.28) se tiene la siguien-
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te ecuacion, que es la funcién de transferencia del sistema de forma adimensio-

nal. Donde G4(r), Yi(r) y Us(r) se describen en el apéndice A.

_ Yl
U4(7°)

En resumen, la funcién de transferencia del sistema con NIDVA-C4, implementa-

Ga(r) (4.29)

do en un rotor-cojinete tipo Jeffcott, se obtiene mediante la transformacion de las
ecuaciones del modelo dinamico al dominio de Laplace, seguida de un proceso
de despeje y sustitucién analogo al utilizado para el NIDVA-C3. Posteriormente,
al aplicar analisis dimensional, se expresa la funcion de transferencia en forma
adimensional lo que permite generalizar el comportamiento dinamico del sistema
independientemente de sus parametros fisicos especificos.

En el caso del NIDVA-C6 implementado en un rotor-cojinete tipo Jeffcott, si-

guiendo el procedimiento anterior, se obtiene la funcidén de transferencia:

_ Yils)
Uﬁ(S)

Por lo tanto, la funcidén de transferencia del NIDVA-C6 de forma adimensional

Ge(s) (4.30)

es:

_ Ylr)
U6(7“)

Donde Gg(s), Ys(s), Us(s), Go(r), Ys(r) y Us(r) se describen en el apéndice A.

Ge(r) (4.31)
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4.5. RESPUESTA EN FRECUENCIA

La respuesta en frecuencia de un sistema de segundo orden, como un siste-
ma masa-resorte-amortiguador, describe el comportamiento del sistema en es-
tado estacionario cuando se le aplica una entrada sinusoidal. Esta respuesta
permite analizar como varia la amplitud y fase de la salida en funcién de las dife-
rentes frecuencias de dicha entrada [50].

Se sustituye s = iw en la funcién de transferencia porque Unicamente interesa
conocer como responde el sistema una vez que ya pasé el movimiento transitorio,
es decir, cuando el sistema ya se estabiliz6 y responde de forma constante a una
senal senoidal.

Asi, se obtiene la respuesta en frecuencia del sistema de forma adimensio-
nal y en el dominio de la frecuencia, ecuacion (4.32) la cual rige el movimiento

dinamico del sistema NIDVA-C3 en un rotor tipo Jeffcott.

Y (iw)
U (iw)

Los valores de Y (iw) y U(iw) se encuentran en el apéndice A.

H(iw) = (4.32)

Esta sustitucion es valida porque, en este estado, el sistema vibra con una
frecuencia fija w, y analizarlo con s = iw permite conocer la amplitud y fase de
esa respuesta sin tomar en cuenta los efectos transitorios iniciales.

Luego, se definen las variables A, B, C, D, P, (apéndice A) para reescribir la
ecuacion de la forma:

(A+iB)P

Posteriormente, se sustituyen los siguientes parametros adimensionales ob-

tenidos mediante el teorema Pi de Buckingham.
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K = M w;}
ki =muws
ky = bw?

c=2(muws

b=mu

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

CAPITULO 4. MODELOS MATEMATICOS

=| 3

Wz = wa M

Wy = w1 ¢q

w1 =

olRS

(4.39)

(4.40)

(4.41)

(4.42)

Sustituyendo las ecuaciones (4.34-4.42) en las ecuaciones A, B, C, D, P, se

obtienen las siguientes ecuaciones:

-

O2n2uq® — O2n2® + gt + O — 022

925772'“(]4 . Q4n2uq2 + 925772(]4 . Q4U2q2 4 927]2(]4

—Q4BQQ+Q2U2MQ2+Q6—Q4q2+92772q2

_7]2(]4 _Q4+92q2

U’

1 —925q2+94—92q2—92—|—q2

D= -u
2#
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Asi, se reescribe la ecuacion (4.33) de la forma:

(A+iB)P
H ) = ——+— 4.47
() C+1iD ( )
Del mismo modo, siguiendo el procedimiento anterior se obtiene la respuesta
en frecuencia de forma adimensional del NIDVA-C4 implementado en un rotor-

cojinete tipo Jeffcott, la cual rige su comportamiento dinamico.

(A4 +1By) Py

Hy(Q) = ————F— 4.48

() Cy+ 1D, (4.48)
ddnde los valores de A,B,C,D y P se encuentran en el apéndice A.

A continuacion, se presenta la respuesta en frecuencia de forma adimensional

del NIDVA-C6 implementado en un rotor-cojinete tipo Jeffcott.

Hs(€2) = Cs + iDg

(4.49)

A,B,C,D y P se describen en el apéndice A.

En resumen, en este apartado se desarrollaron los modelos matematicos de
cada sistema, mediante el formulismo de Euler-Lagrange. También, se realiz
la obtencion de la funcién de transferencia de cada rotor-cojinete tipo Jeffcott
con NIDVAs C3, C4 Y C6. Posteriormente, se calcul6 la respuesta en frecuencia
de cada sistema, con el fin de conocer su comportamiento dinamico de forma

adimensional y en el dominio de la frecuencia.
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Capitulo 5

RESULTADOS

Implementando la técnica de los puntos fijos extendida, en este capitulo se
presentan resultados numéricos de los parametros éptimos de los sistemas NIDVA-
C3, NIDVA-C4 y NIDVA-C6 en un rotor-cojinete tipo Jeffcott. De la misma manera,
se considera la respuesta en estado estable del sistema y se analiza en solo una

direccién de movimiento.

5.1. TECNICA DE LOS PUNTOS FIJOS EXTENDIDA

La técnica de los puntos fijos extendida propuesta por Barredo et. al. [38] es
una metodologia analitica utilizada en el disefo 6ptimo de sistemas de control
pasivo de vibraciones, particularmente en absorbedores de vibracion dinamica.
Se fundamenta en la teoria de puntos fijos aplicada a la funcion de transferencia
del sistema acoplado, con la finalidad de minimizar la amplitud de respuesta del
sistema primario frente a una exitacion inercial, en este caso. De esta manera,
se evalua la respuesta del sistema en los puntos invariantes, cuando el amorti-

guamiento es igual a 0 e oo.

70



5.1. TECNICA DE LOS PUNTOS FIJOS EXTENDIDA CAPITULO 5. RESULTADOS

5.1.1. NIDVA-C3 En Rotor-Cojinete Tipo Jeffcott

La técnica de los puntos fijos propuesta por Barredo[31], se enfoca en dos
condiciones de operacion. Cuando el amortiguamiento es cero ( —» 0 y cuando

el amortiguamiento es infinito { — oc.

A2 BQ P2
pr= B (5.1)
02 + D2
A partir de los valores de amortiguamiento antes mencionados, se obtienen
dos ecuaciones linealmente independientes de la ecuacion (5.1).

Cuando ( — 0 :

2 2
H? = (AC)QP (5.2)
Cuando ( —» oo :
2 2
H? = (BD>2P (5.3)

Se igualan las ecuaciones (5.2) y (5.3). Con la finalidad de eliminar los expo-
nentes de segundo grado en ambos lados de la ecuacién, se anade el signo +

delante del signo igual.

(AQ)P2 :i<BQ)P2

o2 oE (5.4)

Evaluando la ecuacién (5.4) con el signo positivo, y sustituyendo las variables

A, B, C, D, P, se tiene la siguiente expresion:

—Bn?ug® = 0 (5.5)

La ecuacion (5.5) proporciona un resultado trivial cuando 2 = 0, la ecuacion

indicaque 8 =0,7=0,u=0,q=0.
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Ahora, considerando la ecuacion (5.4) con el signo negativo, resulta una ecua-

cion que depende de 3,1, i, 2, ¢ y se denota a continuacion.

@1(B,U,M,Q,Q) = 0 (56)

Con el fin de reducir el grado de la ecuacion (5.6), se realiza un cambio de
variable X = Q? y se convierte a polinomio ménico, dividiendo toda la ecuacion
entre el coeficiente del término de cuarto grado, asi se obtiene la siguiente ecua-

cion y se puede utilizar el Teorema de Vieta.

G)Al(ﬁannuv >‘a q) =0 (57)

Ahora, considerando h = H?, se toma la ecuacién (5.3) para obtener el se-

gundo polinomio ménico.

(B?)P?

h = D3

(5.8)

La ecuacion (5.8) se iguala a cero y después se le aplica el mismo procedi-

miento que a la ecuacién (5.6), obteniendo lo siguiente:

@)\2<5mu7 Aaq> h) = 0 (59)

El teorema de Vieta para un polinomio monico establece una relacion directa
entre las raices del polinomio y sus coeficientes. Ademas, las formulas de Vieta
permiten obtener informacion acerca de las raices de un polinomio al observar
los coeficientes de ese polinomio.

Secuencia 1:

La suma de las raices reales de las ecuaciones cuarticas (5.7) y (5.9) se

pueden expresar de la siguiente forma: (Coeficientes de A3)
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—1+((—u—1)772—6—2) q° (5.10)

(=24 (=28 — 2)¢®) h + 2¢?
h—1

(5.11)

Igualando las ecuaciones (5.10) y (5.11), luego despejando para g, se tiene:

2 _ h+1
T (u+1Dn2(h—1) = B(h+1) (5.12)

Secuencia 2:
Luego, se toma la ecuacion 4 del conjunto de ecuaciones del Teorema de
Vieta para obtener h: (Se igualan términos independientes de ) de las ec. (5.7) y

(5.9) y se despeja para h)

"=,

(5.13)

Secuencia 3:
Ahora, se toma la ecuacion 3 del conjunto de ecuaciones del Teorema de
Vieta, y se repite el procedimiento para obtener h: (Coeficientes de \ de las ec.

(5.7)y (5.9))

h= = (5.14)

Secuencia 4:
A continuacion, se obtiene la ultima solucion para h, a partir de la ecuacion 2

del teorema de Vieta: (Coeficientes de \? de las ec. (5.7) y (5.9))

)
h= =2

7 (5.15)
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Secuencia 5:
Considerando, las tres soluciones para h, se igualan las ecuaciones (5.13) y

(5.14), resolviendo para ¢, se tiene:

—— 5.16
Secuencia 6:

Igualando las ecuaciones (5.13) y (5.15), resolviendo para ¢, se tiene:

2_(1)3

=5 (5.17)

q

Secuencia 7:
Se tienen tres soluciones para ¢?, para calcular n y ;1 se igualan las ecuaciones

(5.12) y (5.16), despejando para 7:

V(=25 (1= 2)8)° (1 +2)262 + (—1202 = 8)B + 422) + (—p> + B + (~20% — 10+ 4)5 + 4
p((® +p+2)8—2p+2)

=] =

(5.18)

Secuencia 8:

Del mismo modo, se igualan las ecuaciones (5.16) y (5.17), despejando 7?:

s /AR -1)Bu+B—22+2+4(—pu—5)8
B 20+ 176 — dp+4 19

Secuencia 9:

Luego, igualando las ecuaciones (5.18) y (5.19) se obtiene el valor éptimo

para

_ 28—14+V=AF+1 (5.20)
5 .

Para encontrar el siguiente valor 6ptimo es necesario repetir las secuencias
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1-9, empezando por despejar .
Secuencia 1:

1+ ((~p=1n* =B -2)¢ (5.21)

(—2+ (=28 —2)¢*) h + 2¢*
h—1

(5.22)

De la misma forma, se igualan las ecuaciones (5.21) y (5.22), dando como

resultado:

_ —’hq® + Bh* + P+ PP+ h+ 1

2
(h = Dn*q® (5.23)
Siguiendo el procedimiento anterior, se obtiene el valor 6ptimo para g¢:
1 —4 2—2y/—4 1
=L VA8 b+ (5.24)

2 5
Después se sustituyen los valores 6ptimos de 1 y ¢ en una ecuacion para

despejar n:

n=\/2 42V a5+ 1 (5.25)

Las ecuaciones (5.20), (5.24) y (5.25), son los valores Optimos para u, q y
n respectivamente. Se sustituyen los valores 6ptimos para el NIDVA-C3 en la

ecuacion (5.13) y el resultado es:

1+ V=48 +1
B

En la ecuacioén (5.26) h es la aproximacion de la norma H,,. Ademas, h es la

1
h=s- (5.26)

amplitud de la vibracion en los puntos invariantes. Por lo tanto, si h = H?:

fh:¢1+vi?y+l (5.27)
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Las ecuaciones (5.20), (5.24) y (5.25) determinan los parametros requeridos
para igualar la amplitud de vibracion en las frecuencias invariantes del sistema
NIDVA-C3. No obstante, dichos parametros por si solos no resultan suficientes
para lograr un aplanamiento completo de la curva de la respuesta en frecuencia

del NIDVA-C3 ante todas las posibles frecuencias de excitacion.

Variable Valor
B = 0.1
¢ = 0.30

Tabla 5.1: Valores establecidos para las variables independientes.

Parametro Valor
u = 0.2540333080
g = 1.127016659
n = 09419651450

Tabla 5.2: Valores numéricos obtenidos para los pardmetros éptimos.

A continuacién, se sustituyen los valores de la Tabla 5.1 y Tabla 5.2 en la

ecuacion (5.2), dando como resultado la FRF del NIDVA-C3 en rotor-cojinete tipo

Jeffcott cuando ( — 0:

1 (—2,683482085 02 + 1431498868 + Q)2
H:\/( (2 (-2, +5 +9Y) (5.28)

—3,810499640 Q4 + 4,294496579 Q22 + Q6 — 1,431498868)2

Del mismo modo, sustituyendo los valores de la Tabla 5.1 y Tabla 5.2 en

76



5.1. TECNICA DE LOS PUNTOS FIJOS EXTENDIDA CAPITULO 5. RESULTADOS

la ecuacién (5.3), se obtiene la funcion de respuesta en frecuencia (FRF) del

NIDVA-C3 cuando ( — oc:

04 (02 — 1.270166550)°
H = ( ’ ) - (5.29)
(Q* — 2,397183205 02 + 1,270166550)

También, se propone un valor de { — 0,30 para observar el comportamiento

del sistema en un valor arbitrario de (.

E
H— \/g (5.30)

Después, se realiza el procedimiento de Steen Krenk con el fin de obtener el

factor de amortiguamiento éptimo (,,:, dando como resultado:

(=B —18)y/—4B+1-28+18
¢= \/ 93 + 108 (5.31)

Sustituyendo 5 = 0,1 en la ecuacion (5.31), se obtiene el valor numérico de

Copt .

Copt = 0,1863032740 (5.32)

Una vez obtenido (,,:, se sustituye en la ecuacion (5.1), por lo tanto, se obtie-

ne:

H = \/E (5.33)
T

En el apéndice B se describen los elementos E, G, R, r. En la siguiente grafica
se muestra la FRF del sistema utilizando el factor de amortiguamiento 6ptimo.

En la Figura 5.1 se presenta la grafica de la respuesta en frecuencia del rotor-
cojinete tipo Jeffcott con el NIDVA-C3 bajo excitacién inercial, cuando ( = 0,30 y
cuando el factor de amortiguamiento es 6ptimo, (,,: = 0,1863032740, consideran-

do g =0,1.
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Figura 5.1: Gréfica de la FRF del NIDVA-C3 en Rotor-Cojinete tipo Jeffcott, in-
cluyendo el factor de amortiguamiento éptimo.

La técnica de los puntos fijos extendida permitié obtener la respuesta del sis-
tema de forma estable y precisa. Esto evidencia que el método ha funcionado

adecuadamente para las condiciones planteadas.

5.1.2. NIDVA-C4 En Rotor-Cojinete Tipo Jeffcott.

Parametro Valor
uw o= 0.2984378815
g = 1221552048
n = 054458267982
Copt = 0.07095696245

Tabla 5.3: Valores numéricos de los parametros 6ptimos del NIDVA-C4 en Rotor-
Cojinete Tipo Jeffcott.

Para obtener valores numéricos de los parametros de este sistema, se realiza
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el procedimiento descrito anteriormente. Tomando S = 0,1, los valores optimos
del sistema se presentan en la Tabla 5.3.

La siguiente grafica describe el comportamiento de la FRF del NIDVA-C4 en
Rotor-Cojinete Tipo Jeffcott, utilizando los parametros éptimos.

Del mismo modo, para este rotor-cojinete tipo Jeffcott con el NIDVA-C4, se
obtiene la FRF del sistema, ilustrada en la Figura 5.2. Donde se observa el com-

portamiento dinamico del sistema y de la misma forma la efectividad de la TPFE.

— ()

—
{=0.15
= { opt=0.07095696245( |

=]
T

n
T

IH{’{‘?-' QI ”}I
.

[
T

0.6 0.7 0.8 0.9 1 1.1 12 1.3 1.4
Q

6

Figura 5.2: Grafica de la FRF de NIDVA-C4 en Rotor-Cojinete Tipo Jeffcott, con
factor de amortiguamiento 6ptimo.

5.1.3. NIDVA-C6 En Rotor-Cojinete Tipo Jeffcott.

De la misma forma, en este sistema, siguiendo el procedimiento de la técnica
de los puntos fijos extendida, los valores numéricos de los parametros optimos

para este sistema, se presentan en la Tabla 5.4.
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Parametro Valor
p = 0.1568925885
q = 1.064472696
n = 1.089076900
Copt =  0.04559467054

Tabla 5.4: Valores numéricos de los parametros 6ptimos para el NIDVA-C6.

Posteriormente, se presenta la grafica de la FRF del sistema, donde se puede

apreciar el comportamiento dinamico del sistema.

IH{‘{‘?-' PG “}I

-
T

=]

on

£

[

| Il !

— =)

_‘: =00 -
£=0.025
= opt= 0.04559467054 | |

0.9 1

1.1 12 1.3 1.4 1.5 1.6
Q

Figura 5.3: Gréfica de la FRF del NIDVA-C6 en Rotor-Cojinete Tipo Jeffcott, con
factor de amortiguamiento 6ptimo.

Para el sistema rotor-cojinete tipo Jeffcott con el NIDVA-C6, se obtiene la FRF

con los parametros éptimos obtenidos mediante la TPFE, ilustrada en la Figura

5.3. Donde se observa nuevamente la minimizacién de la curva de la FRF del

sistema.
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A continuacion, se presenta la grafica de la FRF de los tres sistemas de es-
tudio, NIDVA-C3, NIDVA-C4 y NIDVA-C6 implementados en un rotor-cojinete tipo
Jeffcott.

Se presentan las FRF de los sistemas en la Figura 5.4, donde se observa el

comportamiento dinamico de los mismos.

NIDVA-C3
NIDWVA-C4 | 4
= = = NIDVA-C&

0.6 0.7 0.8 0.9 A 11 12 13 1.4 15 16
0

Figura 5.4: FRF de NIDVA-C3, NIDVA-C4 y NIDVA-C6 obtenida mediante la
técnica de los puntos fijos.

En la Figura 5.4 se observa que el NIDVA-C4 mantiene una FRF mas contro-

lada en el rango de frecuencias analizado.

5.2. CRITERIO H

El método H., es una técnica de optimizacion utilizada en sistemas dinami-
cos para minimizar la ganancia maxima de la funcion de transferencia entre una
entrada y una salida, es decir, su norma H,,. Este criterio tiene como objetivo
asegurar que la respuesta del sistema se mantenga limitada, aun si es perturba-
do por distintas senales dentro de un rango previamente definido. Debido a esto,
el criterio H,, es una herramienta robusta para el disefio y analisis de control pa-

sivo de vibraciones.
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Por lo tanto, el método de optimizacion H,, ofrece una validacion robusta de
los parametros determinados a través de la técnica de los puntos fijos extendi-
da, al garantizar un comportamiento dinamico éptimo frente a las variaciones de
frecuencia, es decir, al demostrar que el sistema mantiene un comportamiento
controlado incluso frente a variaciones paramétricas o perturbaciones dentro del

rango considerado.

5.3. NIDVA-C3

Una vez formulado el modelo dinamico del sistema, compuesto por la estruc-
tura principal y el Absorbedor de Vibraciones Dinamico No Tradicional basado en
Inersor (NIDVA-C3), se aplica el método de optimizacién H,, con el fin de mini-
mizar la respuesta del sistema ante excitacion inercial.

Se tiene la funcion de respuesta en frecuencia (FRF) del NIDVA-C3 imple-

mentado en un rotor tipo Jeffcott y se eleva al cuadrado de la forma:

2y (A +1iB?) P?
H*(Q) = i (5.34)
Luego, se definen numerador y denominador de la ecuacion (5.34)
Num =Y (Q) (5.35)
Den = U(Q) (5.36)

Dénde A, B,C, D, P, Y (2),U(Q2) se definen en el apéndice C.
Posteriormente, se emplea la ecuacion propuesta por Nishihara [17], la cual

se denota de la forma:
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1

= 37

h 1] (5.37)
Num

Den — o = 0 (5.38)

Sustituyendo las ecuaciones anteriores en la ecuacién (5.38), se obtiene una

ecuacion polinémica de grado 12, de la forma:

a12x12 + CL11£L'11 + -+ ax+ag = 0 (539)

Por lo tanto, se convierte la ecuacion (5.39) en polinomio monico, obteniendo

como resultado,

1’12 -+ CLH.IH +---t+ax+ag= 0 (540)

Las variables a4, as, ...a,, se definen en el apéndice C. Considerando que las
sumas y productos de las raices de la ecuacion (5.40) se pueden expresar me-

diante el siguiente sistema de ecuaciones,

f1 . (—C% + 402) \/C_ﬁ -+ 405 =0 (541)
fo:  cies+4deg+ 2c3y/c6 =0 (5.42)
f3 . 466 (Cl\/C_G -+ 64) — Cg =0 (543)

Ahora, se definen las variables ¢, ¢, c3, ¢4, c5, ¢ presentadas en el apéndice
C. Sustituyendo las variables anteriores en las ecuaciones (5.41), (5.42), (5.43),

y simplificando a su minima expresién, se obtienen los siguientes resultados,
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f11
1 1
[nQ(ﬂur —B=1¢" +r(1+(p+1)n°)¢ — 57“2 - 57’} (r—1)¢
— %7727“ (7 (p+ ) =B=1)¢ —n" +7) 1’ G (5.44)
1 8 4 4 .
+ E&;" wagr=20
fzi

-8 [((ﬁw —B=1)¢* +r(p+1)(u+1g*n*
+ (B4 1) (Bur = 8 =1)g" + (=Bpr® + (B +2)u+ B +3)r — B = 1)¢* —r*(u + 1))
+((B+1g = )| -1
+ 7 [((&WQ +B8+1)¢ +r*(n+1)¢*n*

—r((B+12 + (—p=2r + 28+ 4@ +*)* +r*(1+ (B+ 1)) |1 G

- %q2r2u4n6 =0
(5.45)
fa:
(2% = 2r2((u+ 1 + B+ 1)@ + *P(B + 1) + g2 (B+1)2) (r = 1) ¢
+ %17’2 [(qQ/mQﬁ + 14+ (p— 1)772)7"2 + @’ — ¢’ (B + 1)] ¢ (5.46)
- 6i4r4u4n2 =0

Luego, con el fin de facilitar la visualizacion de las relaciones entre los diferentes

elementos del sistema, se tienen las siguientes matrices,

Al B1 Cl
N:=1|A4, B, C, (5.47)
Ag Bg 03
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D, A 4
M:=|D, Ay, C, (5.48)
Dy Az C3
Después de encontrar las variables A, Ay, A3, By, By, B3, C1,Cy, C3, Dy, Dy Ds,
definidas en el apéndice C, se obtiene el determinante de cada matriz.

Det(N) =0

AlBQCg — A13302 - A23103 -+ AngCl + A33102 - AgBQCl =0 (549)

Det(M) =0

A1C2D3 — A1C3D2 — A2C1D3 + AQCng + A3ClD2 — A3CQD1 =0 (550)

A continuacion, se obtienen las funciones f, y f5 apartir de la sustitucién
de variables Ai, As, A3, By, By, B3, C1,Cs, Cs, Dy, DyD3 en las ecuaciones (5.49)

y (5.50). Obteniendo como resultado:

f4: (M7Qanvr>C7B):O (551)

f5 : (MaC]ﬂ?aT» C27B) =0 (552)

Considerando las ecuaciones 5.44,5.45, 5.46, 5.51, 5.52, se realiza la sustitu-
cién de 5 = 0,1, posteriormente se resuelve el sistema de ecuaciones resultante,
mediante Maple software. Por lo tanto, se obtienen los parametros 6ptimos para
el NIDVA-C3 implementado en un rotor-cojinete tipo Jeffcott, presentados en la
Tabla 5.5.

Los parametros optimos del NIDVA-C3 minimizan la respuesta maxima del

sistema en el dominio de la frecuencia.
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Figura 5.5: Gréfica de la FRF del NIDVA-C3 mediante el criterio Hy,.

En la Figura 5.5 se presenta la funcion de respuesta en frecuencia del NIDVA-

C3, obtenida a apartir del criterio H..

Parametro Valor
u = 0.31557
q = 1.12897
n = 0.94356
Copt = 0.18489

Tabla 5.5: Pardmetros éptimos del NIDVA-C3 por el criterio H.,, cuando 3 = 0.

Se observa en la Figura 5.5 el comportamiento de la FRF del NIDVA-C3, cuan-
do el factor de amortiguamiento es trivial y cuando el factor de amortiguamiento

es optimo.
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Ademas, se realiza la comparacion entre ambos métodos de optimizacion,

para el NIDVA-C3 la grafica es la siguiente:

-
T

= = =TPFE — = {=0.1863032740
Nishihara-—-> {=0.18489

=]
T

o
T

IH(-"‘-'?-'J'{"-' i, !E—JI
~

(]
T

0.6 0.7 0.8 0.9 1 11 12 13 1.4 1.5 16
Q

Figura 5.6: FRF del NIDVA-C3 mediante dos técnicas de optimizacion.

Considerando que, el criterio H,, es una técnica de optimizacién robusta, en
la Figura 5.6 se observa que la FRF del NIDVA-C3 obtenida con el criterio H,,

tiene mejor comportamiento dinamico que la FRF obtenida con la TPFE.

5.4. NIDVA-C4

Criterio H,, (NIDVA-C4)

p Hopt Qopt Nopt Copt [|Ho ||
0.03 0.08801 1.05693 0.91883 0.01692 6.09984
0.05 0.17712 1.11040 0.84952 0.04449 4.58716
0.08 0.32672 1.20194 0.75332 0.09259 3.41242
0.1 0.43318 1.27034 0.69643 0.12345 2.92793

Tabla 5.6: Valores numeéricos para los pardametros éptimos del NIDVA-C4.
Siguiendo el procedimiento anterior, se obtienen los valores numéricos para
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los parametros éptimos del NIDVA-C4, tomando distintos valores para /3, como
se presenta en la Tabla 5.6.
La grafica para la FRF del NIDVA-C4 implementado en un rotor-cojinete tipo

Jeffcott, se ilustra en la Figura 5.7.
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Figura 5.7: FRF del NIDVA-C4 implementado en un rotor tipo Jeffcott.

Se observa que el criterio H,, es un método de optimizacién robusto, pues en
distintas condiciones muestra una minimizacién de la FRF maxima del NIDVA-
C4.

En este trabajo, el criterio H,, se empleé como método complementario de
validacion, brindando respaldo a los parametros obtenidos mediante la técnica
de los puntos fijos extendida.

De la misma forma, para comparar ambos enfoques, dénde se observé una
cercania entre los valores de los parametros 6ptimos, lo cual refuerza la confiabi-
lidad del disefio de los NIDVAs C3 y C4 implementados en un rotor-cojnjinete tipo
Jeffcott. Para el NIDVA-C6 no se encontraron soluciones mediante el criterio H..
Debido a que el software no pudo resolver el sistema de ecuaciones relacionado
a este sistema.

En la Figura 5.8, se presenta la gréafica de la FRF del NIDVA-C4 implemen-
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Figura 5.8: FRF del NIDVA-C4 mediante los dos métodos de optimizacién TPFE
y Criterio H,

tado en un rotor-cojinete tipo Jeffcott, donde se observa la efectividad de ambas
técnicas de optimizacién en el disefio de obsorbedores de vibracion no tradicio-
nales basados en inersor, como el NIDVA-C4.

La técnica de los puntos fijos extendida es un método heuristico y analiti-
co, por su parte el criterio H,, es una técnica de optimizacién robusta ue busca
minimizar la ganancia maxima del sistema (la norma H., de la funcién de trans-
ferencia). Asegura que la respuesta en frecuencia del sistema sea lo mas baja

posible en las frecuencias resonantes.
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Capitulo 6

CONCLUSIONES

En el presente trabajo se obtuvieron los modelos matematicos mediante las
ecuaciones de Euler- Lagrange, de los sistemas NIDVA-C3, NIDVA-C4 y NIDVA-
C6 implementados en un rotor- cojinete tipo Jeffcott, Asi mismo, se presenta el
desarrollo matematico que muestra el comportamiento dinamico de los sistemas
antes mencionados. El modelo propuesto, NIDVA-C3 considera un rotor montado
sobre un eje flexible, el cual esta acoplado a un sistema de absorcion de vibracio-
nes compuesto por una masa conectada en serie con un inersor, un resorte y un
amortiguador. Ademas, de esta configuracion se tiene el NIDVA-C4, formado por
la masa del absobedor conectado en serie a un amortiguador que a su vez esta
conectado en paralelo a un resorte y conectado en serie a un inersor. Del mismo
modo, el NIDVA-C6 es formado por un resorte conectado en serie a un arreglo
en paralelo de inersor y amortiguador, conectados a la masa del absorbedor.

Las ecuaciones de movimiento fueron obtenidas utilizando la formulacion de
Euler-Lagrange, y posteriormente transformadas a una forma adimensional, lo
que facilité su analisis en el dominio de la frecuencia. La formulacién resultante
permitié identificar las condiciones necesarias para lograr una respuesta vibrato-
ria uniforme en las frecuencias criticas del sistema.

El modelo fue validado numéricamente y mostré6 concordancia con resulta-

dos reportados en la literatura. Ademas, se abordd un problema de optimizacion

90



6.1. TRABAJOS FUTUROS CAPITULO 6. CONCLUSIONES

enfocado en minimizar la funcion de respuesta en frecuencia del sistema (FRF).
Para ello, se empled la técnica de los puntos fijos extendida, mediante el Teore-
ma de Vieta y del Teorema de Steen Krenk, con el fin de obtener los parametros
optimos de los NIDVA-C3, NIDVA-C4 y NIDVA-C6.

Se empled una segunda técnica de optimizacién con el proposito de validar
y otorgar mayor fiabilidad a los resultados obtenidos mediante la técnica de los
puntos fijos extendida. Para ello, mediante el criterio H., se determinaron los
parametros optimos de los sistemas rotor-cojinete tipo Jeffcott con los NIDVAs
C3 y C4, donde se observo similitud entre los valores numéricos de los parame-
tros dptimos obtenidos mediante ambas técnicas de optimizacion, sobresaliendo
el comportamiento dinamico del sistema NIDVA-C4 con los parametros optimos
obtenidos mediante el criterio H., . En el caso del NIDVA-C6, no se encontraron
soluciones mediante dicho criterio.

Los resultados obtenidos demuestran que la implementacién de NIDVAs C3,
C4 y C6 en rotores permite mejorar significativamente el control pasivo de vibra-
ciones, ampliando el rango de frecuencias de operacion estable y reduciendo el
riesgo de resonancia estructural, lo cual resulta especialmente util en aplicacio-

nes de alta velocidad o condiciones variables de funcionamiento.

6.1. TRABAJOS FUTUROS

El estudio y desarrollo de absorbedores dinamicos de vibracion no tradiciona-
les basados en inersor representa una linea de investigacion y aplicacién con un
alto potencial de crecimiento en los proximos anos. Estos dispositivos, al incor-
porar elementos inerciales no convencionales, permiten una mejora significativa
en el rendimiento de los sistemas de supresion de vibraciones, tanto en términos
de eficiencia como de adaptabilidad frente a diversas frecuencias.

Los resultados obtenidos en este proyecto respaldan la proyeccion de futuras
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oportunidades laborales y cientificas en torno a la implementacion de NIDVAs
en dispositivos rotodinamicos. Existe un creciente interés por explorar las propie-
dades dinamicas de estos sistemas, principalmente en el disefio de estructuras
civiles antisismicas, en la dinamica vehicular y en la optimizaciéon de maquina-
ria de precision. Ademas, los absorbedores con inersor han demostrado un gran
desempefo en comparacion con el DVA clasico.

En resumen, los NIDVAs constituyen una solucion innovadora y efectiva fren-
te a los retos que presentan los sistemas mecanicos contemporaneos. Sus apli-
caciones abarcan desde la proteccién sismica hasta la industria automotriz y la
generacion de energia, lo que posiciona a esta tecnologia como una via promete-
dora para el desarrollo profesional, tecnoldgico y cientifico en el corto y mediano

plazo.
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Apéndice

Apéndice A

Funciones de Transferencia.

NIDVA-CS3 en rotor-cojinete tipo Jeffcott.

X
Gls) = My d w2
Y (s) = Coms* + Kobms® + (C Kb+ CKab + CKym)s* + Ky Kybs + C K Ky
U(s) = CMbms® + KyMbms® + (CKbm 4+ CK;Mb+ C K bm + CKoMb + CKoMm)s?
+ (K Kobm + K1 KoMb + K Kobm)s®
+ (CKK1b+ CKKsb + CK Kom + CK KoM + CK, Kb + CKy Kom)s®

+KK1K2bS+CKK1K2 (A1)
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APENDICE A. FUNCIONES DE TRANSFERENCIA.

XM
G =
(r) o d
bmst  bms®  (CKb+ CKyb+ CKym)s®  bs
N(r) = Mw? — +1
(r) = M <K1K2 o T e o )

Mbms®  Mbms®
D(r)=K
(r) (KK1K2 T KK,

CKK K,
i (KKgbm + KlKQMb + KlKQbm)S3
CKK K,
i (CKKlb + CKKQb + CKKQTTL + CKlKgM + CKlKQb + CKlKgm)82
CKK K,

bs

— +1 A2
+ c + ) (A.2)

bmwt  bmw?  (CKb+ CKyb + CKom)w?  bw
Y (iw) = Mw? —i — — +1
(iw) = M (K1K2 "OK, CK\ K> e )

, Mbmw®  Mbmw®
D(iw) = K( KKK, +1 KK,
(CKbm + CK\Mb+ CKbm + CKyMb+ CKyMm)w?
+ CKK K,
(K Kybm + K1 KoMb + Ky Kobm)w?
CKK K,
(CKK1b+ CKKyb+ CKKym+ CK KoM + CK Kb + CKlKQm)CL)Q
CKK Ky

b
+ zg + 1> (A.3)

—1
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APENDICE A. FUNCIONES DE TRANSFERENCIA.

bmw*  (CK b+ CKsyb + CKym) w?

A= — 1
KK, CK,K, +
B_ _bmw3 bw
CK, C
o _ Mbmwb
KCK, K,
1
K KM K 4
+ KCKlKQ(C bm + CK{Mb+ C 1bm)w
1
KyMb KoM 4
+ KCKlKQ(C 2Mb+ CKyMm) w
1
RCR T, (CKK1b+ CKKsb+ CKKym) w®
1
KOR T, (CK KM + CK Kob+ CK Kom) w® + 1
D= Mbmw? B (K Kybm + K1 Ky Mb + K Kobm) w? N bw
- KCK, KCK, K, C
Mw?
P p—
K

NIDVA-C4 en rotor-cojinete tipo Jeffcott.

X
Gals) = My, d w?
Yi(s) = (bms* + (bc + cm) s° + (bky + bky + mky) s°

+ CSkZl + k‘lkg)
Us(s) = Mbm s® + (Mbc + Mem) s°
+ (Kbm + Mbk, + Mbky + Mmky + bmk,) s*

+ (Kbc + Kem + Mck, + beky, + cmk,) s°

+ (Kbkl + Kbky + Kmky + Mkiky + bk1ks + mk‘lk’g) 2

+ KCSk‘l + Kk’lk’g
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APENDICE A. FUNCIONES DE TRANSFERENCIA.

XM
Galr) = m, d
bmst  (be+cem)s®  (bky + bky +mky)s®  cs N
Y, = — 4+ 1) M
i(r) (k1k2 L Fnks T ) “
Ua(r) = Mbm s° N (Mbc + Mcm) s° N (Kbm + Mbky + Mbky + Mmky + bmk,) s*
T\ Kk Kk Kk
N (Kbe + Kem + Mcky + beky + emky) s3
Kkko
+ (Kbk’1 +Kbk2+Kmk2+Mk1k2 +bk51/€2 +mk:1k:2) 82 i 2 1K
K]flk’g k2
(A.10)
020202 02922 1 24 4_ 02,2
4 —npg Qn?ﬁ;nq T -y (A1)
20Q(0? 02— ¢
p— 2 53;72 T) (A.12)
1
C_—q4—712<925772ﬂq4—94772M612+925772q4—Q4U2q2+92772q4—945q2
+Q2n2uq2+96—94q2+92n2q2—n2q4—§24+§22q2> (A.13)
D:W]'UZ(2CQ(_QQBMq2+Q4M_QQBq2+Q4_Q2q2
—92u—92+q2)) (A.14)
P=Q? (A.15)
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APENDICE A. FUNCIONES DE TRANSFERENCIA.

NIDVA-C6 en rotor-cojinete tipo Jeffcott.

X

My, dw?

Ge(s) =
Ys(s) = (bms* + Cms® 4+ (Kib + Kom)s® + (CK; + CK»)s + K1 K>)

Us(s) = Mbm s + CMm s® + (Kbm + K, Mb + K;bm + KoMm) s?
+ (CKm+ CK:M + CKym + CKyM) s°
+ (KK1b+ KKym + K KoM + K Kom) s°

bms*  Cms® (Kib+ Kom)s? N (CKy+CKs)s N 1)

Y: = Mw?
o(r) = Mw (K1K2 TR Kk KK,

Mbms®  CMms® (Kbm+ K Mb+ KoMm + K;bm) s*
Us(r) = K ( + +
KKK, KK, K, KK, K,
(CKm+ CK\M + CKy;M + CmK;) 3
* KK, K,
(KKb+ KKym+ K\ KoM + K1 Kym) s°
+ KK, K,
N (CKK,+CKKy+ CK K,) s N 1)
KK, K,

(A.17)
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APENDICE A. FUNCIONES DE TRANSFERENCIA.

_ —022¢% + n2qt + QF — Q22

A q*n?

(A.18)

_20¢(=npg® + 9 — )

B =
q3pn?

(A.19)

1
C:_q4_n2 (QZ(ﬁn2q4_92n2q2+n2q4_Q26q2+94_QQq2+772q2_Q2+q2))

(A.20)

1
D= P (2% (B’ ug* — PnPug® — VB + nPug® + Q' — P — O + %))

(A.21)

P =0 (A.22)
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Apéndice B

Técnica de los puntos fijos extendida.

Para sistema rotor-cojinete tipo Jeffcott con el NIDVA-C3:

(A2)Py _ QL (! = (14 (n+ D?) 02 + ')
Co [0+ (=14 (—p = 1)n? = B = 1) Q4 + (12 (B + B+ 1)g? + 1 + (1 + 1)n?) 2% — g
(B.1)
(BQ)PQ 04 (—Q2 + q2)2
= 5 (B.2)
2 (P (+ B+ 1)) —¢%)
o ¢

TR (B.3)
é: q [(2+ ,U+2 )772q2+2+(2/i+4)772} (B4)

Uy —4+ 2+ (p+2)B8)n?¢* + (2p +4)n? — 48 — 2) ¢ '
b _ ¢ [((L+1)B+p+2)0* +8) ¢ + 2+ (u+ 1)1’ (B5)

U3 14+ ((p+1D)B+p+2)n* =32 =B)¢* + ((n+1)n* — 28 - 2) ¢ '

P, —20%u —2

= (B.6)

¢ (—2+ (n—2)B)n?
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APENDICE B. TECNICA DE LOS PUNTOS FIJOS EXTENDIDA.

D3 1 (w+ 1B+ +2u+9)B+ (=210 +28((u+3)B+p+6)n+ 5
¢z 2 B2 (B + 2)
N (T4 (p—1)n?) B+n*(n—2)
Bn? (B +2)
(B.7)
) ) V24 (1= 2)8) (1 + 2282 + (12022 — 8)8 + 4422)

1
"=
4 (2 +p+2)8-2u+2) + (=i +4) B2+ (247 — 10p + 4)8 + 4

(B.8)

VB 1) Bu+B 22 +2+ (—u—5)B
= 2(up+1)26—4p+4 (8.9)

E= (0,4879979332 (—2,683482985 Q2 + 1,431498868 + )

(B.10)
+0,08747759057 92 (9 — 1,270166550)” >Q4
G = <0,4879979332 (—3,810499640 Q* 4 4,294496579 0 + QF — 1,431498868)°
(B.11)
+0,08747759057 Q* (Q* — 2,397183205 Q° + 1,270166550)2)
R= <0,4879979332 (—2,683482985 02 + 1,431498868 + Q)
(B.12)

+0,2268288797 Q% (Q? — 1,270166550)2 ) ot

= <O,4879979332 (—3,810499640 Q* + 4,294496579 Q2 + Q° — 1,431498868)
(B.1)
+0,2268288797 02 (O — 2,397183205 02 + 1,270166550)2>
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Apéndice C
Criterio H

Para sistema rotor-cojinete tipo Jeffcott con el NIDVA-C3:

_ —022uq® — 22¢2 + 2t + QF — 02¢2

A
n?qt

1 02—
B=—uf)- 9
2 ¢q?

925772/1114 _ 94772Mq2 + Q2l3n2q4 _ Q4772q2 + QQn2q4
—945(124-92772#(124-96—Q4q2+92772q2—772q4—94+92q2

U’

D EMQ _926q2+94_92q2 —QQ—I—QQ
2 Cq?

Num = Y (Q) = Q4 Q%u2% 4 205¢? (2a2 — Pl — 2 + 1))
+ Q%" (=8a® + nut + 20 (i + 1) + P (n* + 4 + 1))

+ 20248 (2a2 ot =t 1)) ol
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APENDICE C. CRITERIO H,

Den = U(Q) = 492"2¢Z + (=81 — 8)n> — 88 — 8) ¢3 + u?n*) 201 — 83010

+ | (4(e+ 120" + (168 + 8)u+ 168+ 16) n* + 4(B+ 1)) G

-2 (B +1) | '

+ (16 + 16)7° + 88 + 16)(3 — 2u%n") ¢?Q° + 4¢308
+¢ ' [-8 ((p+1)n° + B+1) (Bu+ B+ 1)G + *n*(B+1)°] Q°

+q" (=8(n+1)*n" + (=168 — 16)u — 168 — 32) n* — 85 — 8) (3

+ 20”0t (B +2)Q°
(=84 (=8 — &) GG + pin'Q°
+ q4ﬂ4{4n4<§(6u + B+ 1) +20* [(u+ 1) (B + B+ 21 + B+ 26 + 2] G3

- é#zﬁ4(5 + 1)+ (14 (e + %"+ Cu+4)n*) ¢ - ;ugn“}

— ¢®n*Q? [8 <772C22(5u +B84+ 1)+ (14 (p+1)n?) & — ;u%?)]

+4¢%'G
(C.6)
R, V2 QA _ 2 2.4\ 2 o2
o1 = arg — (=B =8 — 85 i) G +1Pnt) ¢ - 833) ©.7)
e
cy =ag = 4222 (( (4(p + 1)°n" + (168 + 8)u + 168 + 16)n* + 4(B + 1)*) G
— 20" (B + 1)) ¢ + (((16p + 16)n* + 88 + 16)¢5 — 2u?n*) ¢ (C.8)

+4¢5 — 4G (- + 1))
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APENDICE C. CRITERIO H,

3 =ap = 2<—8< ((BM+B+1) ((u+D)* +8+1) ¢ - ;u2n2(6+1)2> g
F (1" + (28 +2u+ 28+ 40" +B+1) G — iu%(ﬁ + 2)> ¢’
+ (L4 (n+10?) G - ;uzn“) ¢
+8 (qQMfC%ﬁ + (14 (p+)7°) G - ;u2n4) ¢*(=r? +1)

(C.9)

cr=ay = i : é (4 (n“(%(ﬁu +B+1)%¢" +2 (((u +1)(Bu+ B+2)0* + Bu+28+2)¢ — i/an(ﬁ + 1)) n2q2>
2
+ (1 + (p+ 10"+ Cu+4)n*) G - ;/fn“) ¢t

—4 <q4u2n4<2252 +20° (14 (p+ 1)772)C22u6q2>

A1+ (120 4+ Cu+9n?) Gt (—r® + 1) + 20 ¢ (—r® + 1)

(C.10)
5 =az = i : ig ( — 81’ (n2C§(5u +B+1)¢" + (14 (p+ D)) - 1/fnz)qﬁ
& 8
(C.11)
1
+ 8(q2u772<§ﬁ + (14 (u+)n*)G - §u2n2>n2q6(—r2 +1)
cg = a) = q8n4r2 (C.12)
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APENDICE C. CRITERIO H,

A= %7;1 = (4n?(Bur — B = 1)¢* +2r(1 + (u+ 1)n°)q) (r = )G
- %7747“ ((p+Dn? = B—1) ¢*u?¢G
(C.13)
- %772?" (P ((p+1)n* = B—1)¢* —n* +71) q°G
+i 84,3,
LA
B
Ay = 81;2 =- 8<2(5w" —B—=1(u+ Dy +2((Bpr — B =1 +r(p+1)) (u+ )gn’*
+ (4B +1)(Bur =B -1 + 2 (=Bur* + (B+2u+B+3)r—B—1)q)n’
+2(8+ Dar) (r = 1)¢3
+ 7 (2(ﬁu7“2 + B8+ 1)@ +2((Bur® + B+ 1)g® +r*(u+ 1)) qn’*
—r(4(B+ 1)’ +2((—p—2)r +28+4) q) n*
+2r*(B + 1)(1) e
B iﬂﬂ"zlflﬁﬁ
(C.14)
As = %];3 = (= 4r(u+ P + B+ 1) + 4726 + VPr +4g™P (8 + 1)) (r = 1)¢d

1
+ 173 (2qun*Br? + 2grn* — 2qn*(B + 1)) 412G
(C.15)
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APENDICE C. CRITERIO H,

9
By = 8]:71 = (2n(Bur — B — 1)g* + 2r(u + 1)ng?) (r — 1)¢s

1

= P+ 10 = B=1)a* = n* +7) "4

(C.16)

1

- gnzr (2n((p+ D)n? = B = 1)g* +20°(u + 1)¢* — 2n) ¢*1° G

n in7u4q4r
16

By :%—‘/;72 = -8 <4 ((Bur — B =1 +r(p+1)) (n+1)¢*n*

+2((8+1)(Bur = 8= 1)a* + (=Bur® + (B + 2+ B+3)r = B 1) ¢* = r(u+ 1>)n> (r = 1)c3
+ 2n< ((Bur® + B+ 1)@+ (u+ 1)) n* —r (B+1)%¢" + ((—p — 2)r + 28+ 4)¢* + %) n?
+r7(1+(B+ 1)612)) WG+’ (4 ((Bur® + B+ 1)¢* + % (u+ 1)) ¢°n®

—2r (B+1)%¢" + ((—p — 2)r + 28 + 4)¢° +1?) n) 1202 — %qzrsz

(C.17)

By =00 = (~4r%(u+ ng® + 2498 + DPr + 2¢'9(5 + DP) (r — )63
+ 37"2 ((24%unB + 20 = Vm)r® + 4g%rn® = 2%n(8 +1) ) w23 3%7"4%‘77
(C.18)
Cr = g? = 4(2(Bur = 8= 1)g" + (1 + (u+ 1)P)g* - %TQ - %T) (r=1¢
2 (C.19)

1
— 1?727" (P ((u+1)n* = B=1)¢* —n* +7) ¢*1G
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APENDICE C. CRITERIO H,

_0h

“ =5 =

= - 32( ((Bur — B =1)g* +r(p+ 1)) (n+ Dg*n*
+((B+1)(Bur = B=1)g" + (=Bur® + (B +u+ B +3)r — f—1) ¢ —r*(p+ 1))’

+((B+1)¢* — 7“)7"> (r—1)¢
+ 27 ( ((Bur? + B+ 1)¢* +r*(u+ 1)) ¢*n’*

—r ((B+ 1"+ (—p—2)r+ 28+ +r*)n” + r*(1+ (B+ 1)¢%) |1’

(C.20)

_ogs

%= 9

= 4<27“3 =2 ((u+1n° + B+1) ¢ + ¢"°(B+1)*r + ¢*n*(B + 1)2) (r—1)¢3

1
+ 57 ( (@B + 1+ (= D) v + ¢*rn* — " n*(B + 1)) e
(C.21)
0 1
Dy = a‘);l = (Brg'r +7°¢°r) (r = )G — gn"w’q'rG3
(C.22)
1 1
= 0 (e 0n* = B=1) @ = +7) i3 + gon e’

113



APENDICE C. CRITERIO H,

o

o = 8 ((66127" + )+ D@yt + ((Bur — B—1)¢* +r(p+1))¢*n*

+ ((B+1)Brg* + (=Br* + (B +2)r) ¢* — r?) 772) (r—1)¢
+ 0% ((B*r? + 1) *n* + nP*r?) 123
+ 21 ( ((Bur® + B+ 1)¢* +r*(n + 1)) ¢*n*

—r((B+ 12"+ (—p—2)r +28+ )@ +r°)n* +r*(1+ (B + 1>q2>> 13

L9236
2q7“/~”7

(C.23)

JE 1
Dy =50 = =20 (r = 1)G + g (Br'd + ' )u'y

+ %rz ((Pun?8+ 1+ (u= 1)) + Pro* = 2B+ )i (C:24)

L 432
167“M77
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