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Resumen

Son comunes las vibraciones en los sistemas rotodinamicos, sin embargo, excesivas vibraciones
pueden ocasionar un mal funcionamiento de la méaquina. El desbalance es el principal causante
de las vibraciones en estos sistemas, y este puede aumentar las amplitudes de las mimas hasta
un punto en el que el sistema entre en resonancia. Especificamente, los rotores con ejes de
seccion transversal asimétrica presentan un comportamiento dindmico con caracteristicas
diferentes a los rotores con ejes simétricos, y debido a que los métodos de balanceo de estos
son escasos, el estudio de este tipo de rotores es de gran interés. Por ello en este trabajo se
presenta el desarrollo del modelo matematico de un sistema rotor-cojinete de eje asimétrico de
dos grados de libertad considerando dos velocidades de operacion del rotor: velocidad constante
y velocidad variable. De la misma manera, considerando las dos condiciones de operacion, se
proponen los modelos matematicos para los identificadores algebraicos de los pardmetros de
desbalance (magnitud y posicion angular), con base en la técnica de identificacion algebraica.
La ventaja que ofrece la metodologia propuesta es que funciona a bajas velocidades, sin ser
necesario llevar el rotor a su velocidad nominal de operacion para obtener la respuesta vibratoria
del sistema. Los identificadores propuestos requieren como dato de entrada Unicamente esta
respuesta, es decir, solo quedan en funcién de los desplazamientos. En la condicion de
operacion a velocidad variable, se considera una rampa de excitacion de tipo lineal, estas
respuestas son obtenidas por medio de la simulacion del sistema. Los resultados numéricos
muestran la rapidez de convergencia de los identificadores tanto de la magnitud del desbalance,
como su posicion angular, en un tiempo aproximado de 0.1 segundos a partir del inicio de la

respuesta vibratoria del sistema.
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Capitulo 1

INTRODUCCION

Las vibraciones en los sistemas rotodindmicos estan relacionadas con el desbalance
existente en el rotor. Dicha condicion se presenta debido a la no coincidencia entre el eje
principal de inercia del rotor y el eje geométrico del sistema, lo cual puede ser generado, por
ejemplo, por un montaje defectuoso de componentes o falta de simetria en partes rotativas de
la maquina. Estas vibraciones son transmitidas a distintos componentes mecanicos, soportes y
cojinetes del rotor [1]. Debido a esto, es de gran importancia mitigar los efectos de las
vibraciones, por lo que el balanceo es el principal objetivo por tomar en cuenta. Este proceso
consiste en agregar o remover material del rotor, de tal forma que el sistema quede en equilibrio,
y de esta manera evitar amplitudes de vibracion indeseables, garantizando asi, el correcto

funcionamiento del sistema.

La mayoria de los métodos de balanceo existentes funcionan solo para rotores simétricos,
métodos como el balanceo por coeficientes de influencia y el balanceo modal son los mas
recurridos. Cabe mencionar que estos métodos funcionan 6ptimamente en rotores simétricos,
los cuales poseen parametros de rigidez igual en su seccion transversal. Por otro lado, los rotores
asimétricos son mas complejos de balancear, debido a la diferencia entre los parametros de
rigidez en los ejes principales de inercia de su seccion transversal, esta diferencia de rigidez
conlleva a una excitacion paramétrica, generando inestabilidad y perturbaciones en el
comportamiento dindmico del rotor. Esta situacién dificulta considerablemente la

implementacion de un método eficiente para su balanceo.
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A través de los afos, se ha desarrollado maquinaria rotatoria para que trabaje a velocidades
cada vez mas altas, esto ha provocado que su comportamiento dinamico sea de interés para su
estudio. A causa del desbalance que se puede producir en estos sistemas, es de gran importancia
establecer nuevos métodos de balanceo, lo cual requiere de identificar la masa de desbalance y
su posicion angular. Recientemente ha ido ganando campo la técnica de identificacion
algebraica, la cual tiene un enfoque distinto a las técnicas existentes para la identificacion de
parametros. Esta se basa en el calculo operacional y el algebra diferencial. Para su
implementacion se requiere unicamente el modelo matematico del sistema que se requiere
analizar, ademas, ofrece varias caracteristicas favorables que la hacen atractiva para llevar a
cabo distintos analisis tanto en sistemas lineales como no lineales. Una de las ventajas que
ofrece esta técnica en la identificacion de los parametros del desbalance en sistemas
rotodinamicos, es que la estimacion de estos se realiza sin la necesidad de llevar al rotor hasta

su velocidad nominal, evitando de esta manera las velocidades criticas del sistema.

Por otro lado, los sistemas fisicos pueden ser representados mediante modelos matematicos,
que si bien, no logran describir con exactitud el comportamiento dindmico del sistema real,
ayudan a llevar a cabo un analisis valido. En la mayoria de los casos los modelos se expresan
por medio de ecuaciones diferenciales. En el caso de la ecuacion general de movimiento de un
sistema rotor-cojinete, se utiliza para conocer y predecir el comportamiento dindmico del

sistema bajo diferentes condiciones de funcionamiento.

Por lo anterior, en este trabajo se presenta el desarrollo del modelo matematico de un sistema
rotor-cojinete de eje asimétrico de dos grados de libertad considerando dos velocidades de
operacion del rotor: velocidad constante y velocidad variable. Posterior a esto, con base en la
técnica de identificacién algebraica, se proponen los modelos matematicos para los
identificadores algebraicos de los parametros del desbalance y su posicion angular en los dos

esquemas de operacion antes mencionados.
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1.1. Planteamiento del problema

A raiz de la revolucion industrial surgié la necesidad de desarrollar maquinas rotatorias
capaces de operar a velocidades elevadas, lo que introdujo nuevos desafios en su disefio y
operacion. Debido a las altas velocidades, las maquinas se vieron obligadas a operar por encima
de su frecuencia natural fundamental, lo cual obligé a los disefiadores a enfrentarse al fendémeno
de resonancia. En esta condicion de resonancia, las maquinas experimentan un incremento
descontrolado en su actividad vibratoria, pudiendo alcanzar niveles tan altos como para
provocar la fractura o el fallo de alguno de sus elementos que las conforman o de la maquina

en si.

La principal causa de vibraciones en la maquinaria rotatoria es el desbalance, este se
produce cuando el eje principal de inercia del rotor no coincide con el eje geométrico del
sistema, lo que genera la presencia de un punto pesado el cual se conoce como desbalance. En
la literatura se han propuesto una gran cantidad de métodos orientados a la correccion del
desbalance de las maquinas rotatorias, lo que se conoce como balanceo. Entre los métodos
clasicos de balanceo se encuentran el de coeficientes de influencia y balanceo modal. Muchos
de los métodos que se utilizan en la actualidad para el balanceo de la maquinaria rotatoria
requieren varias corridas del sistema para la correccion del desbalance y algunos otros son
complejos de implementar, lo que genera que el tiempo de balanceo se incremente y esto
impacta negativamente en los costos de la implementacion de estos procedimientos. De acuerdo
con la literatura, la estimacion de parametros con la técnica de identificacion algebraica se
puede realizar en segundos, en comparacion con otras técnicas que pueden tardar minutos, e

incluso horas.

Aunado a los inconvenientes antes mencionados, si el eje de la maquina rotatoria es
asimétrico ocasiona un problema adicional, debido a que se presenta una excitacion paramétrica
debido a la diferencia de rigidez en los dos ejes principales de inercia, por lo que los métodos
clasicos ya no son aplicables para el balanceo de este tipo de rotores, y los métodos actuales

son complejos.
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Debido a que este tipo de rotores ha ido ganando campo en distintas aplicaciones, se sigue
investigando hasta la fecha acerca del comportamiento dinamico y proponiendo métodos de
balanceo que puedan lograr el equilibrio de los sistemas rotodindmicos con asimetria, en el

menor tiempo posible.

1.2. Justificacion

La resonancia es un fenomeno que sucede cuando la frecuencia de excitacion es igual a la
frecuencia natural del sistema, y puede ocasionar que los efectos del desbalance sean
irreversibles. Este fenomeno puede generar consecuencias como: aumento de ruido y vibracion
en los rotores, una reduccion de la vida util de los rodamientos, asi como aumentos de los
esfuerzos de operacion y el consumo de energia. La causa principal de las altas vibraciones en
las méaquinas rotativas se debe al desbalance, este se puede generar debido a la asimetria del
disefio, tolerancias de fabricacion y ensamblaje, no homogeneidad del material, distorsion en
servicio, corrosion y desgaste, y acumulacion de depdsitos. Existen diversos métodos de
balanceo (coeficientes de influencia, balanceo modal, gréficos, etc.) y a pesar de esto el rotor

nunca se balancea perfectamente.

La eliminacion total del desbalance en un rotor es técnica y practicamente imposible, sin
embargo, existen normas que establecen tolerancias de desbalance y procedimientos para tomar
en cuenta al momento de balancear rotores, normas como la ISO 21940-11 que aplica para
rotores con comportamiento rigido, o la ISO 21940-12 la cual es considerada para correcciones

de balanceo de rotores con comportamiento flexible.

Un inconveniente adicional se tiene cuando el eje de la maquina rotatoria es asimétrico.
Para este tipo de rotores de eje asimétrico ya no son aplicables los métodos de balanceo
convencionales, ya que se genera una excitacion paramétrica debido a la variacion de rigidez
del eje en sus ejes principales de inercia, lo que hace que la tarea de balanceo de este tipo de
rotores sea compleja. Es por ello, que en este trabajo de investigacion se propone la

implementacion de la técnica de identificacion algebraica con el objetivo de desarrollar un
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identificador de los parametros de desbalance y que a partir de esto sea mas sencillo balancear

este tipo de rotores de eje asimétrico.

Si bien existen ya métodos de balanceo para este tipo de rotores, estos son complejos de
implementar y necesitan de mas tiempo para llevar a cabo el balanceo. Para implementar de
manera optima métodos como el balanceo modal o el de coeficientes de influencia, se requiere
de la respuesta de vibracion en estado estable para diferentes valores de frecuencia de la
excitacion, por lo que es necesario realizar varias corridas de prueba y llevar a la maquina hasta
su velocidad nominal de operacion, en comparacion con la técnica de identificacion algebraica,
la cual algunas de sus ventajas son que solo requiere de una corrida del sistema para la
identificacion del desbalance y funciona a velocidades bajas, evitando asi las velocidades

criticas del sistema.

1.3. Hipotesis

Mediante la implementacion de la técnica de identificacion algebraica se lograra la
determinacion de los parametros de desbalance de un sistema rotor-cojinete de eje asimétrico

de dos grados de libertad.

1.4. Objetivos

1.4.1. Objetivo general

Determinar los parametros de desbalance de un sistema rotor-cojinete de eje asimétrico de
dos grados de libertad, utilizando la técnica de identificacion algebraica, con el fin de optimizar

el procedimiento de balanceo.

1.4.2. Objetivos especificos

1.- Obtener el modelo matematico del sistema rotor-cojinete de eje asimétrico de dos

grados de libertad mediante la aplicacion del formulismo Euler-Lagrange.
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2.- Desarrollar el modelo del identificador de los parametros de desbalance empleando
la técnica de identificacion algebraica.

3.- Realizar un programa del identificador de los parametros de desbalance en la
plataforma de programacion Matlab Simulink.

4.- Analizar los resultados en simulacion del identificador algebraico de los parametros

de desbalance.

1.5. Metas

1.- Desarrollar el modelo matematico del sistema rotor-cojinete de dos grados de
libertad.

2.- Desarrollar del modelo matematico del identificador de los parametros de
desbalance.

3.- Realizar la simulacion del identificador de los parametros de desbalance.

1.6. Metodologia

La metodologia implementada para llevar a cabo el presente trabajo de tesis se muestra en
el esquema de la Figura 1.1. Este método propuesto por Canales ef al. [2] basicamente consta

de 7 etapas que se describen a continuacion.

22 Determinacion del I Creacion de la
Documentacion | .
problema hipotesis
Resolucion, validacion y ' ” Definicion del
verificacion método
Analisis de resultados y “- Redaccion del
conclusiones informe final

Figura 1.1. Metodologia de la investigacion implementada en el presente trabajo.
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I.  Documentacién. Antes de comenzar un desarrollo de una investigacion es necesario
documentarse sobre el tema a desarrollar. Se recopilaron articulos cientificos relevantes
relacionados con el comportamiento dindmico de rotores asimétricos y técnicas de
balanceo. Acerca de la identificacion algebraica, se reunieron articulos y documentos
para tener un mejor panorama de lo que implica esta técnica, y de las aplicaciones en

donde se ha implementado.

II.  Determinacion del problema. En esta parte se da a conocer el problema general con el
que se va a enfrentar. Especificamente el problema en este trabajo de investigacion es
identificar los parametros de desbalance de un sistema rotor-cojinete con eje asimétrico

de dos grados de libertad.

III.  Creacidén de la hipodtesis. Con la informacion recabada durante el proceso de la
documentacion se puede realizar una proposicion aceptable a la que se espera llegar. La
hipotesis formulada en el presente trabajo es la siguiente: Mediante la implementacion
de la técnica de identificacion algebraica se lograra la determinacion de los parametros

de desbalance de un sistema rotor-cojinete de eje asimétrico de dos grados de libertad.

IV.  Definicion del método de trabajo. Se hara uso del Formulismo de Euler-Lagrange para
obtener el modelo matematico del sistema roto-cojinete de eje asimétrico de dos grados
de libertad. Asi también se implementara la técnica de identificacion algebraica para el

desarrollo del modelo matematico de los identificadores.

V. Resolucion, validacion y verificacion. Se realizard un programa en la herramienta
computacional Matlab para los identificadores, y asi obtener los resultados numéricos y

sus graficas correspondientes.

VI.  Andlisis de resultados y elaboracion de conclusiones. Posterior a la obtencion de los

resultados, se proseguira a realizar una comparacion con los resultados presentados en
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el documento. Se debera informar si los resultados obtenidos respaldan la hipotesis y

los objetivos establecidos al inicio del trabajo de investigacion.
VII.  Redaccioén del informe final. Una vez que se ha finalizado con el desarrollo se redactara

de manera concisa acerca de los resultados, descubrimientos, comprobaciones y analisis

determinados a lo largo de todo el proceso de investigacion.
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Capitulo 2

ESTADO DEL ARTE

Durante los ultimos tres siglos se han desarrollado teorias sobre sistemas rotodindmicos,
centradas en el analisis del comportamiento dinamico y en la determinacion de los parametros
que influyen en el comportamiento inestable del rotor, asi como propuestas de balanceo de estos

sistemas.

A finales del siglo XIX hubo un gran desarrollo de la teoria de vibraciones y a la vez un
rapido progreso en el desarrollo de maquinaria, destacando los avances de locomotoras y
turbinas de vapor. Luego, durante el siglo XX varias compafiias proveedoras de maquinas
eléctricas tomaron como fundamento el estudio realizado por Jeffcott [3] con el fin de
desarrollar generadores de dos polos para que operaran con velocidades de trabajo por encima
de sus velocidades criticas. El rotor de estos generadores presenta una seccidon transversal
asimétrica, esta asimetria seria la causante del comportamiento dinamico distinto al de los
rotores que hasta ese entonces se habian analizado. A partir de entonces se han disefiado rotores
con ejes flexibles y mas largos, con el fin de trabajar por encima de sus velocidades criticas y
aumentar la energia de salida, como consecuencia, el rotor se volvid mas sensible a las

vibraciones, y por consiguiente al desbalance.
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Segun la literatura, se han realizado investigaciones acerca del comportamiento dindmico
de los rotores asimétricos y se han propuestos métodos de balanceo, sin embargo, estos suelen
ser idealizados, complejos de aplicar y es necesario realizar multiples corridas de prueba para
lograr el estado de equilibrio del sistema. Por ejemplo, Parkinson [4] en una investigacion
empled el método de balanceo modal con el uso de diagramas polares de respuesta, para estimar
la magnitud y posicidon angular del plano de desbalance en un rotor con eje asimétrico. Es
importante recalcar que en [5] el autor menciona que este método resulta impreciso al aplicarlo
en un sistema real, debido a que se requiere identificar puntos en el diagrama polar de respuesta

para calcular la posicion angular del desbalance.

2.1. Comportamiento dinamico de los rotores asimétricos.

Los primeros estudios sobre los rotores asimétricos se remiten entre los afnos de 1930-1940,
trabajos de Smith [6] y Taylor [7], abordan temas sobre el comportamiento de los rotores con
asimetria. El interés sobre el estudio de estos rotores se dio a causa de que estos operaban por
encima de sus velocidades criticas, y presentaban un comportamiento dinamico muy diferente
al de los rotores con ejes simétricos. El modelo utilizado en [7] es una version basada del
presentado por Jeffcott [3], y tenia como finalidad estudiar la inestabilidad de un turbogenerador
de dos polos, por lo que verifica sus resultados experimentalmente mediate un rotor a escala,
revelando que la influencia de pesos adicionadas en una misma posicion angular del rotor no
guarda proporcionalidad con la respuesta vibratoria. Durante la década de los 40’s también se
cuentan con trabajos de Foote ef al. [8] y Dick [9]. En este Gltimo se menciona que cuando un
eje gira horizontalmente, la fuerza de gravedad produce un giro inducido, lo cual sucede a dos
veces de la velocidad del eje. A principios de los 60°s se cuentan con trabajos como el de Hull
[10], quien realiz6 un estudio sobre el efecto del giro generado en tres casos distintos; en el cual
realiza configuraciones de asimetria y/o simetria entre los ejes y cojinetes. En general se
muestra que este tipo de combinaciones tiene una influencia en la dinamica del giro del rotor,
generando efectos como los giros inversos o frecuencia doble. Ampliando de esta manera el

trabajo de Smith [6].
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Durante la misma década, con la finalidad de ampliar el panorama sobre la vibracion de
segundo orden y por consiguiente obtener un mejor analisis acerca de los rotores asimétricos,
en particular sobre los rotores de los generadores de dos polos, Bishop y Parkinson [11],
presentaron un trabajo en el que realizaron un analisis modal. Este analisis fue la base del trabajo
presentado en [4]. También Yamamoto ef al. [12], [13], llevaron a cabo investigaciones acerca
de las vibraciones inestables generadas en los rotores asimétricos. Demuestran tanto tedrica
como experimentalmente, que las regiones inestables de un rotor asimétrico pueden ser

eliminadas mediante una combinacion adecuada de desigualdades de rigidez e inercia.

A partir de estas investigaciones, distintos autores presentaron mads trabajos en los cuales
tomaron en cuenta mas efectos que influyen en el comportamiento dindmico de este tipo de

rotores. A continuacion, se enlista una serie de investigaciones:

En 1976 Ardayfio y Frohrib [14], presentaron un trabajo sobre el estudio del
comportamiento dindmico de un rotor con asimetria tanto en la inercia como en la rigidez del
eje, el modelo de rotor empleado fue el propuesto por Yamamoto y Ota [13], con la diferencia
de que agregaron la flexibilidad de los soportes, y concluyeron que esta tiene un gran efecto en
la tendencia de las regiones de velocidad inestable. Un trabajo similar realizd Ota en
colaboracion con Mizutani [15]. Otro trabajo realizado en ese afio fue elaborado por Childs
[16], en el cual desarrolla una formulacion modal para una simulacion transitoria de un rotor

flexible asimétrico con soportes flexibles asimétricos.

A principios de los 80°s Inagaki et al. [17] llevaron a cabo un trabajo de investigacion en el
que tratan el andlisis de la respuesta de un sistema rotor-cojinete asimétrico. Consideraron la
rigidez del eje ligeramente asimétrica tanto en flexiéon como en corte, y el momento de inercia
de una masa transversal también la consideraron asimétrica. Los resultados numéricos
obtenidos comparados con los experimentales muestran una variacion aceptable, asi que el
autor menciona que los resultados pueden ser utilizados para el disefio y balanceo de sistemas

rotor-cojinete, asi como para el diagnostico de problemas de vibracion.

Por otro lado, Genta [18], realizod un estudio sobre el comportamiento dinamico de flexién

de un rotor asimétrico. Para abordar su andlisis, utiliz6 el Método del Elemento Finito y
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coordenadas complejas. El autor menciona que el modelo propuesto puede contemplar
parametros de amortiguacidn, y partes no rotatorias de la maquina. Ademas, alude a que la
formulacion del modelo se le puede agregar grados de libertad adicionales en los nodos para
estudiar problemas acoplados, como los que se encuentran en los cigiiefiales o en maquinas

complejas.

En la década de los 90°s se cuentan con trabajos realizados por Jei y Lee [19], en el cual
llevan a cabo un analisis de un sistema rotor-cojinete asimétrico, considerando los efectos de la
inercia rotatoria y el momento giroscopico. Desarrollan un método de solucion para el analisis
de vibracion de un eje asimétrico uniforme en rotacion, ademads analizaron las resonancias de
sistemas rotor-cojinete asimétricos. Otro trabajo de estos autores se muestra en [20], en el cual
analizaron las caracteristicas modales de rotores asimétricos asociadas con la rotacion del rotor,
con diferentes grados de asimetria. Mediante los desplazamientos modales complejos,

identificaron los modos hacia delante y hacia atras.

Kang et al. [21] desarrollaron una matriz de transferencia modificada para analizar la
inestabilidad de sistemas rotor-cojinete asimétrico. Como conclusiones de su trabajo obtienen
que las regiones inestables se amplian al aumentar la asimetria del eje en el mismo modo, asi
también mencionan que la amortiguacion en los cojinetes tiene efectos de estabilizacion y

desestabilizacion en estos sistemas.

En los ultimos 25 afios se ha seguido investigando acerca del comportamiento de los rotores
asimétricos. Oncescu et al. [22], incorporan el efecto de la asimetria del eje en un procedimiento
de Elemento Finito junto con la teoria de Floquet. Evaltian la eficiencia de la estabilidad de un
sistema general de ecuaciones diferenciales con coeficientes periddicos al aplicarlo a rotores
asimétricos. Con ejemplos numéricos demostraron que el método del elemento finito y el
método de la matriz de transferencia-tiempo es una forma conveniente de predecir el

comportamiento de rotores asimétricos.

Nandi y Neogy [23] realizaron un estudio sobre la eficiencia de estabilidad del analisis de
elemento finito de rotores asimétricos en un plano rotatorio. Los autores mencionan que para

este tipo de analisis se requiere lidiar con un gran conjunto de ecuaciones diferenciales lineales
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homogéneas con coeficientes periddicos, considerando que el marco giratorio gira alrededor de
la linea central no deformada del rotor a una velocidad igual a la velocidad de giro del eje. Una
de sus conclusiones es que se puede utilizar una amortiguacion isotrdpica suficientemente alta

para estabilizar un rotor asimétrico inestable.

Segun la literatura la implementacion del elemento finito para el estudio de la inestabilidad
en rotores asimétricos ha mostrado tener una gran eficiencia. Por otro lado, existen trabajos en
los que se han implementado modelos de rotor de elementos finitos en 3D que muestran también
buenos resultados, puesto que se pueden considerar geometrias complicadas y condiciones de
contorno, por ejemplo. Nandi y Neogy [24] desarrollaron una formulacioén de elemento finito
en 3D para analizar la velocidad critica y giros de rotores con secciones transversales variables.
Wang et al. [25] presentan un modelo generalizado y eficiente para sistemas rotatorios con
anisotropia en el rotor y cojinetes (anisotropia en rigidez, inercia y amortiguamiento). El
movimiento esta regido por ecuaciones diferenciales con coeficientes periodicamente variables
en el tiempo. Para poder resolver dichas ecuaciones hacen uso de un método de sintesis de
modos de componentes complejos (CMS) para generar modelos de orden reducido, y emplean
una variante del método de Hill para sistemas con multiples excitaciones armoénicas. Una de las
conclusiones de sus resultados numéricos es que la anisotropia en los cojinetes respecto a
coeficientes de amortiguamiento afecta principalmente a las amplitudes de respuesta del
sistema. Otro trabajo sobre modelos solidos de elemento finito en 3D fueron realizados por Zuo

et al. [26] y Lazarus et al. [27].

2.2. Balanceo de rotores asimétricos

Existen métodos convencionales para el balanceo de sistemas rotodinamicos; el método de
balanceo modal, el de coeficientes de influencia, junto con el uso de diagramas polares de
respuesta, son los que se han utilizado para el balanceo de rotores simétricos. Con el método de
coeficientes de influencia se mide fisicamente la amplitud de vibracion y la fase del eje con
pesos de prueba. Esto se realiza con la finalidad de obtener el coeficiente de influencia a partir
de ecuaciones que integran estos datos de vibracion, para posteriormente determinar la masa de
balanceo que se requiere para equilibrar el rotor. Ademas, existen dos formas de balancear el
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rotor; agregando o removiendo masa en una direccion especifica. Mientras que el balanceo
modal consiste en determinar un arreglo de masas especifico para cada modo de vibracion del
sistema, de tal forma que el siguiente modo a balancear no afecte a los modos previamente
balanceados. En el balanceo modal clasico se hace la suposicion de que la respuesta del rotor

es lineal.

Por otro lado, para los rotores asimétricos, los métodos de balanceo antes mencionados ya
no son aplicables tal como fueron establecidos para los rotores simétricos, debido a la excitacion
paramétrica generada en estos por la asimetria del eje. Sin embargo, el método de coeficientes
de influencia ha sido modificado para proponer nuevas técnicas que sean aplicables a rotores

asimétricos.

Matsukura et al. [28], analizaron los desequilibrios residuales después de una serie de
compensaciones a rotores flexibles con asimetria, utilizaron el método de coeficientes de
influencia, al cual le agregaron un factor de convergencia (similar a un factor de convergencia
en los métodos iterativos de calculo numérico), con la finalidad de que los desequilibrios
residuales convergieran y disminuyeran rapidamente. Dicho factor es verificado tedricamente,
obteniendo resultados favorables, pero debido a que el factor que agregaron depende de varios

parametros, hacen que este método sea complicado para lograr el balanceo.

Kang et al. [29], llevaron a cabo un trabajo en el que presentan la formulacion de matrices
de coeficientes de influencia a partir de las ecuaciones de movimiento para rotores asimeétricos
mediante la representacion de coordenadas complejas y el método de elementos finitos. Con
base a esto proponen un método de balanceo modificado, el cual consiste en aplicar dos masas
de prueba en cada plano de balanceo. Durante su formulacion observaron que para determinar
los coeficientes de influencia modificados en necesario realizar dos operaciones de prueba y

precesiones hacia adelante calculadas a partir de la medicioén de respuestas desequilibradas.

Kang et al. [30], presentaron un método modificado para el balanceo de cigiienales,
mediante el uso de maquinas de pedestal blando. Este enfoque modificado lo verificaron
mediante la teoria de coeficientes de influencia modificado para rotores asimétricos y la técnica

de correccion iterativa, concluyendo que se puede lograr una mayor calidad de balanceo
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mediante este método. Otro estudio en el que también hacen uso del método de coeficientes de

influencia para el balanceo de cigiiefiales de motores se muestra en [31].

Por otro lado, también se ha hecho uso de diagramas polares de respuesta para representar
el comportamiento de la respuesta vibratoria de rotores asimétricos, esta respuesta se grafica en
funcion del angulo de fase. En el caso de los rotores simétricos, los graficos tienen forma
geométrica circular como se muestra en la Figura 2.1, con lo cual es facil determinar la posicion
de la respuesta en resonancia; trazando una linea desde el centro del diagrama al punto mas
alejado del circulo, y la masa de desbalance se posicionara con un desfase negativo de 90°. Sin

embargo, para los rotores asimétricos, esto no funciona de la misma manera.

En la Figura 2.2 se muestran dos diagramas polares de respuesta de un rotor asimétrico, en
donde 6, representa la posicion angular f; la fuerza de desbalance, y la velocidad angular w
del eje tiene sentido positivo, la frecuencia natural promedio estd representada por w*. Las
formas geométricas elipticas son caracteristicas de la respuesta vibratoria de este tipo de rotores,

para cada posicion angular diferente se generan estas formas.

Figura 2.1. Diagrama polar de respuesta de un rotor simétrico [32].
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Figura 2.2. Diagramas polares de respuesta de un rotor asimétrico [33].

Esta forma eliptica generada en estos diagramas debido a la excitacion paramétrica presente
en el comportamiento dindmico de los rotores asimétricos hace que los métodos tradicionales
de balanceo sean complejos a la hora de querer implementarlos en este tipo de rotores. En este
caso, la respuesta vibratoria no guarda proporcionalidad con la fuerza de desbalance, y tanto
depende de la posicion angular del desbalance, como del factor de amortiguamiento modal.
Ademas, es necesario realizar multiples corridas y llevar al rotor hasta su velocidad nominal de

operacion.

Una propuesta de balanceo en donde emplean estos diagramas es la que presentan Colin et al.
[33], en su investigacion proponen una metodologia para identificar la posicion angular de la
fuerza de desbalance en rotores asimétricos, la cual consiste en el desarrollo de un modelo
identificador que requiere la informacion de la respuesta vibratoria de al menos cuatro puntos
del diagrama polar de respuesta. Para resolver el identificador emplean el método numérico de
Newton-Rhapson. Sus diagramas polares obtenidos experimentalmente muestran una pequefia
diferencia con los tedricos, sin embargo, es necesario realizar mas de una corrida, y llevar al

rotor a su velocidad nominal de operacion.

Trabajos recientes muestran un buen resultado al implementar la identificacion algebraica
a los sistemas rotodinamicos. Baltazar-Tadeo [5] expone el control de vibraciones en linea de

un sistema rotor asimétrico-cojinete con discos de balanceo activo, en el cual toma ventajas del
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balanceo modal convencional (arreglo de pesos modales) y lo integra con la metodologia de
identificacion algebraica. En simulaciones numéricas logra reducciones de mas del 90% en la
amplitud de vibracion del rotor, mientras que en pruebas experimentales logra reducciones
mayores al 80%, (con condiciones de resonancia de cuatro modos de vibracion en la primera, y

dos en la segunda).

En [34], proponen un método integrado para el balanceo de sistemas rotor-cojinete
asimétrico, el cual consiste en la implementacion del método de balanceo modal convencional,
en combinacion con la técnica de identificacion algebraica. En su trabajo utilizaron discos de
balanceo activo (ABD) para llevar el sistema al estado de equilibrio. Sus resultados obtenidos
avalan una reduccion del 90% de la amplitud de respuesta vibratoria del rotor para los primeros
cuatro modos de vibracién. Otro trabajo similar se realizd en [35], en el cual, con la
implementacion del método algebraico ya mencionado, equilibraron numéricamente un rotor
de multiples grados de libertad considerando momentos principales de inercia diferentes en la
seccion transversal del eje y desequilibrio discreto. Sus resultados presentan una reduccion del

95 % de la amplitud vibratoria del rotor en resonancia para cuatro modos de vibracion.

2.3. Identificacion de sistemas fisicos

Segin Zadeh [36] la identificacion de sistemas se puede explicar de acuerdo con tres
factores: La clase del modelo utilizado, el tipo de sefiales disponibles y el criterio de estimacion.

Si se cumple con estos tres requisitos se obtendran resultados satisfactorios.
2.3.1. Modelos de sistemas

Para la identificacion de un sistema se requiere de conocimiento previo de la relacion de sus
componentes, y se pueden expresar con distintos grados de formula matematica, a esto se le
conoce como modelo del sistema. El modelo de un sistema describe su comportamiento, estas
descripciones pueden presentarse en forma verbal, diagramas, graficas o mediante modelos
matematicos, depende del sistema que se desea modelar. El uso previsto determinara el grado

de sofisticacion necesario para que el modelo sea util.
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El modelo matematico de un sistema es una representacion aproximada de su
comportamiento real. Esta representacion se estructura mediante expresiones matematicas;
generalmente ecuaciones diferenciales, que describen las relaciones entre las variables del

sistema. Los modelos matematicos se pueden clasificar en modelos lineales y no lineales.

e Modelos lineales y no lineales

Existe una multitud de modelos matematicos lineales, por lo que en una investigacion se debe
restringir a cierta clase definida de modelos (por ejemplo, modelos EE en tiempo continuo,
modelos en Espacio de los Estados y modelos de funcioén de transferencia). Los sistemas no
lineales tienen estructuras mas complejas, pueden mostrar diferentes tipos de patrones de
comportamiento segun los pardmetros y caracteristicas del sistema. Por lo que se debe
aprovechar el conocimiento fisico que se tenga del sistema para tratar de expresar las no

linealidades de una manera concisa.

Entonces, dado que es imposible estructurar un modelo matematico exacto del comportamiento
dinamico real del sistema, la exactitud de los resultados dependera de la proximidad entre la

respuesta que el modelo es capaz de generar y la respuesta medida del sistema.
2.3.2. Seiales

La interpretacion o manejo de sefiales es esencial para la identificacion de sistemas, la
mayoria de los sistemas fisicos poseen una naturaleza continua en el tiempo. Sin embargo,
debido a los avances digitales, se ha permitido hacer mediciones de sefiales contintias tomando
muestras cada cierto periodo (sefiales discretas en el tiempo). Aunado a lo anterior, se tiene un
error debido a esta discretizacion de la sefial, ya que entre muestra y muestra, no se logra

observar el curso de la sefial verdadera.

Si bien la mayoria de los sistemas fisicos se rigen por una naturaleza continua en el tiempo,
se pueden encontrar sistemas en los que es necesario identificarlos con senales discretas en el
tiempo. Por otro lado, si es requerido, estas sefiales se pueden transformar mediante la

transformada de Fourier para trabajarlas en el dominio de la frecuencia.
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2.3.3. Criterios

Por ultimo, para que la identificacion del sistema pueda tener solucion, es necesario elegir
un criterio para ajustar los parametros del modelo seleccionado ante el conjunto de datos
recabados en las sefales. De esta manera, se puede generar una expresion matematica con el
objetivo de realizar una evaluaciéon del modelo, y, por consiguiente, describir el proceso
generador de los datos observados. Esto se puede expresar segin Trapero [37], mediante el

error de prediccion de un determinado modelo M (6, ), de tal forma que:

y contemplando el siguiente conjunto de datos:

ZV = [y(1),u(1), y(2), u(2), ., y(N), u(N)] (22)

se pueden calcular los errores de prediccion para t = 1,2, ..., N. De tal modo que se puede hallar
una norma escalar o alguna funcion que permita medir el tamafo de &, o bien hacer que £(t, 6,)

sea cero, para obtener el menor error de prediccion.

2.4. Técnicas para la identificacion de parametros desconocidos de sistemas

Existen distintas técnicas para la estimacion de parametros, dependiendo del tipo del
sistema, el enfoque matematico utilizado y los datos disponibles. El filtro integral lineal, filtro
de Kalman, e identificacion por Series de Fourier, son algunas de estas técnicas, sin embargo,
en [38] se menciona que, debido a la naturaleza de estos métodos son dificiles de implementar
en sistemas mas realistas. Algunos trabajos que implementan técnicas para la identificacion de

parametros se muestran en [39], [40].
Estas técnicas se pueden clasificar en:

Técnicas paramétricas: tienen como objetivo estimar parametros dentro de un modelo
especificado (como funciones de transferencia o ecuaciones diferenciales), por lo que es

necesario integrar un vector de pardmetros dentro del modelo.
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Técnicas no paramétricas: en este tipo de técnicas no se emplea un vector de pardmetros de
dimension finita para buscar la mejor descripcion. Se intenta estimar un modelo genérico a

partir de respuestas de impulso, de frecuencia, respuestas escalonadas, etc.

Debido a la necesidad de interpretar sistemas reales en modelos mateméaticos mas precisos,
estos métodos han resultado tener un gran impacto en la investigacion y tecnologia. Con esto

se puede obtener un mejor analisis, simulacion, control y detectar fallas de varios sistemas.

2.5. Identificacion algebraica para la estimacion de parametros en distintos

sistemas

De acuerdo con la literatura, existen trabajos en los que ha utilizado una técnica diferente a
los métodos clasicos, conocida como técnica de identificacion algebraica. La técnica de
identificacion algebraica fue propuesta en un inicio por Fliess y Sira Ramirez [41], como un
procedimiento de identificacion paramétrica de ciclo cerrado para sistemas lineales, la cual
mediante simulaciones computacionales demostraron la robustez de esta técnica frente a una
variedad de perturbaciones. Luego, en [42], Sira-Ramirez et al., tratan dos enfoques distintos
pero equivalentes para el método de identificacion algebraica, un enfoque en el dominio del

tiempo, el cual ya se habia tratado en [41], y el otro en el dominio de la frecuencia.

Desde la propuesta de la técnica de identificacion algebraica para la identificacion de
pardmetros desconocidos de sistemas fisicos, distintos autores han implementado esta técnica
para identificar parametros en distintos sistemas eléctricos, mecanicos y sefiales [43], [44], [45],

[46], [47], [48].

También, es importante destacar que la técnica de identificacion algebraica ya se ha
utilizado para identificar pardmetros de desbalance en sistemas rotor-cojinete; Arias-Montiel et
al. [49] hicieron uso de esta técnica para la identificacion de parametros de desbalance en linea

en un sistema rotor-cojinete. Junto con el Método de Elementos Finitos, sintetizaron un
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esquema de control activo con el fin de atenuar las amplitudes de vibracion lateral en el sistema

mencionado.

Colin et al. [1] desarrollaron un modelo matematico de un identificador algebraico en linea
para determinar el desbalance y su posicion angular en sistemas rotodindmicos vibratorios de
multiples grados de libertad. El modelo matematico del identificador fue abordado por el
método de identificacion algebraica, y toma como dato de entrada la respuesta de vibracion

debido al desbalance a velocidad constante del sistema rotodinamico.

Mendoza-Larios et al. [50] en su trabajo presentan una metodologia para balancear varios
modos de vibracion a la vez en un sistema rotor-cojinete. La metodologia consiste en desarrollar
un identificador en linea basado en la técnica de identificacion algebraica para determinar la
magnitud y posicion angular del desbalance en el rotor, para posteriormente poder llevar el
sistema al estado de equilibrio mediante el uso de discos de balanceo activo. Los resultados
obtenidos son favorables, en donde los identificadores convergen a los valores reales en menos

de 0.02 segundos.

También Mendoza-Larios ef al. [51], desarrollaron una metodologia con la implementacion
de la técnica de identificacion algebraica para la determinacion de coeficientes rotodindmicos
de rigidez y amortiguamiento en un sistema rotor-cojinete. En el cual consideran efectos de la
inercia rotacional, momentos giroscOpicos, amortiguamiento externo, deformaciones por
cortante y fuerzas atribuibles a los parametros de rigidez y amortiguamiento de los soportes.
Respecto a sus resultados, se puede observar en graficos, como el identificador propuesto
determina los parametros identificados de los cojinetes, en menos de 0.06 seg. Lo que vuelve a
demostrar la rapidez de la técnica de identificacion algebraica para la determinacion de

parametros.

Luego, Landa-Damas ef al. [52], proponen el desarrollo de un método para identificar los
coeficientes rotodinamicos de una chumacera presurizada, por medio de la técnica de
identificacion algebraica en linea, considerando un modelo de un sistema rotor-chumacera de
multiples grados de libertad a velocidad angular constante. Validaron los coeficientes

rotodinamicos identificados, mediante la comparacion de la respuesta de vibracion
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experimental con la respuesta de vibracion obtenida con el modelo de multiples grados de
libertad, tomando como dato de entrada los parametros rotodinamicos identificados. Sus

resultados demuestran como la identificacion algebraica ayuda a determinar los parametros en

un tiempo menor a 0.1 segundos.

En las siguientes figuras, se muestran los graficos de algunos resultados en el analisis de
dos sistemas fisicos obtenidos con la implementacion de identificadores algebraicos. En la
Figura 2.3, se tiene la respuesta del identificador del pardmetro de amortiguamiento de una
suspension automotriz regenerativa, en la cual se puede observar, como los valores del

identificador convergen al valor real alrededor de 0.1 segundos.

Identificacion algebraica del amm:tigusmienm equivalente (c,+c, ,)

8000 - - - Valor real de (¢ ,+¢

LY
—— Identificador de (¢ Fzﬂ.‘”}

6000

1] (N*s/m)

1 4000 7 flr" 3

+
(epte,

2000

0 I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Tiempo (s)

Figura 2.3. Gréfico obtenido con identificadores algebraicos para el parametro de
amortiguamiento de una suspension automotriz regenerativa [53].

En la Figura 2.4, los valores de simulacion fueron obtenidos con la técnica de identificacion
algebraica aunada con observadores GPI. En donde se hace uso de identificadores algebraicos
para la estimacion de los parametros de interés. En la figura se puede ver como las senales de

los valores de simulacion convergen a los valores reales.
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Figura 2.4. Senales de los valores en simulacion con los valores reales, en el analisis de un eje
pitch de un helicoptero [54].

Esto muestra como la técnica de identificacion algebraica ha ido ganando campo en la
investigacion, convirtiéndola en un método que, a diferencia de otras técnicas de identificacion,
muestra tener una gran robustez frente a incertidumbres que pudieran afectar a la obtencioén

correcta de las sefales de respuesta de los sistemas.
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Capitulo 3

MARCO TEORICO

3.1. Definicion y caracteristicas de los sistemas rotodinamicos

Se define como sistema rotodinamico a la maquina conformada por rotores, engranajes, ejes
y turbinas. Estos sistemas involucran fuerzas inerciales, efectos de velocidad angular, efecto
Coriolis y efectos giroscopicos, asi como vibraciones y resonancias, los cuales son efectos que
impactan en el rendimiento de la maquina rotativa [55]. Estos sistemas estan disefiados para

convertir energia mecanica en eléctrica o viceversa.

3.2. Analisis rotodinamico

Segun [56] el anélisis rotodinamico “es la dindmica de las maquinas rotatorias”, es decir, se
analizan todos los efectos generados por las fuerzas que actian en el exterior o en el mismo
sistema. Debido a que estos efectos provocan el mal funcionamiento de la maquina, algunos de
los objetivos que tiene este analisis son: predecir velocidades criticas, amplitudes de vibracién
sincrona debido al desbalance, asi como la correccion del desbalance, permitiendo de esta

manera la reduccion de la inestabilidad del rotor.
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3.3. Rotores

Los rotores son quiza las maquinas rotatorias mas conocidas en las distintas industrias, ya
que estos pueden llegar a tener un gran impacto negativo en toda la maquinaria debido a los
efectos producidos por las altas vibraciones, es debido a esto por lo que en ellos se centran los

analisis rotodindmicos para propdsitos de balanceo.

En la Figura 3.1, se muestra un esquema de los elementos que conforman un rotor [57].
Consta de un eje (S), soportes o cojinetes (B), representados por resortes y/o amortiguadores, y
un disco (D), este ultimo es el principal responsable en el aumento del pico de resonancia en
las velocidades criticas. La masa de desbalance (m,,) también es considerada como un elemento

mas del rotor.

D
'3

B—-»

P - —— . g .3 Y
g"rﬁﬂ o| < M y
X A

Figura 3.1. Esquema de un rotor [58].

3.3.1. Eleje

Generalmente, en el andlisis de los sistemas rotodinamicos, el eje se ha considerado como
una serie de elementos lineales o de viga. Es la pieza o elemento fundamental, ya que rige el
funcionamiento y determina la velocidad de giro de la maquina, ademas, es el principal
responsable de transmitir las vibraciones a los mecanismos presentes en estos sistemas, como

los rodamientos, acoples, soportes, etc.
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3.3.2. Soportes o cojinetes

Habitualmente, en los trabajos presentados sobre el analisis dinamico de las maquinas
rotatorias, los cojinetes han sido considerados como los Unicos elementos entre el eje y la
carcasa para llevar a cabo el andlisis del rotor. Estos son caracterizados en términos de rigidez

k, y amortiguamiento c, los cuales son considerados conocidos.
3.3.3. Eldisco

El disco es asumido como rigido o como una masa concentrada, por lo que es caracterizado

unicamente por su energia cinética.
3.3.4. Masa de desbalance

El desbalance se define como una masa m,,, la cual se localiza a una distancia a, a partir del
centro geométrico del eje. Permanece en un plano perpendicular al eje y, y su coordenada

permanece constantes a lo largo de este eje.

» N

X<

Figura 3.2. Masa de desbalance.
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De acuerdo con el diagrama mostrado en la Figura 3.2 las coordenadas del desbalance se

expresan como:

OD = | constante

u+ asen(gb)] (3.1)
w + acos(¢)

A partir de la ecuacion (3.1), se puede obtener la velocidad, derivando respecto al tiempo:

dop)y |t+ agpcos(¢) (3.2)
V= = | constante
t W — agsen(¢)

La expresion para la energia cinética se expresa como:

T = —mv? (3.3)
2

Sustituyendo la expresion de la velocidad y la masa de desbalance m,, en la ecuacion (3.3), se

obtiene:

T =T 4?4 a2 + 2$aicos(9) — 2pawsen(9)) (34)

. m H . . . . y
El termino 7“ a’¢? es una constante y no tiene influencia en las ecuaciones. Ademas, la masa

de desbalance se considera pequefia respecto a la masa del rotor. Con estas consideraciones, la

expresion para la energia cinética se puede escribir de la siguiente manera:

T = mypa(icos(¢p) — wsen(¢)) (3.5)

Para obtener el vector de fuerza generado por la masa m,, se aplican las ecuaciones de

Lagrange.
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3.4. Rotores asimétricos

Los rotores pueden ser clasificados en rigidos o flexibles, en el primero existe una minima
deformacion en el eje, en comparacion con los flexibles, los cuales presentan una deformacion
mas notable. Estas deformaciones se presentan dentro del rango de velocidades de operacion
de los rotores, independientemente de las dimensiones del eje o del mismo rotor. Por otro lado,
la ISO clasifica en cinco grupos a los rotores segun el tipo de balanceo requerido; rotores
rigidos, flexibles, cuasi flexibles, de acoplamiento flexible, y rotores flexibles de una tunica

velocidad.

De acuerdo con la rigidez que poseen los rotores en su seccidon transversal estos pueden
clasificarse en simétricos o asimétricos; los primeros poseen parametros de rigidez igual en toda
su seccion transversal, por otro lado, si los pardmetros de rigidez son distintos en los ejes
principales de inercia, se trata de un rotor asimétrico. La asimetria afecta a las velocidades
criticas y a la magnitud de la respuesta al desbalance de este. También es importante mencionar
que los rotores simétricos se pueden volver asimétricos solo si se desarrolla una fisura en el eje,

esto hace que su rigidez ya no sea simétrica.

Por otro lado, la rigidez implica parametros como el momento de inercia y el area. En la
Figura 3.3, se tienen dos secciones transversales, en la primera, el momento de inercia sera el
mismo tanto en x y z, por lo que la rigidez es la misma para ambos planos del sistema, los planos
xy 'y yz respectivamente. En la segunda seccion transversal, a un eje con geometria circular se
le han realizado unos cortes. La asimetria generada hace que el momento de inercia con respecto
de x y z sea diferente. En el caso de esta seccion, el momento de inercia respecto a z es mayor
que el generado respecto a x, debido a que existe una mayor area de rotacion, esto hace que se

tenga una rigidez diferente, afectando directamente el comportamiento dindmico del sistema.
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Figura 3.3. Seccion transversal simétrica y asimétrica de un eje [5].

En [6], Smith menciona que las velocidades criticas de los rotores con partes giratorias
asimétricas ocurren en pares que engloban rangos de velocidad altamente inestables, ademas,
la friccion interna (la cual él llamo “amortiguacion rotatoria’) puede contribuir a la inestabilidad
del rotor. Al igual en [7], el autor concluye que la fuerza elastica tiene una componente radial
que es paralela al desplazamiento y una tangencial que es perpendicular a la direccion del
desplazamiento, esta segunda componente la consideré como una caracteristica unica de las

flechas asimétricas.

De acuerdo con diversos investigadores, el factor de asimetria modal y de amortiguamiento
provocan que la respuesta de vibracion del rotor presente cambios en los valores de amplitud y
angulos de fase para distintas posiciones angulares de la fuerza de excitacion. Esto provoca que
el estudio de estos rotores sea mas complejo al momento de utilizar alguno de los métodos

existentes para llevar a cabo el balanceo.

El cigiienal (Figura 3.4), el rotor de dos polos de los turbogeneradores (Figura 3.5), las

hélices de dos palas, y el arbol de levas, son claros ejemplos de rotores asimétricos.
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Figura 3.5. Rotor de dos polos de un turbogenerador [60].
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3.5. Meétodo de Newmark

El método de Newmark es un método numérico de integracion directa utilizado para
resolver ecuaciones diferenciales, y se basa en la aceleracion promedio. Permite la solucion
directa de ecuaciones diferenciales de segundo orden o de un sistema de ecuaciones
diferenciales de segundo orden sin la necesidad de transformarlas en un par de ecuaciones
diferenciales de primer orden simultaneas. Este puede ser aplicado en varios campos de la

ingenieria, particularmente a sistemas de respuesta dinamica.

En este método, son necesarios los pardmetros B y v, cuyos valores se deben elegir
correctamente para lograr la precision y estabilidad deseada en la integracion, por lo que pueden
cambiar dependiendo el enfoque del problema en particular. En el presente trabajo, el uso de
este método es para solucionar las ecuaciones de movimiento del sistema rotor-cojinete
asimétrico de dos grados de libertad. Los valores de los pardmetros que se consideran para la

solucion de las estas ecuaciones son: B=1/2 y y=1/4, esto implica que la aceleracion se mantiene

constante en un valor promedio de ((t)g + (tHA0 g )/2.

Para poder implementar este método se supone que se conoce el comportamiento del
sistema rotor-cojinete asimétrico, es decir, se conocen &(t),8(t) y 6(t), desplazamiento,

velocidad y aceleracion respectivamente, en el instante 7.

En el método de Newmark las expresiones para la velocidad y desplazamiento estan dadas por:

t+a) s _ (O 4 [(1- B)(t)g +B (”M)S]At (3.6)

. 1 . . .
(taDg = D5 4 Ot + [(E - y) 5 + o (”“)5] At? (3.7)

A continuacidn, se muestra el algoritmo del método de Newmark utilizado en este caso para

determinar el vector de desplazamientos (respuesta vibratoria) del sistema:
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Tabla 3.1. Algoritmo con base en el método numérico de Newmark.

Calculos iniciales

Para cada paso de tiempo

1) Formular las matrices de rigidez [K],

masa [M] y amortiguamiento [C].
2) Condiciones iniciales &, 8y, 8.

3) Seleccionar el paso de tiempo At, los
pardmetros Byy, y -calcular las

constantes de integracion.

>1 >1 1+ )

1B 1
G = yan?’ M T yan 2 T Yan

1 B
a3=5_1; a4=;_1;

as =5 (8- 2)5a6 = AL(1 - v;

a7 = BAt

4) Formular la matriz de rigidez efectiva:

[K] = [K] + ao[M] + ay [C]

5) Triangularizar [K]: [K] = [L][D][L]T

1) Calcular el vector de fuerza efectiva

en el tiempo t + At:

t+At)p _ (t+AD) + [M] (ao(t)6 +
0,8 + 0,98 + [C1(@, V5 +

a4(t)8 + as(t)g)

2) Resolver para los desplazamientos en

el tiempo t + At

(t+A0) =,

[1’(‘] t+At S — F

3) Calcular § y & en el tiempo t + At:

(g _ ao((t+At)5 _ (t)6) _

a, (t)5 — dasg (t)5

(t+At)5- — (t)S + ae(t)é: + a7(t+At)8-
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3.6. Técnica de identificacion algebraica

La técnica de identificacion algebraica toma como base el algebra diferencial y calculo
operacional para el desarrollo de estimadores que permiten identificar parametros desconocidos
de un sistema a partir de su modelo matematico. Es importante mencionar que la estimacion de
estos parametros se realiza en linea y en tiempo continuo o discreto, esto significa que los
parametros de desbalance se pueden obtener mientras el rotor esta ejecutando su tarea, ademas
los identificadores que se obtienen son completamente independientes de las condiciones
iniciales. Otra de las ventajas de esta técnica es que presenta buena robustez con respecto a una
gran variedad de perturbaciones como: incertidumbres paramétricas, dindmicas no modeladas

y ruido.
Por otro lado, con esta técnica se puede trabajar por medio de dos enfoques:

Enfoque en dominio de la frecuencia: en este enfoque se emplea la transformada de Laplace

y solo funciona para sistemas lineales.
La metodologia para llevar a cabo el desarrollo del modelo del identificador es la siguiente:

* Aplicar la transformada de Laplace en la ecuacion diferencial del modelo dindmico, y

posteriormente se reordena con un polinomio en s.

* Derivar dos veces las ecuaciones con respecto a la variable s con el fin de eliminar las

condiciones iniciales.

Multiplicar las ecuaciones por s~2 con la finalidad de evitar las derivadas y regresar al

dominio del tiempo.

* Finalmente, aplicar la transformada inversa de Laplace y despejar las variables de

interés.

Enfoque en dominio del tiempo: en este caso, se recurre al uso de integrales, y funciona tanto

para sistemas lineales, como no lineales.
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En este enfoque se mantiene una analogia con respecto a la metodologia en el dominio de

la frecuencia.

« Multiplicar las ecuaciones por t? y se integra el resultado dos veces con respecto al

tiempo t.

* Se hace uso de integrales iteradas para integrar toda la ecuacion y obtener expresiones
lineales en los parametros usando el método de integracion por partes. Se integra tantas

veces sea necesario para igualar el nimero de ecuaciones al numero de incognitas.

El enfoque que quizd es el menos complicado, es el que se trabaja en dominio de la
frecuencia, sin embargo, en este trabajo de tesis se trabajara con el enfoque en el dominio del
tiempo, puesto que se tiene un sistema no lineal. El uso de esta técnica en sistemas
rotodinamicos es principalmente para determinar la masa de desbalance y su posicion angular.
Posterior a la determinacion de los pardmetros mencionados, se puede proseguir a agregar o

remover material al rotor para llevarlo al estado de equilibrio.
3.6.1. Base matematica

La configuracion matematica para la identificacion de los parametros en sistemas lineales

es la siguiente:

Sea k el campo de niimeros R o C (nimeros reales y/o complejos). Se denota K como la

extension algebraica finita del campo k (), generado por el conjunto finito @ = (04, ..., 0,) de

, . . . d . .
pardmetros desconocidos. Considere el anillo K [E] de operadores diferenciales con

coeficientes en k:

d (3.8)
Z CUW, ¢, EK

finito

. . de; . , d
Se supone que los pardmetros son constantes, es decir, d—tl =0,i=1,..,7. Asique, K [E]

es un dominio de ideales principales conmutativos. Se considera un conjunto finito de
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indeterminaciones, tal que (y;,...,¥m ), €n asociacion con el anillo de operadores lineales

diferenciales.

Estas indeterminaciones representan las variables que describen en el dominio del tiempo,

las sefales de donde se obtienen los pardmetros desconocidos.

La forma mas general en que los pardmetros pueden aparecer en los coeficientes de una
expresion diferencial incluye expresiones algebraicas las cuales implican sumas,
multiplicaciones, raices, etc., de tales parametros. Es decir, las expresiones de los pardmetros
provienen de las soluciones de las ecuaciones algebraicas que envuelven los pardmetros

desconocidos.

Sea S/K una extension algebraica diferencial de dimension finita, donde una sefial es un
elemento de S. Sea L /K una extension algebraica diferencial y N un subconjunto de L. El sobre-

campo diferencial de K generado por N se escribe tal que K < N >.
Identificabilidad

El conjunto @ de parametros desconocidos se dice ser algebraicamente identificable si, y

solo si, cualquier componente de @ es algebraico sobre k < t,y >. Se dice ser linealmente

6, (3.9)
p( ;):Q
6,

e PyQsonmatricesr Xryr x 1.

identificable si, y solo si,

donde:

e Las entradas de P y Q pertenecen al rango KL ](1, y)
dat

o det(P)#0.
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El rango s (1,y) es el conjunto de todas las combinaciones lineales de (1,y;, ..., Vin), €S
dt:

decir Dy - 1+ Y™, D; y;. Donde los coeficientes D; pertenecen a K [%]. Por tanto, D; es un
operador diferencial de la forma:

z":<zk I agt >d, (3.10)
Zl Obl]tl dt]

j=1

con ak,j, bl,j € k.

3.7. Formulismo de Euler-Lagrange

Todo lo que pasa a nuestro alrededor se puede modelar mediante las Leyes de Newton, estas
leyes estudian las fuerzas que se ejercen en la interaccion de los cuerpos. La naturaleza de estas
leyes es vectorial, por lo que implican el uso de magnitudes con direccion y sentido, lo cual
complica el andlisis para sistemas complejos. Por otro lado, existe otra formulacién que,
partiendo de la fisica vectorial de Newton, hace generalizaciones en cuanto a los sistemas
coordenados y tipos de fuerzas que interactiian en un evento, esto hace que se pueda llevar ese
analisis vectorial a un estudio de componentes escalares del movimiento, basado en condiciones

energéticas, llamado formulismo de Euler-Lagrange.

La ecuacion fundamental de Lagrange se escribe como:

d 0L 0L 0 (3.11)

donde g; es el desplazamiento generalizado y g; es la velocidad generalizada, coni = 1,2, ..., N.
Las coordenadas generalizadas son un conjunto de coordenadas linealmente independientes que

especifican la configuracion del sistema, y son independientes de cualquier restriccion.

Para las fuerzas que poseen potencial, donde las fuerzas generalizadas Q; actian sobre el

sistema, las ecuaciones de Lagrange se pueden escribir de la forma:
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d oL oL (3.12)

El Lagrangiano se define como L = T — U, donde T es la energia cinética y U es la energia
potencial del sistema. Por lo tanto, sustituyendo esta expresion en la ecuacion (3.11), se obtiene

la siguiente ecuacion para un sistema conservativo.

dor _or ou_ . (3.13)

o —=
dtdgq; 0dq; 0dq;
En el presente trabajo de tesis se hace uso de las ecuaciones de Euler-Lagrange de la siguiente
forma:
d oT 0T JdU (3.14)

————— 4+ —=Fg;
atog, daq;  aq | ©

en donde Fq; representa las fuerzas generalizadas.

3.8. Rampa de excitacion

Se denomina rampa de excitacion al cambio de la frecuencia de excitacion con respecto al
tiempo, y puede ser expresada mediante una funcidn creciente o decreciente. Segun la literatura
para la mayoria de los sistemas reales esta frecuencia no varia linealmente con el tiempo. Sin
embargo, si se considera que la variacion de la frecuencia es lo suficientemente lenta, la funcién

de rampa de excitacion puede aproximarse a una funcion lineal de la forma:

d(t) = o + Pt (3.15)

donde:

¢,= frecuencia de excitacion al inicio de la rampa.

¢ = tasa de cambio de la frecuencia de excitacion con respecto al tiempo t.
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Capitulo 4

MODELADO MATEMATICO

En este capitulo se presenta el desarrollo del modelo matemaético del sistema rotor-cojinete
asimétrico de dos grados de libertad. Para el modelo matematico del sistema se consideran dos
condiciones de operacion del rotor asimétrico: velocidad constante y velocidad variable.
Posteriormente, en este mismo capitulo se muestra el desarrollo de los identificadores
algebraicos de los pardmetros de desbalance del sistema rotor-cojinete asimétrico bajo los dos

esquemas de velocidad antes mencionados.

4.1. Modelado del rotor asimétrico

El modelo del eje es una masa concentrada (m) en M situada a una distancia a
(excentricidad), desde el eje de rotacion: O en reposo, 0; cuando el eje gira. Las componentes
de rigidez del eje son k, y k, en el marco de referencia giratorio, UV, fijo al eje. Las
componentes de rigidez de los soportes son k, = k,, = k en el marco de referencia fijo, XY.
Las coordenadas de 04 son (u,v) y (x,y). El amortiguamiento no se considera, y las ecuaciones
se escriben tanto en el marco de referencia fijo como en el giratorio, para ello se utiliza la

siguiente relacion:
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» X

Figura 4.1. Modelo del sistema.

[;] _ [ cos Qt senﬂt]m (4.1)
' —sen Qt cosQt

La ecuacion (4.1) se obtiene a partir de la relacion de las variables que se muestra en la
Figura 4.1, en donde 1, j son vectores unitarios en las direcciones U y V. Al igual, I, J son

vectores unitarios en las direcciones X y Y respectivamente, y () representa la velocidad de

rotacion constante.

Las coordenadas del centro de masa M se expresan en los dos marcos de referencia, de modo
que:

OM = 00, + O,M (42)

la cual en el marco de referencia fijo se expresa como:
OM = [x + acos (At + ¢P)]|I + [y + asen (At + ¢)]] (4.3)

y en el marco giratorio:
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OM = (u+a")i+ (v+b")j (4.4)

Por lo tanto, las expresiones para la velocidad V en los dos marcos de referencia estdn dadas

respectivamente por:

_ doM

_Tz[5c—aQsen(Qt+qb)]I+[y+acosﬂt+¢)]] (4.5)

_doM

—Wz[u—ﬂ(v+b*)]i+[1'J+Q*(u+a*)]j (4.6)

La expresion para la energia cinética en el marco de referencia fijo es:

2
T = m;/ = %{\/[x —aQsen(Qt + ¢)]? + [y + aQ cos(Qt + ¢)]? }2 (4.7)
T= %[xz + 5% + a?Q? — 2aQxsen(Qt + ¢) + 2aQy cos(Qt + ¢)] (4.8)

y en el marco giratorio:

ng{\/[u—ﬂ(v+b*)]2 + [1'J+Q(u+a*)]2}2 (4.9)

T =

m
= [ + v2 + O2u? + Q%02 4 20%b*v + 2Qa*u + Q%a** + Q%b*?

. . . . (4.10)
—2Q0b™ 1 + 2Qa*v — 2Quv + 2Quv]

Aplicando las ecuaciones de Lagrange a (4.8) y (4.10), se pueden obtener las fuerzas inerciales

que actian en las direcciones X, Y, U y V respectivamente:
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-En el marco fijo:

d (OT) oT o 02 Ot +
7:\57 Fvi mix — mafl“cos( b)
d (aT) oT . 02 Ot +
at\3y dy my — mafl“sen( o)
-En el marco giratorio:
d (6T) ar . 205 — (O 02q
dt\an ) gy = MG~ 200 - Qu—0%a)
d (aT) ar | 20 — O 02b*
at\av) gy = M -2 - )

Fuerzas que actuan sobre el rotor
-Gravedad

Debido a que la gravedad tiene solo direccion en J, entonces:
F = —mg]J
y de la ecuacion (4.1) se obtiene la siguiente expresion:

[1] _ [cosﬂt —seth”i]
Ji sen Qt  cos Ot Ji
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de tal modo que la ecuacion (4.15) se puede escribir como:

F = —mg(senlti + cos Qtj) (4.17)

-Rigidez del eje

La fuerza que actiia sobre la masa es:

F = —k,ui — k,vj (4.18)

De la ecuacion (4.1) se tienen las componentes de la fuerza en el marco fijo,

[;']:[cosﬂt seth][ﬂ_[u]: cos Ot senﬂt”x]
' —sen Qt cosQt "l —senQt cosQt 1Y
por lo que sustituyendo estas componentes en la ecuacion (4.18) se tiene:

F = —k,(xcos(Qt) + ysen(Qt))(cos(Qt) I + sen(Qt)] ) — k, (ycos(Qt)

(4.19)
— xsen(Qt))(cos(Qt) ] — sen(Qt)I)

y después de realizar un tratamiento algebraico correspondiente a la ecuacién anterior, se

obtiene la siguiente expresion:
1
F = —3 [(ky + ky)x + (ky — ky,)ysen(2Qt) + (ky, — ky,)xcos(2Qt)]1

- % [(ky + ky,)y + (ky — ky,)xsen(2Qt) (4.20)

- (ku - kv)yCOS(ZQt)]]
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-Rigidez de los soportes

Para expresar la rigidez de los soportes se asume que son simétricos, esto para evitar

ecuaciones con coeficientes periddicos.

De tal modo que, la expresion para la fuerza queda como:

F = —kxI — ky] (4.21)

Del esquema presentado en la Figura (4.1), se tienen las relaciones:
U]=[cosﬂt —senﬂt][;]_[x]=[cosﬂt senﬂt”u]
senQt cosQt 1lj]’ LY —senQt cosQt 1lv

con acuerdo a estas relaciones, se realiza un tratamiento algebraico a la ecuacion (4.21), por lo
que se llega a la ecuacion siguiente:

F = —kui — kvj (4.22)

Ecuaciones

Para reducir las proximas expresiones a tratar, Se asignan los términos de rigidez a las

variables K; y K,, como se muestra a continuacion:

k,+k 4.23

| = u U+k ( )
2

KZ =ku;k1; (4.24)
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donde k es la rigidez de los soportes.

Las ecuaciones respecto al marco de referencia fijo se expresan como:

mx — maQ? cos(Qt + ¢) = — % [(ky + kp)x + (ky — k) ysen(2Qt) + (4.25)

(ky — ky)xcos(2Qt)] — kx

my — maQ? sen(Qt + ¢) = —mg — % [(ky + kp)y + (ky — ky)xsen(20t) —  (4.26)
(ku - kv)yCOS(Z-Qt)] - ky

Sustituyendo las ecuaciones (4.23) y (4.24) en las ecuaciones anteriores se obtienen las

siguientes expresiones:

mx + kyx + k,ysen(20t) + kyxcos(20t) = maQ? cos(Qt + ¢) (4.27)

my + kiy + kyxsen(2Qt) — k,ycos(2Qt) = —mg + maQ? sen(Qt + ¢) (4.28)

Las ecuaciones (4.27) y (4.28) se pueden expresar de forma matricial como:

[72)1 T(T)l] [;C’] + [IBI 131] [;C’] + sen(200) []82 IBZ] [;C]] * (4.29)
os@ao)[§ |31 =Lmg] + o0 [ L )

Anélogamente, para el marco de referencia giratorio se obtienen las siguientes ecuaciones:
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. _ . )
T(;l ‘r(r)l] [1;] +20 [1(31 571] [Z] + [k ' kuO " k + kvo— mﬂz] [u] N (4.30)

ma*QZ] _ [sen(ﬂt)
mb*Q? g cos({1t)

4.2. Solucion de las ecuaciones

-Masa de desbalance

Los desplazamientos debido al desbalance de la solucion de la ecuacion (4.30) en estado

estable son:

. ma’Q? (4.31)
YTkt ke, —ma?

_ mb'Q? (432)
Tk +k, —mQ?

De las ecuaciones (4.31) y (4.32), se obtienen los términos:
k+k,—-mQ?=07vy k+k,—mQ?=0

Suponiendo que k, < k,, las velocidades criticas estan dadas por:

kit ko (4.33)
Q) =w, = —

k + ky, (4.34)
lewu: -
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-Gravedad

La influencia de la gravedad se obtiene de la ecuacion (4.30). Multiplicando dicha ecuacion

1 . o . .
por—,y realizando algunas sustituciones se obtienen las ecuaciones:

it — 200 + (wZ — O*)u = —g sen(Qt) (4.35)

¥+ 200 + (w2 — Q*)v = —g cos(Qt) (4.36)

Los desplazamientos debido a la gravedad, de las soluciones en estado estable de las ecuaciones

(4.35) y (4.36), se pueden escribir en la forma:

u = u, sen(Qt) (4.37)

v = v, cos(Qt) (4.38)

En donde u, y v, son los desplazamientos iniciales del rotor con respecto al centro O. Las
ecuaciones (4.37), (4.38) y sus respectivas derivadas se sustituyen en (4.35) y (4.36). Posterior

a esto, se realiza un tratamiento algebraico para obtener las ecuaciones siguientes:

—g(w2 —40?%) (4.39)
to = w2w2 — 202 (w2 + w?2)

—g(wZ —40?) (4.40)
v, =

wiwZ — 20%(wZ + w?)
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De las ecuaciones anteriores se tiene que una velocidad critica debido a la gravedad es:

w2 w?2 (4.41)

2 _
2(wf + wf)

De acuerdo con larelacion k,, < k,, se plantea la expresion; w, = w, + cw, = w, (1 + ¢€),

en donde ¢ es un factor agregado, debido a que w,, tiene que ser mayor a w,, por la suposicion

de rigidez. Por lo que la ecuacion (4.41), se puede escribir como:

wi(1+ ¢€)? (4.42)

= 202[1+ (1 + £)7]

Después de realizar un tratamiento algebraico a la ecuacion anterior, se obtiene la expresion

(4.43).

sz (4.43)

Esta velocidad critica es conocida cominmente como una velocidad critica secundaria debido
a la gravedad, es igual a mas o menos la mitad de la velocidad critica debido a la masa de
desbalance. Y debido a que un rotor puede llegar a ser asimétrico cuando una grieta aparece y

crece, esta velocidad puede ser utilizada para monitorearlas.

-Fuerza debido al amortiguamiento externo

En este caso el amortiguamiento considerado es de tipo viscoso, por lo que es proporcional a la
velocidad del centro de giro del rotor. En el sistema de coordenadas fijo, puede expresarse

como:
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F = cxl —cy] (4.44)

donde c es el coeficiente de amortiguamiento externo.

Agregando la ecuacion (4.44) a la ecuacion (4.29) se tiene:

n) [;]Jr[(c) 0”31] [0 kl] +Se"(mt)[0 kz][y]+ (4.45)

cos(20t) [IBZ —kz] [;C,] = [—mg] +maQ? [ZZZE&%E I gg

4.3. El eje asimétrico en movimiento transitorio

Los movimientos transitorios aparecen cuando un rotor inicia, se detiene o pasa por una

velocidad critica.

Ahora se considera que la velocidad angular ¢ ya no es constante y es una funcién del

tiempo, es decir:

b =) (4.46)

De la Figura 4.1, las coordenadas de M se expresan en el marco de referencia inercial como:

OM = [x + acos(¢p + a)]l + [y + asen(¢ + a)]] (4.47)

a partir de esta ecuacion se obtienen la velocidad y la energia cinética.

La expresion para la velocidad es:
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V =[x —agpsen(¢ + )|l + [y + asen(¢p + &)|J (4.48)

y para la energia cinética se tiene:

T = % [%2 + y? + a?$? — 2axpsen(¢ + a) + 2aypcos(¢p + a)] (4.49)

Aplicando las ecuaciones de Lagrange a la ecuacion (4.49), se obtienen las siguientes

ecuaciones:
%(Z_Z) B g_z = mx — ma[psen($ + ) + p*cos (¢ + )] (4.50)
%(Z_i) - Z—; = my — ma[¢p®sen(¢ + @) — ¢cos (¢ + )] (4.51)
Ecuaciones

Las ecuaciones en el marco de referencia fijo se expresan de forma matricial como:

(5 WB1+6 B+ [o elbl+senenl, 01
cos(2¢)) [IBZ _(]’(2] HE [_glg] +ma 2§§:r(l<f¢++ao)()+_¢;zzz Ez : Z;

(4.52)

La ecuacion (4.52) tiene la forma de la ecuacion general de movimiento del sistema rotor-

cojinete asimétrico:
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[MI{8} + [C1{8} + [K1(6} = (W} + $2F,($) + $F, (o) (4.53)

En donde, [M], [C] y [K] son las matrices de masa, amortiguamiento y rigidez, respectivamente.

Y del lado derecho de la expresidn se tiene a las fuerzas generalizadas.

4.4. Identificacion algebraica en linea de la excentricidad para un rotor

asimétrico: Sistema de dos grados de libertad.

4.4.1. Modelo matematico del identificador algebraico a velocidad variable

Se tiene el modelo matematico del sistema:

mx + cx+kix + kyysen(2¢) + k,xcos(2¢) (4.54)
= myd[psen(¢ + a) + p?cos (¢ + a)]

my + cy + kiy + kyxsen(2¢) — k,ycos(2¢) (4.55)
= myd[¢p?sen(p + a) — ¢ cos(¢p + a)]

donde las medidas de las coordenadas de posicion del disco (x,y) se conocen y estan disponibles

para utilizarse en el esquema de identificacion.

Multiplicando las ecuaciones (4.54) y (4.55) por t? e integrado el resultado dos veces con

respecto al tiempo, se tiene:

2
f [mi + cx+kyx + kyysen(2¢) + kyxcos(2¢)]t?
o (4.56)
= myd[psen(¢p + a) + ¢? cos(p + a)|t?
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@3]
f [my + cy + kyy + kyxsen(2¢) — kyycos(2¢)]t?

(4.57)
(2) . ..
= myd[p?sen(¢p + a) — ¢ cos(¢p + a)]t?
las cuales se pueden reescribir como:
2
f [mi + cx+k,x + kyysen(2¢) + k,xcos(2¢)]t?
4.58
@ d .. ( )
= myd T [psen(p + a)]t?
©))
f [my + cy + kyy + kyxsen(2¢) — kpycos(2¢)|t?
(4.59)

@

mud% [pcos(p + a)]t?

donde [ n(p(t) son integrales iteradas de la forma fot foal ) on_lgo(an)dan ...doy, con

0

t , .
J o) = [, ¢(0) do y nun nimero entero positivo.
Después de integrar por partes y realizar un tratamiento algebraico a dichos resultados se

obtienen las siguientes expresiones en términos de los parametros del desbalance:

mt?x + [[ct?x — 4mtx] + f(z)[me — 2ctx + k t?x + kyt?’sen(2¢)y +
k,t?cos (2¢)x] = mydcos(a) [(f t>psen(p) — 2 f(z) thsen(qb)] + (4.60)
mydsen(a) [(f t?dpcos(¢p) — 2 f(z) to cos(q.’)))]
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mt?y + [[ct?y — 4mty] + f(z)[Zmy — 2cty + k t?y + kyt?sen(2¢p)x —
kat?cos (2¢)y] = —mydeos(@) [(f 2eos(®) =2 [P tpeos @)+ (461)
m,dsen(a) [(f t2psen(¢) — 2 f(z) to sen(qb))]
del lado izquierdo de estas expresiones se puede observar que el modelo del identificador de

desbalance queda en funcion de los desplazamientos, es decir en funcién de la respuesta de

vibracion del sistema.

Posteriormente las ecuaciones (4.60) y (4.61) se puede expresar como un sistema de

ecuaciones lineales de la forma:
[A®{6} = {b(t)} (4.62)

donde {6} = [a77 = mydcos(a),a; = mudsen(a)]T denota el vector de los parametros a ser

identificados (los subindices 1 y & atienden a las direcciones X y Y respectivamente), [A(t)] y

{b(t)} son matrices de 2 X 2y 2 X 1, las cuales estan dadas por:

a;1(t)  ag(t) b(t) = b1(t)

a0 =500 o) by (t)

donde,

@3]
a;; = <f t?psen(¢p) — Zf thsen(qb))

(2
A1z = <J t2¢cos(p) — ZJ t(ﬁcos((b))
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b, = mt?x + f[ctzx — 4mtx]

2
+ f [2mx — 2ctx + kyt?x + kyt?sen(2¢)y + kyt?cos (2¢)x]

b, = mt?y + f[ctzy — 4mty]

(2)
+ f [2my — 2cty + k t?y + k,t?sen(2¢p)x — kyt?cos (2¢)y]

De la ecuacion (4.62), se puede concluir que el vector 6 es identificable algebraicamente,
siy solo si, la trayectoria del sistema dindmico es persistente en el sentido establecido por Fliess
y Sira-Ramirez [41], es decir, las trayectorias o el comportamiento dindmico del sistema
satisface la condicion det[A(t)] # 0. En general esta condicion se mantiene al menos en un

intervalo pequeio (t, ,t, + §] donde § es un valor positivo y suficientemente pequeio.

Posteriormente, se soluciona la ecuacion (4.62) para obtener el identificador algebraico para

los parametros de la excentricidad desconocidos.

[ a1 (t) a12(t)] [ane] _ [bl(t)
—a;2(t) a1 (O 1%e b, (t)

Luego, la solucion se expresa de la forma:

(4.63)
{6} = [A""{b(D)} Vt € (L, , t, + 5]

de la ecuacion anterior se observa que los parametros de desbalance estan en funcidon

unicamente de los desplazamientos del sistema:
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_ byay; — byay ] _bjai; + byay
Ape = Age =

2 2 2 2
a1 +agp a1” +ag

por lo tanto, el modelo para el identificador de los pardmetros del desbalance se denota como:

ne = a1% + a;5?
e a«*+a 4.64
m 2 vt € (¢, ,t, + 6] (4.64)
my,d, Ape? + age?
a
@ =cos™ () )
e

Siendo ay., ag, las componentes del desbalance en direccion X'y Y respectivamente, m,, d, su

magnitud y a, la posicion angular.

4.4.2. Modelo matematico del identificador algebraico a velocidad constante

Anteriormente, se obtuvo el modelo del sistema rotor-cojinete asimétrico considerando una
velocidad constante, el cual esta expresado en la ecuacion (4.45). Esta ecuacion se puede

reescribir en la forma:

mx + cx+kix + kyysen(2Qt) + k,xcos(2Qt) = m,,dQ%cos(Qt + @) (4.65)

my + cy + kyy + kyxsen(2Qt) — k,ycos(2Qt) = m,dQ%sen(Qt + @) (4.66)
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De manera similar al desarrollo presentado en la subseccion anterior, se desarrollaron las

expresiones para el identificador algebraico considerado una velocidad constante.

Una vez que se multiplica por t2, se integrar dos veces el resultado con respecto al tiempo t, y
se realiza el debido tratamiento matematico a las ecuaciones (4.65) y (4.66), se obtienen las

siguientes:

mt?x + [[ct?x — 4mtx] + f(z)[me — 2ctx + kqt?x + kyt?sen(2Qt)y +
k,t%cos (2Qt)x] = m,dQ? cos(¢p) [(f(z) t2cos (Qt))] — (4.67)

m,dO? sen(p) [(f(z) t?sen (Qt))]

mt?y + [[ct?y — 4mty] + f(z)[me — 2cty + k t?y + kyt?sen(2Qt)x +
kyt?cos (2Qt)y] = m,dQ? cos(¢) [(f(z) tZsen (Qt))] + (4.68)

m,,dQ? sen(¢p) [(f(z) t2cos (Qt))]

Estas ecuaciones al igual que las ecuaciones (4.60) y (4.61), se expresan en un sistema de

ecuaciones linealmente independientes de la forma de la ecuacion (4.62).

con:

{0} = [a77 = myd cos(p),as = myd sen((p)]T

y las expresiones siguientes:

(2)
a,, = <sz t2cos (Qt))
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(2)
a, = <sz t?sen (Qt))

b, = mt*x + f[ctzx — 4mtx]

@)
+ f [2mx — 2ctx + k t?x + kyt?sen(2Qt)y + k,t?cos (20t)x]

b, = mt’y + f[ctzy — 4mty]

)]
+ j [2mx — 2cty + kit?y + k,t’sen(2Qt)x + kyt?cos (20t)y]
el identificador algebraico se puede expresar en la forma de la ecuacion (4.64). Como resultado

de la soluciodn se obtienen los pardmetros: desbalance y su posicion angular, considerando una

velocidad de operacion del rotor constante.
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Capitulo 5

SIMULACION Y RESULTADOS

En este capitulo se presentan los resultados de las simulaciones de los identificadores
algebraicos de los parametros de desbalance de un sistema rotor-cojinete asimétrico de dos
grados de libertad, al considerar dos condiciones de operacion de la velocidad del rotor:
velocidad constante y velocidad variable. Para el caso de velocidad variable se considera una

rampa de excitacion de tipo lineal.

5.1. Identificacion de los parametros de desbalance a velocidad constante

En esta seccion se muestran los resultados de la simulacion del identificador algebraico de
los parametros de desbalance del sistema rotor-cojinete asimétrico de dos grados de libertad.
La determinacion en linea, mediante la técnica de identificacion algebraica, tanto de la magnitud
como de la ubicacion angular del desbalance, se realiza a partir del andlisis de la respuesta
vibratoria del rotor en el dominio temporal. Para ello, se emplea como dato de entrada el vector
de desplazamientos (es decir, la respuesta vibratoria del sistema), el cual se obtiene resolviendo
la ecuacion (4.45) mediante el método de integracion numérica de Newmark, programada en la
herramienta computacional Matlab Simulink, asumiendo que el rotor opera a velocidad
constante. Es importante sefialar que se utiliz6 un intervalo de muestreo de 0.1 milisegundos,

ya que se comprob6 que con dicho periodo el método de Newmark presenta convergencia en la
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solucion de la ecuacion (4.45). Asimismo, se confirmé que dicho intervalo es compatible con
las capacidades de los sistemas experimentales de adquisicion de datos. En la Tabla 5.1 se
presentan los pardmetros utilizados para la simulacion. Estos parametros se establecen de

acuerdo con la literatura [57].

Tabla 5.1. Parametros fisicos de simulacién del sistema a velocidad constante.

m = 14.29 kg ¢ =10N's/m (1 =1000y 3600 rpm
m, = 1x107* kg k, = 3.195x10° N/m a =45,125y 250 °
d=05m k, = 1.195x10° N/m
m: masa del disco. k., : rigidez del eje del rotor respecto al eje V.
m,,: masa de desbalance. k,,: rigidez del eje del rotor respecto al eje U.
d: excentricidad. Q: velocidad de operacion cte. del rotor.
c: coeficiente de amortiguamiento. a: angulo del desbalance.
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Figura 5.1. Respuesta vibratoria del sistema rotor-cojinete asimétrico a velocidad constante.
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En la Figura 5.1 se muestran las respuestas de vibracion del sistema rotor-cojinete asimétrico
de dos grados de libertad en las direcciones x y y, considerando una velocidad de operacion
constante () = 1000 rpm. Estas sefiales de vibracion constituyen los datos de entrada que

alimentan al identificador algebraico propuesto.

Por otro lado, en las Figuras 5.2 y 5.3 se muestra el comportamiento en el tiempo del
identificador algebraico de los parametros de desbalance del sistema rotor-cojinete asimétrico
de dos grados de libertad a velocidad constante. Cabe sefialar que solo se consider6 un valor de
desbalance en tres posiciones angulares diferentes. De acuerdo con los resultados que se
presentan en las figuras, el identificador algebraico converge rapidamente a los valores de
referencia de los pardmetros de desbalance, de hecho, la convergencia se alcanza en menos de
0.1 segundos. Ademas, una vez que el identificador ha convergido se mantiene constante en el

tiempo.

1-5
3X0 T T T T

Valor identificado

= = :Referencia
2.5 .

15 = -

mude (kg - m)

0.5] -

0 1 | 1 | 1 | | | |
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08  0.09 0.1

tiempo (s)

Figura 5.2. Identificacion de la magnitud del desbalance a Q=1000 "rpm".

Universidad Tecnologica de la Mixteca Pagina 59



350 [ '

- -, =45°

- =125°
300 Ye -
ag = 250°
250
%)
S 200 ]
o
RS
o 150 i

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
tiempo (s)

Figura 5.3. Identificacion de la posicion angular del desbalance a Q=1000 "rpm".
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Figura 5.4. Identificacion de la magnitud del desbalance a Q=3600 "rpm".
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Posteriormente, en las Figuras 5.4 y 5.5 se puede observar el comportamiento del
identificador algebraico del sistema rotor-cojinete asimétrico de dos grados de libertad, al
considerar una velocidad de operacioén constante de magnitud . = 3600 rpm. Esto con la
finalidad de mostrar que el identificador algebraico funciona correctamente para la
identificacion de los parametros de desbalance del sistema para diferentes condiciones de
velocidad. Los parametros de desbalance utilizados tanto en la simulacion del sistema rotor-

cojinete asimétrico, como en la simulacion del identificador algebraico, son los que se muestran

en la Tabla 5.1.

350 F T T T T T T T T T ]
- — a =45°
- =125°
300 Ye -
a, = 250°
250 1
«
S 200 ]
o
2

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
tiempo (s)

Figura 5.5. Identificacion de la posicidon angular del desbalance a Q=3600 "rpm".

Como es de observarse en las Figuras 5.4 y 5.5 la identificacion de los parametros de
desbalance se realiza en tiempos menores a 0.1 segundos, de manera similar a los resultados

obtenidos en la simulacion anterior.
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5.2. Identificacion de los parametros de desbalance a velocidad variable

La identificacion en tiempo real del desbalance y su posiciéon angular se llevo a cabo
utilizando la respuesta vibratoria del rotor como funcion del tiempo. Esta respuesta se calculd
resolviendo la ecuacién (4.52) mediante el método de integracion numérica de Newmark, el
cual también se programo en la herramienta computacional Matlab Simulink. Para simular el
funcionamiento del sistema, se aplicdé una rampa de excitaciéon de tipo lineal, con una
aceleracion angular constante de ¢ = 10 rad/s2. Se utiliz un periodo de muestreo de 0.1
milisegundos, el cual demostrd ser adecuado para garantizar la convergencia del método de
Newmark en la resolucion de la ecuacion (4.52), considerando los pardmetros f =05y y =
0.25 (segtn lo indicado en la seccion 3.5). En la Tabla 5.2 se presentan los parametros fisicos
utilizados en la simulacion del sistema rotor-cojinete asimétrico bajo la condicion de operacion

de velocidad variable.

Tabla 5.2. Parametros fisicos de simulacidon del sistema a velocidad variable.

m = 14.29 kg ¢ =10 N-s/m ¢ =10rad/s
m, = 1x107* kg k, = 3.195x10° N/m a = 45,125y 250°
d=0.5m k, = 1.195x10° N/m

El anélisis grafico presentado en las Figuras 5.6 y 5.7 permite observar que el método de
identificacion algebraica propuesto es altamente eficiente, ya que logra estimar tanto la
magnitud del desbalance como su posicion angular en un tiempo inferior a 0.1 segundos. Este
corto periodo de identificacion es indicativo de la rapidez con la que el algoritmo responde ante
las condiciones dinamicas iniciales del sistema. Una vez que el parametro es identificado
correctamente, se mantiene estable y constante a lo largo del tiempo, incluso mientras el rotor
incrementa su velocidad hasta alcanzar el régimen nominal de operacion. Para facilitar el
estudio del proceso de convergencia del identificador, se ha limitado la visualizaciéon de los
resultados en las figuras mencionadas a los primeros 0.1 segundos del analisis. Esta ventana
temporal es suficiente para mostrar el momento exacto en que el identificador en linea alcanza

el valor final, y permite evaluar con claridad su desempefio en términos de rapidez y estabilidad.
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Figura 5.6. Identificacion de la magnitud del desbalance a velocidad variable.
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Figura 5.7. Identificacion de la posicion angular del desbalance a velocidad variable.
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A partir de las simulaciones realizadas en este capitulo con los identificadores algebraicos
propuestos, se ha comprobado que es factible estimar con precision los parametros asociados al
desbalance en sistemas rotor-cojinete asimétrico de dos grados de libertad. Esta validacion se
llevé a cabo tanto para condiciones de operacion del rotor a velocidad constante como para
escenarios de velocidad variable, en particular utilizando una rampa de aceleracion lineal en el

tiempo.

Los resultados obtenidos permiten destacar dos aspectos clave del desempeio de los
identificadores: su capacidad de convergencia y la rapidez con la que logran determinar los
parametros del desbalance. En ambos esquemas de velocidad de operacion: velocidad constante
y velocidad variable los identificadores mostraron un comportamiento consistente, con tiempos

de convergencia reducidos y estimaciones de los parametros de desbalance precisas.

A continuacion, en la Figura 5.8 se muestra un diagrama de flujo indicando la metodologia
que se llevo a cabo en esta investigacion, para la identificacion algebraica de los parametros de

desbalance de un sistema rotor-cojinete asimétrico de dos grados de libertad.
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Figura 5.8. Diagrama de flujo del proceso de identificacion de los pardmetros de desbalance.
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Capitulo 6

CONCLUSIONES

En este trabajo de tesis se presenta el desarrollo de un modelo matematico de un sistema
rotor-cojinete asimétrico de dos grados de libertad considerando las velocidades de operacion
constante y variable. El modelo matematico se desarroll6 mediante la implementacion del
formulismo Euler-Lagrange. Con la finalidad de desarrollar una nueva metodologia de balanceo
de rotores asimétricos, se propuso la implementacion de la técnica de identificacion algebraica
para la generacion de modelos algebraicos de identificacion, capaces de determinar los
parametros de desbalance desconocidos de un sistema rotor-cojinete asimétrico simplificado de
dos grados de libertad. De la implementacién de la técnica de identificacion algebraica se
obtuvieron dos identificadores: uno que identifica la magnitud del desbalance presente en el
sistema y el otro capaz de estimar la posicion angular de la masa de desbalance. Cabe destacar
que los identificadores algebraicos mencionados se desarrollaron considerando las dos
condiciones de operacion del sistema rotor-cojinete asimétrico. Asimismo, estos identificadores
requieren como dato de entrada la respuesta de vibracion del rotor, en este caso obtenida en
simulacion. Al igual se corrobora, que para la identificacion de los parametros de desbalance y
su posicion angular se requiere un minimo de datos de respuesta de vibracion del rotor durante
la rampa de excitacion, evitando asi, la zona de resonancia y llevar el rotor a su velocidad

nominal, como no sucede con la mayoria de las técnicas de balanceo.
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Por otro lado, los resultados obtenidos mediante simulacion numérica evidencian que el
método de identificacion algebraica propuesto posee una elevada eficacia en términos de
rapidez y precision. En particular, se observo que al igual que se han obtenido resultados
correctos con la implementacion de la técnica de identificacion algebraica para identificar
parametros de desbalance en rotores simétricos, el algoritmo es también capaz de estimar con
éxito los parametros del desbalance en un sistema rotor-cojinete asimétrico, especificamente su
magnitud y su posicion angular en un tiempo aproximado de 0.1 segundos desde el inicio de la
respuesta vibratoria del sistema, y esto es independiente de las condiciones de operacion del
sistema: velocidad constante o velocidad variable. Una de las principales fortalezas del enfoque
desarrollado radica en que permite llevar a cabo la identificacion del desbalance sin necesidad
de operar el rotor a su velocidad nominal. Este aspecto resulta fundamental desde el punto de
vista operativo, ya que evita el cruce por las distintas velocidades criticas del sistema. Dichas
velocidades representan zonas de resonancia donde la vibracion alcanza amplitudes méaximas,
lo que puede comprometer tanto la integridad mecanica del equipo como la seguridad del

entorno de operacion.

6.1. Trabajos futuros

Los resultados obtenidos en el presente trabajo demuestran la efectividad de la técnica de
identificacion algebraica para identificar la magnitud del desbalance y su posicion angular en
un sistema rotor-cojinete con eje asimétrico de dos grados de libertad. Para complementar el
presente trabajo desarrollado, se sugieren los siguientes proyectos a futuro, con el objetivo de

mejorar aspectos en el desarrollo de los identificadores y extender los resultados:

e Realizar pruebas experimentales implementado los identificadores propuestos en

este trabajo.

e Realizar una comparacion entre los resultados obtenidos experimentalmente y los
presentados en esta investigacion, con el fin de demostrar la exactitud de los

identificadores.
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e Obtener el modelo del sistema rotor-cojinete asimétrico considerado mas efectos

que afectan el comportamiento dindmico de este tipo de sistemas.

e Implementar con alguna técnica de balanceo, por ejemplo, con el uso de discos de

balanceo activo (DBAs).
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