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Resumen 

 

Son comunes las vibraciones en los sistemas rotodinámicos, sin embargo, excesivas vibraciones 

pueden ocasionar un mal funcionamiento de la máquina. El desbalance es el principal causante 

de las vibraciones en estos sistemas, y este puede aumentar las amplitudes de las mimas hasta 

un punto en el que el sistema entre en resonancia. Específicamente, los rotores con ejes de 

sección transversal asimétrica presentan un comportamiento dinámico con características 

diferentes a los rotores con ejes simétricos, y debido a que los métodos de balanceo de estos 

son escasos, el estudio de este tipo de rotores es de gran interés. Por ello en este trabajo se 

presenta el desarrollo del modelo matemático de un sistema rotor-cojinete de eje asimétrico de 

dos grados de libertad considerando dos velocidades de operación del rotor: velocidad constante 

y velocidad variable. De la misma manera, considerando las dos condiciones de operación, se 

proponen los modelos matemáticos para los identificadores algebraicos de los parámetros de 

desbalance (magnitud y posición angular), con base en la técnica de identificación algebraica. 

La ventaja que ofrece la metodología propuesta es que funciona a bajas velocidades, sin ser 

necesario llevar el rotor a su velocidad nominal de operación para obtener la respuesta vibratoria 

del sistema.  Los identificadores propuestos requieren como dato de entrada únicamente esta 

respuesta, es decir, solo quedan en función de los desplazamientos. En la condición de 

operación a velocidad variable, se considera una rampa de excitación de tipo lineal, estas 

respuestas son obtenidas por medio de la simulación del sistema. Los resultados numéricos 

muestran la rapidez de convergencia de los identificadores tanto de la magnitud del desbalance, 

como su posición angular, en un tiempo aproximado de 0.1 segundos a partir del inicio de la 

respuesta vibratoria del sistema.  
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Nomenclatura 

 
 

a Excentricidad m 

𝑎∗  Desplazamiento en dirección U a partir del centro de 

rotación 𝑂1 

m 

𝑎𝜂𝑒  Componente de la masa de desbalance en dirección X - 

𝑎𝜉𝑒  Componente de la masa de desbalance en dirección Y - 

𝑎𝑒  Magnitud de la masa de desbalance m 

𝑏∗  Desplazamiento en dirección V a partir del centro de 

rotación 𝑂1 

m 

c Coeficiente de amortiguamiento  N∙s/m 

C Matriz de amortiguamiento - 

d Excentricidad m 

G Gravedad 𝑚/𝑠2 

i Vector unitario en dirección U del sistema rotatorio - 

I Vector unitario en dirección X del sistema fijo - 

j Vector unitario en dirección V del sistema rotatorio - 

J Vector unitario en dirección Y del sistema fijo - 

𝑘  Rigidez de los soportes N/m 

𝑘𝑢  Rigidez del eje en dirección U del marco giratorio N/m 

𝑘𝑣  Rigidez del eje en dirección V del marco giratorio N/m 

𝑘𝑥  Rigidez del eje en dirección X del marco fijo N/m 

𝑘𝑦  Rigidez del eje en dirección Y del marco fijo N/m 

K Matriz de rigidez - 

m Masa concentrada del sistema kg 

𝑚𝑢 Masa de desbalance kg 

M Matriz de masa - 

O Eje de rotación respecto al marco fijo - 

𝑂1  Eje de rotación respecto al marco giratorio - 

t Tiempo s 

T Energía cinética  J [Joules] 

u Desplazamiento debido al desbalance en dirección U 

en el marco rotatorio 

m 

𝑢𝑜  Desplazamiento inicial respecto al eje U m 

v Desplazamiento debido al desbalance en dirección V 

en el marco rotatorio 

m 

𝑣𝑜  Desplazamiento inicial respecto al eje V m 



 
VI 

𝛼  Posición angular inicial de la masa (en condición de 

velocidad variable) 

rad 

𝛼𝑒  Posición angular del desbalance rad 

𝜑  Posición angular inicial de la masa (en condición de 

velocidad constante) 

rad 

𝜙  Posición angular inicial de la masa concentrada  rad 

𝜔𝑢  Velocidad crítica con respecto a la rigidez 𝑘𝑢 rad/s 

𝜔𝑣  Velocidad crítica con respecto a la rigidez 𝑘𝑣 rad/s 

𝛺  Velocidad constante de rotación del rotor rad/s 

̇   Primera derivada con respecto al tiempo  

̈   Segunda derivada con respecto al tiempo  
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Capítulo 1 

 INTRODUCCIÓN  

 

Las vibraciones en los sistemas rotodinámicos están relacionadas con el desbalance 

existente en el rotor. Dicha condición se presenta debido a la no coincidencia entre el eje 

principal de inercia del rotor y el eje geométrico del sistema, lo cual puede ser generado, por 

ejemplo, por un montaje defectuoso de componentes o falta de simetría en partes rotativas de 

la máquina. Estas vibraciones son transmitidas a distintos componentes mecánicos, soportes y 

cojinetes del rotor [1]. Debido a esto, es de gran importancia mitigar los efectos de las 

vibraciones, por lo que el balanceo es el principal objetivo por tomar en cuenta. Este proceso 

consiste en agregar o remover material del rotor, de tal forma que el sistema quede en equilibrio, 

y de esta manera evitar amplitudes de vibración indeseables, garantizando así, el correcto 

funcionamiento del sistema. 

La mayoría de los métodos de balanceo existentes funcionan solo para rotores simétricos, 

métodos como el balanceo por coeficientes de influencia y el balanceo modal son los más 

recurridos. Cabe mencionar que estos métodos funcionan óptimamente en rotores simétricos, 

los cuales poseen parámetros de rigidez igual en su sección transversal. Por otro lado, los rotores 

asimétricos son más complejos de balancear, debido a la diferencia entre los parámetros de 

rigidez en los ejes principales de inercia de su sección transversal, esta diferencia de rigidez 

conlleva a una excitación paramétrica, generando inestabilidad y perturbaciones en el 

comportamiento dinámico del rotor. Esta situación dificulta considerablemente la 

implementación de un método eficiente para su balanceo. 
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A través de los años, se ha desarrollado maquinaria rotatoria para que trabaje a velocidades 

cada vez más altas, esto ha provocado que su comportamiento dinámico sea de interés para su 

estudio. A causa del desbalance que se puede producir en estos sistemas, es de gran importancia 

establecer nuevos métodos de balanceo, lo cual requiere de identificar la masa de desbalance y 

su posición angular. Recientemente ha ido ganando campo la técnica de identificación 

algebraica, la cual tiene un enfoque distinto a las técnicas existentes para la identificación de 

parámetros. Esta se basa en el cálculo operacional y el algebra diferencial. Para su 

implementación se requiere únicamente el modelo matemático del sistema que se requiere 

analizar, además, ofrece varías características favorables que la hacen atractiva para llevar a 

cabo distintos análisis tanto en sistemas lineales como no lineales. Una de las ventajas que 

ofrece esta técnica en la identificación de los parámetros del desbalance en sistemas 

rotodinámicos, es que la estimación de estos se realiza sin la necesidad de llevar al rotor hasta 

su velocidad nominal, evitando de esta manera las velocidades críticas del sistema.  

Por otro lado, los sistemas físicos pueden ser representados mediante modelos matemáticos, 

que si bien, no logran describir con exactitud el comportamiento dinámico del sistema real, 

ayudan a llevar a cabo un análisis válido. En la mayoría de los casos los modelos se expresan 

por medio de ecuaciones diferenciales. En el caso de la ecuación general de movimiento de un 

sistema rotor-cojinete, se utiliza para conocer y predecir el comportamiento dinámico del 

sistema bajo diferentes condiciones de funcionamiento.  

Por lo anterior, en este trabajo se presenta el desarrollo del modelo matemático de un sistema 

rotor-cojinete de eje asimétrico de dos grados de libertad considerando dos velocidades de 

operación del rotor: velocidad constante y velocidad variable. Posterior a esto, con base en la 

técnica de identificación algebraica, se proponen los modelos matemáticos para los 

identificadores algebraicos de los parámetros del desbalance y su posición angular en los dos 

esquemas de operación antes mencionados. 



Universidad Tecnológica de la Mixteca                                                              Página 3                                                           
 

 
 

1.1. Planteamiento del problema 

A raíz de la revolución industrial surgió la necesidad de desarrollar máquinas rotatorias 

capaces de operar a velocidades elevadas, lo que introdujo nuevos desafíos en su diseño y 

operación. Debido a las altas velocidades, las máquinas se vieron obligadas a operar por encima 

de su frecuencia natural fundamental, lo cual obligó a los diseñadores a enfrentarse al fenómeno 

de resonancia. En esta condición de resonancia, las máquinas experimentan un incremento 

descontrolado en su actividad vibratoria, pudiendo alcanzar niveles tan altos como para 

provocar la fractura o el fallo de alguno de sus elementos que las conforman o de la máquina 

en sí.  

La principal causa de vibraciones en la maquinaria rotatoria es el desbalance, este se 

produce cuando el eje principal de inercia del rotor no coincide con el eje geométrico del 

sistema, lo que genera la presencia de un punto pesado el cual se conoce como desbalance. En 

la literatura se han propuesto una gran cantidad de métodos orientados a la corrección del 

desbalance de las máquinas rotatorias, lo que se conoce como balanceo. Entre los métodos 

clásicos de balanceo se encuentran el de coeficientes de influencia y balanceo modal. Muchos 

de los métodos que se utilizan en la actualidad para el balanceo de la maquinaria rotatoria 

requieren varias corridas del sistema para la corrección del desbalance y algunos otros son 

complejos de implementar, lo que genera que el tiempo de balanceo se incremente y esto 

impacta negativamente en los costos de la implementación de estos procedimientos. De acuerdo 

con la literatura, la estimación de parámetros con la técnica de identificación algebraica se 

puede realizar en segundos, en comparación con otras técnicas que pueden tardar minutos, e 

incluso horas. 

 Aunado a los inconvenientes antes mencionados, si el eje de la máquina rotatoria es 

asimétrico ocasiona un problema adicional, debido a que se presenta una excitación paramétrica 

debido a la diferencia de rigidez en los dos ejes principales de inercia, por lo que los métodos 

clásicos ya no son aplicables para el balanceo de este tipo de rotores, y los métodos actuales 

son complejos.  
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Debido a que este tipo de rotores ha ido ganando campo en distintas aplicaciones, se sigue 

investigando hasta la fecha acerca del comportamiento dinámico y proponiendo métodos de 

balanceo que puedan lograr el equilibrio de los sistemas rotodinámicos con asimetría, en el 

menor tiempo posible.  

1.2. Justificación 

La resonancia es un fenómeno que sucede cuando la frecuencia de excitación es igual a la 

frecuencia natural del sistema, y puede ocasionar que los efectos del desbalance sean 

irreversibles. Este fenómeno puede generar consecuencias como: aumento de ruido y vibración 

en los rotores, una reducción de la vida útil de los rodamientos, así como aumentos de los 

esfuerzos de operación y el consumo de energía. La causa principal de las altas vibraciones en 

las máquinas rotativas se debe al desbalance, este se puede generar debido a la asimetría del 

diseño, tolerancias de    fabricación y ensamblaje, no homogeneidad del material, distorsión en 

servicio, corrosión y desgaste, y acumulación de depósitos. Existen diversos métodos de 

balanceo (coeficientes de influencia, balanceo modal, gráficos, etc.) y a pesar de esto el rotor 

nunca se balancea perfectamente. 

La eliminación total del desbalance en un rotor es técnica y prácticamente imposible, sin 

embargo, existen normas que establecen tolerancias de desbalance y procedimientos para tomar 

en cuenta al momento de balancear rotores, normas como la ISO 21940-11 que aplica para 

rotores con comportamiento rígido, o la ISO 21940-12 la cual es considerada para correcciones 

de balanceo de rotores con comportamiento flexible. 

Un inconveniente adicional se tiene cuando el eje de la máquina rotatoria es asimétrico. 

Para este tipo de rotores de eje asimétrico ya no son aplicables los métodos de balanceo 

convencionales, ya que se genera una excitación paramétrica debido a la variación de rigidez 

del eje en sus ejes principales de inercia, lo que hace que la tarea de balanceo de este tipo de 

rotores sea compleja. Es por ello, que en este trabajo de investigación se propone la 

implementación de la técnica de identificación algebraica con el objetivo de desarrollar un 
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identificador de los parámetros de desbalance y que a partir de esto sea más sencillo balancear 

este tipo de rotores de eje asimétrico. 

Si bien existen ya métodos de balanceo para este tipo de rotores, estos son complejos de 

implementar y necesitan de más tiempo para llevar a cabo el balanceo. Para implementar de  

manera óptima métodos como el balanceo modal o el de coeficientes de influencia, se requiere 

de la respuesta de vibración en estado estable para diferentes valores de frecuencia de la 

excitación, por lo que es necesario realizar varias corridas de prueba y llevar a la máquina hasta 

su velocidad nominal de operación, en comparación con la técnica de identificación algebraica, 

la cual algunas de sus ventajas son que solo requiere de una corrida del sistema para la 

identificación del desbalance y funciona a velocidades bajas, evitando así las velocidades 

críticas del sistema. 

1.3. Hipótesis  

Mediante la implementación de la técnica de identificación algebraica se logrará la 

determinación de los parámetros de desbalance de un sistema rotor-cojinete de eje asimétrico 

de dos grados de libertad. 

1.4. Objetivos 

1.4.1. Objetivo general  

Determinar los parámetros de desbalance de un sistema rotor-cojinete de eje asimétrico de 

dos grados de libertad, utilizando la técnica de identificación algebraica, con el fin de optimizar 

el procedimiento de balanceo.  

1.4.2. Objetivos específicos 

 

1.- Obtener el modelo matemático del sistema rotor-cojinete de eje asimétrico de dos 

grados de libertad mediante la aplicación del formulismo Euler-Lagrange. 
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2.- Desarrollar el modelo del identificador de los parámetros de desbalance empleando 

la técnica de identificación algebraica. 

3.- Realizar un programa del identificador de los parámetros de desbalance en la 

plataforma de programación Matlab Simulink. 

4.- Analizar los resultados en simulación del identificador algebraico de los parámetros 

de desbalance. 

1.5. Metas  

 

1.- Desarrollar el modelo matemático del sistema rotor-cojinete de dos grados de   

libertad. 

2.- Desarrollar del modelo matemático del identificador de los parámetros de 

desbalance. 

3.- Realizar la simulación del identificador de los parámetros de desbalance. 

1.6. Metodología  

La metodología implementada para llevar a cabo el presente trabajo de tesis se muestra en 

el esquema de la Figura 1.1. Este método propuesto por Canales et al. [2] básicamente consta 

de 7 etapas que se describen a continuación. 

 

 

 

Figura 1.1. Metodología de la investigación implementada en el presente trabajo.  
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I. Documentación. Antes de comenzar un desarrollo de una investigación es necesario 

documentarse sobre el tema a desarrollar. Se recopilaron artículos científicos relevantes 

relacionados con el comportamiento dinámico de rotores asimétricos y técnicas de 

balanceo. Acerca de la identificación algebraica, se reunieron artículos y documentos 

para tener un mejor panorama de lo que implica esta técnica, y de las aplicaciones en 

donde se ha implementado. 

 

II. Determinación del problema. En esta parte se da a conocer el problema general con el 

que se va a enfrentar. Específicamente el problema en este trabajo de investigación es 

identificar los parámetros de desbalance de un sistema rotor-cojinete con eje asimétrico 

de dos grados de libertad. 

 

III. Creación de la hipótesis. Con la información recabada durante el proceso de la 

documentación se puede realizar una proposición aceptable a la que se espera llegar. La 

hipótesis formulada en el presente trabajo es la siguiente: Mediante la implementación 

de la técnica de identificación algebraica se logrará la determinación de los parámetros 

de desbalance de un sistema rotor-cojinete de eje asimétrico de dos grados de libertad. 

 

IV. Definición del método de trabajo. Se hará uso del Formulismo de Euler-Lagrange para 

obtener el modelo matemático del sistema roto-cojinete de eje asimétrico de dos grados 

de libertad. Así también se implementará la técnica de identificación algebraica para el 

desarrollo del modelo matemático de los identificadores. 

 

V. Resolución, validación y verificación. Se realizará un programa en la herramienta 

computacional Matlab para los identificadores, y así obtener los resultados numéricos y 

sus gráficas correspondientes. 

 

VI. Análisis de resultados y elaboración de conclusiones. Posterior a la obtención de los 

resultados, se proseguirá a realizar una comparación con los resultados presentados en 
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el documento. Se deberá informar si los resultados obtenidos respaldan la hipótesis y 

los objetivos establecidos al inicio del trabajo de investigación. 

 

VII. Redacción del informe final. Una vez que se ha finalizado con el desarrollo se redactará 

de manera concisa acerca de los resultados, descubrimientos, comprobaciones y análisis 

determinados a lo largo de todo el proceso de investigación.  
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Capítulo 2 

 ESTADO DEL ARTE  

 

Durante los últimos tres siglos se han desarrollado teorías sobre sistemas rotodinámicos, 

centradas en el análisis del comportamiento dinámico y en la determinación de los parámetros 

que influyen en el comportamiento inestable del rotor, así como propuestas de balanceo de estos 

sistemas. 

A finales del siglo XIX hubo un gran desarrollo de la teoría de vibraciones y a la vez un 

rápido progreso en el desarrollo de maquinaria, destacando los avances de locomotoras y 

turbinas de vapor. Luego, durante el siglo XX varias compañías proveedoras de máquinas 

eléctricas tomaron como fundamento el estudio realizado por Jeffcott [3] con el fin de 

desarrollar generadores de dos polos para que operaran con velocidades de trabajo por encima 

de sus velocidades críticas. El rotor de estos generadores presenta una sección transversal 

asimétrica, esta asimetría sería la causante del comportamiento dinámico distinto al de los 

rotores que hasta ese entonces se habían analizado. A partir de entonces se han diseñado rotores 

con ejes flexibles y más largos, con el fin de trabajar por encima de sus velocidades críticas y 

aumentar la energía de salida, como consecuencia, el rotor se volvió más sensible a las 

vibraciones, y por consiguiente al desbalance. 
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Según la literatura, se han realizado investigaciones acerca del comportamiento dinámico 

de los rotores asimétricos y se han propuestos métodos de balanceo, sin embargo, estos suelen 

ser idealizados, complejos de aplicar y es necesario realizar múltiples corridas de prueba para 

lograr el estado de equilibrio del sistema. Por ejemplo, Parkinson [4] en una investigación 

empleó el método de balanceo modal con el uso de diagramas polares de respuesta, para estimar 

la magnitud y posición angular del plano de desbalance en un rotor con eje asimétrico. Es 

importante recalcar que en [5] el autor menciona que este método resulta impreciso al aplicarlo 

en un sistema real, debido a que se requiere identificar puntos en el diagrama polar de respuesta 

para calcular la posición angular del desbalance. 

2.1. Comportamiento dinámico de los rotores asimétricos. 

Los primeros estudios sobre los rotores asimétricos se remiten entre los años de 1930-1940, 

trabajos de Smith [6] y Taylor [7], abordan temas sobre el comportamiento de los rotores con 

asimetría. El interés sobre el estudio de estos rotores se dio a causa de que estos operaban por 

encima de sus velocidades críticas, y presentaban un comportamiento dinámico muy diferente 

al de los rotores con ejes simétricos. El modelo utilizado en [7] es una versión basada del 

presentado por Jeffcott [3], y tenía como finalidad estudiar la inestabilidad de un turbogenerador 

de dos polos, por lo que verifica sus resultados experimentalmente mediate un rotor a escala, 

revelando que la influencia de pesos adicionadas en una misma posición angular del rotor no 

guarda proporcionalidad con la respuesta vibratoria. Durante la década de los 40´s también se 

cuentan con trabajos de Foote et al. [8] y Dick [9]. En este último se menciona que cuando un 

eje gira horizontalmente, la fuerza de gravedad produce un giro inducido, lo cual sucede a dos 

veces de la velocidad del eje. A principios de los 60´s se cuentan con trabajos como el de Hull 

[10], quien realizó un estudio sobre el efecto del giro generado en tres casos distintos; en el cual 

realiza configuraciones de asimetría y/o simetría entre los ejes y cojinetes. En general se 

muestra que este tipo de combinaciones tiene una influencia en la dinámica del giro del rotor, 

generando efectos como los giros inversos o frecuencia doble. Ampliando de esta manera el 

trabajo de Smith [6]. 
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Durante la misma década, con la finalidad de ampliar el panorama sobre la vibración de 

segundo orden y por consiguiente obtener un mejor análisis acerca de los rotores asimétricos, 

en particular sobre los rotores de los generadores de dos polos, Bishop y Parkinson [11], 

presentaron un trabajo en el que realizaron un análisis modal. Este análisis fue la base del trabajo 

presentado en [4]. También Yamamoto et al. [12], [13], llevaron a cabo investigaciones acerca 

de las vibraciones inestables generadas en los rotores asimétricos. Demuestran tanto teórica 

como experimentalmente, que las regiones inestables de un rotor asimétrico pueden ser 

eliminadas mediante una combinación adecuada de desigualdades de rigidez e inercia.  

A partir de estas investigaciones, distintos autores presentaron más trabajos en los cuales 

tomaron en cuenta más efectos que influyen en el comportamiento dinámico de este tipo de 

rotores. A continuación, se enlista una serie de investigaciones: 

En 1976 Ardayfio y Frohrib [14], presentaron un trabajo sobre el estudio del 

comportamiento dinámico de un rotor con asimetría tanto en la inercia como en la rigidez del 

eje, el modelo de rotor empleado fue el propuesto por Yamamoto y Ota [13], con la diferencia 

de que agregaron la flexibilidad de los soportes, y concluyeron que esta tiene un gran efecto en 

la tendencia de las regiones de velocidad inestable. Un trabajo similar realizó Ota en 

colaboración con Mizutani [15]. Otro trabajo realizado en ese año fue elaborado por Childs 

[16], en el cual desarrolla una formulación modal para una simulación transitoria de un rotor 

flexible asimétrico con soportes flexibles asimétricos. 

A principios de los 80´s Inagaki et al. [17] llevaron a cabo un trabajo de investigación en el 

que tratan el análisis de la respuesta de un sistema rotor-cojinete asimétrico. Consideraron la 

rigidez del eje ligeramente asimétrica tanto en flexión como en corte, y el momento de inercia 

de una masa transversal también la consideraron asimétrica. Los resultados numéricos 

obtenidos comparados con los experimentales muestran una variación aceptable, así que el 

autor menciona que los resultados pueden ser utilizados para el diseño y balanceo de sistemas 

rotor-cojinete, así como para el diagnóstico de problemas de vibración.  

Por otro lado, Genta [18], realizó un estudio sobre el comportamiento dinámico de flexión 

de un rotor asimétrico. Para abordar su análisis, utilizó el Método del Elemento Finito y 
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coordenadas complejas. El autor menciona que el modelo propuesto puede contemplar 

parámetros de amortiguación, y partes no rotatorias de la máquina. Además, alude a que la 

formulación del modelo se le puede agregar grados de libertad adicionales en los nodos para 

estudiar problemas acoplados, como los que se encuentran en los cigüeñales o en máquinas 

complejas. 

En la década de los 90´s se cuentan con trabajos realizados por Jei y Lee [19], en el cual 

llevan a cabo un análisis de un sistema rotor-cojinete asimétrico, considerando los efectos de la 

inercia rotatoria y el momento giroscópico. Desarrollan un método de solución para el análisis 

de vibración de un eje asimétrico uniforme en rotación, además analizaron las resonancias de 

sistemas rotor-cojinete asimétricos. Otro trabajo de estos autores se muestra en [20], en el cual 

analizaron las características modales de rotores asimétricos asociadas con la rotación del rotor, 

con diferentes grados de asimetría. Mediante los desplazamientos modales complejos, 

identificaron los modos hacia delante y hacia atrás. 

Kang et al. [21] desarrollaron una matriz de transferencia modificada para analizar la 

inestabilidad de sistemas rotor-cojinete asimétrico. Como conclusiones de su trabajo obtienen 

que las regiones inestables se amplían al aumentar la asimetría del eje en el mismo modo, así 

también mencionan que la amortiguación en los cojinetes tiene efectos de estabilización y 

desestabilización en estos sistemas.  

En los últimos 25 años se ha seguido investigando acerca del comportamiento de los rotores 

asimétricos. Oncescu et al. [22], incorporan el efecto de la asimetría del eje en un procedimiento 

de Elemento Finito junto con la teoría de Floquet. Evalúan la eficiencia de la estabilidad de un 

sistema general de ecuaciones diferenciales con coeficientes periódicos al aplicarlo a rotores 

asimétricos. Con ejemplos numéricos demostraron que el método del elemento finito y el 

método de la matriz de transferencia-tiempo es una forma conveniente de predecir el 

comportamiento de rotores asimétricos.  

Nandi y Neogy [23] realizaron un estudio sobre la eficiencia de estabilidad del análisis de 

elemento finito de rotores asimétricos en un plano rotatorio. Los autores mencionan que para 

este tipo de análisis se requiere lidiar con un gran conjunto de ecuaciones diferenciales lineales 
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homogéneas con coeficientes periódicos, considerando que el marco giratorio gira alrededor de 

la línea central no deformada del rotor a una velocidad igual a la velocidad de giro del eje. Una 

de sus conclusiones es que se puede utilizar una amortiguación isotrópica suficientemente alta 

para estabilizar un rotor asimétrico inestable. 

Según la literatura la implementación del elemento finito para el estudio de la inestabilidad 

en rotores asimétricos ha mostrado tener una gran eficiencia. Por otro lado, existen trabajos en 

los que se han implementado modelos de rotor de elementos finitos en 3D que muestran también 

buenos resultados, puesto que se pueden considerar geometrías complicadas y condiciones de 

contorno, por ejemplo. Nandi y Neogy [24] desarrollaron una formulación de elemento finito 

en 3D para analizar la velocidad crítica y giros de rotores con secciones transversales variables. 

Wang et al. [25] presentan un modelo generalizado y eficiente para sistemas rotatorios con 

anisotropía en el rotor y cojinetes (anisotropía en rigidez, inercia y amortiguamiento). El 

movimiento está regido por ecuaciones diferenciales con coeficientes periódicamente variables 

en el tiempo. Para poder resolver dichas ecuaciones hacen uso de un método de síntesis de 

modos de componentes complejos (CMS) para generar modelos de orden reducido, y emplean 

una variante del método de Hill para sistemas con múltiples excitaciones armónicas. Una de las 

conclusiones de sus resultados numéricos es que la anisotropía en los cojinetes respecto a 

coeficientes de amortiguamiento afecta principalmente a las amplitudes de respuesta del 

sistema. Otro trabajo sobre modelos sólidos de elemento finito en 3D fueron realizados por Zuo 

et al. [26] y Lazarus et al. [27]. 

2.2. Balanceo de rotores asimétricos  

Existen métodos convencionales para el balanceo de sistemas rotodinámicos; el método de 

balanceo modal, el de coeficientes de influencia, junto con el uso de diagramas polares de 

respuesta, son los que se han utilizado para el balanceo de rotores simétricos. Con el método de 

coeficientes de influencia se mide físicamente la amplitud de vibración y la fase del eje con 

pesos de prueba. Esto se realiza con la finalidad de obtener el coeficiente de influencia a partir 

de ecuaciones que integran estos datos de vibración, para posteriormente determinar la masa de 

balanceo que se requiere para equilibrar el rotor. Además, existen dos formas de balancear el 
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rotor; agregando o removiendo masa en una dirección específica. Mientras que el balanceo 

modal consiste en determinar un arreglo de masas específico para cada modo de vibración del 

sistema, de tal forma que el siguiente modo a balancear no afecte a los modos previamente 

balanceados. En el balanceo modal clásico se hace la suposición de que la respuesta del rotor 

es lineal. 

 Por otro lado, para los rotores asimétricos, los métodos de balanceo antes mencionados ya 

no son aplicables tal como fueron establecidos para los rotores simétricos, debido a la excitación 

paramétrica generada en estos por la asimetría del eje. Sin embargo, el método de coeficientes 

de influencia ha sido modificado para proponer nuevas técnicas que sean aplicables a rotores 

asimétricos. 

 Matsukura et al. [28], analizaron los desequilibrios residuales después de una serie de 

compensaciones a rotores flexibles con asimetría, utilizaron el método de coeficientes de 

influencia, al cual le agregaron un factor de convergencia (similar a un factor de convergencia 

en los métodos iterativos de cálculo numérico), con la finalidad de que los desequilibrios 

residuales convergieran y disminuyeran rápidamente. Dicho factor es verificado teóricamente, 

obteniendo resultados favorables, pero debido a que el factor que agregaron depende de varios 

parámetros, hacen que este método sea complicado para lograr el balanceo.  

Kang et al. [29], llevaron a cabo un trabajo en el que presentan la formulación de matrices 

de coeficientes de influencia a partir de las ecuaciones de movimiento para rotores asimétricos 

mediante la representación de coordenadas complejas y el método de elementos finitos. Con 

base a esto proponen un método de balanceo modificado, el cual consiste en aplicar dos masas 

de prueba en cada plano de balanceo. Durante su formulación observaron que para determinar 

los coeficientes de influencia modificados en necesario realizar dos operaciones de prueba y 

precesiones hacia adelante calculadas a partir de la medición de respuestas desequilibradas.   

Kang et al. [30], presentaron un método modificado para el balanceo de cigüeñales, 

mediante el uso de máquinas de pedestal blando. Este enfoque modificado lo verificaron 

mediante la teoría de coeficientes de influencia modificado para rotores asimétricos y la técnica 

de corrección iterativa, concluyendo que se puede lograr una mayor calidad de balanceo 
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mediante este método. Otro estudio en el que también hacen uso del método de coeficientes de 

influencia para el balanceo de cigüeñales de motores se muestra en [31]. 

Por otro lado, también se ha hecho uso de diagramas polares de respuesta para representar 

el comportamiento de la respuesta vibratoria de rotores asimétricos, esta respuesta se grafica en 

función del ángulo de fase. En el caso de los rotores simétricos, los gráficos tienen forma 

geométrica circular como se muestra en la Figura 2.1, con lo cual es fácil determinar la posición 

de la respuesta en resonancia; trazando una línea desde el centro del diagrama al punto más 

alejado del círculo, y la masa de desbalance se posicionará con un desfase negativo de 90º. Sin 

embargo, para los rotores asimétricos, esto no funciona de la misma manera. 

En la Figura 2.2 se muestran dos diagramas polares de respuesta de un rotor asimétrico, en 

donde 𝜃𝑑 representa la posición angular 𝑓𝑑 la fuerza de desbalance, y la velocidad angular 𝜔 

del eje tiene sentido positivo, la frecuencia natural promedio está representada por 𝜔∗. Las 

formas geométricas elípticas son características de la respuesta vibratoria de este tipo de rotores, 

para cada posición angular diferente se generan estas formas.  

 

 

Figura 2.1. Diagrama polar de respuesta de un rotor simétrico [32]. 
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Figura 2.2. Diagramas polares de respuesta de un rotor asimétrico [33]. 

 

Esta forma elíptica generada en estos diagramas debido a la excitación paramétrica presente 

en el comportamiento dinámico de los rotores asimétricos hace que los métodos tradicionales 

de balanceo sean complejos a la hora de querer implementarlos en este tipo de rotores. En este 

caso, la respuesta vibratoria no guarda proporcionalidad con la fuerza de desbalance, y tanto 

depende de la posición angular del desbalance, como del factor de amortiguamiento modal. 

Además, es necesario realizar múltiples corridas y llevar al rotor hasta su velocidad nominal de 

operación. 

Una propuesta de balanceo en donde emplean estos diagramas es la que presentan Colín et al. 

[33], en su investigación proponen una metodología para identificar la posición angular de la 

fuerza de desbalance en rotores asimétricos, la cual consiste en el desarrollo de un modelo 

identificador que requiere la información de la respuesta vibratoria de al menos cuatro puntos 

del diagrama polar de respuesta. Para resolver el identificador emplean el método numérico de 

Newton-Rhapson. Sus diagramas polares obtenidos experimentalmente muestran una pequeña 

diferencia con los teóricos, sin embargo, es necesario realizar más de una corrida, y llevar al 

rotor a su velocidad nominal de operación. 

Trabajos recientes muestran un buen resultado al implementar la identificación algebraica 

a los sistemas rotodinámicos. Baltazar-Tadeo [5] expone el control de vibraciones en línea de 

un sistema rotor asimétrico-cojinete con discos de balanceo activo, en el cual toma ventajas del 
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balanceo modal convencional (arreglo de pesos modales) y lo integra con la metodología de 

identificación algebraica. En simulaciones numéricas logra reducciones de más del 90% en la 

amplitud de vibración del rotor, mientras que en pruebas experimentales logra reducciones 

mayores al 80%, (con condiciones de resonancia de cuatro modos de vibración en la primera, y 

dos en la segunda). 

En [34], proponen un método integrado para el balanceo de sistemas rotor-cojinete 

asimétrico, el cual consiste en la implementación del método de balanceo modal convencional, 

en combinación con la técnica de identificación algebraica. En su trabajo utilizaron discos de 

balanceo activo (ABD) para llevar el sistema al estado de equilibrio. Sus resultados obtenidos 

avalan una reducción del 90% de la amplitud de respuesta vibratoria del rotor para los primeros 

cuatro modos de vibración. Otro trabajo similar se realizó en [35], en el cual, con la 

implementación del método algebraico ya mencionado, equilibraron numéricamente un rotor 

de múltiples grados de libertad considerando momentos principales de inercia diferentes en la 

sección transversal del eje y desequilibrio discreto. Sus resultados presentan una reducción del 

95 % de la amplitud vibratoria del rotor en resonancia para cuatro modos de vibración. 

2.3. Identificación de sistemas físicos  

 

Según Zadeh [36] la identificación de sistemas se puede explicar de acuerdo con tres 

factores: La clase del modelo utilizado, el tipo de señales disponibles y el criterio de estimación. 

Si se cumple con estos tres requisitos se obtendrán resultados satisfactorios. 

2.3.1. Modelos de sistemas 

Para la identificación de un sistema se requiere de conocimiento previo de la relación de sus 

componentes, y se pueden expresar con distintos grados de fórmula matemática, a esto se le 

conoce como modelo del sistema. El modelo de un sistema describe su comportamiento, estas 

descripciones pueden presentarse en forma verbal, diagramas, gráficas o mediante modelos 

matemáticos, depende del sistema que se desea modelar. El uso previsto determinará el grado 

de sofisticación necesario para que el modelo sea útil.  
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El modelo matemático de un sistema es una representación aproximada de su 

comportamiento real. Esta representación se estructura mediante expresiones matemáticas; 

generalmente ecuaciones diferenciales, que describen las relaciones entre las variables del 

sistema. Los modelos matemáticos se pueden clasificar en modelos lineales y no lineales. 

 

• Modelos lineales y no lineales 

Existe una multitud de modelos matemáticos lineales, por lo que en una investigación se debe 

restringir a cierta clase definida de modelos (por ejemplo, modelos EE en tiempo continuo, 

modelos en Espacio de los Estados y modelos de función de transferencia). Los sistemas no 

lineales tienen estructuras más complejas, pueden mostrar diferentes tipos de patrones de 

comportamiento según los parámetros y características del sistema. Por lo que se debe 

aprovechar el conocimiento físico que se tenga del sistema para tratar de expresar las no 

linealidades de una manera concisa.  

Entonces, dado que es imposible estructurar un modelo matemático exacto del comportamiento 

dinámico real del sistema, la exactitud de los resultados dependerá de la proximidad entre la 

respuesta que el modelo es capaz de generar y la respuesta medida del sistema. 

2.3.2. Señales  

La interpretación o manejo de señales es esencial para la identificación de sistemas, la 

mayoría de los sistemas físicos poseen una naturaleza continua en el tiempo. Sin embargo, 

debido a los avances digitales, se ha permitido hacer mediciones de señales continúas tomando 

muestras cada cierto periodo (señales discretas en el tiempo). Aunado a lo anterior, se tiene un 

error debido a esta discretización de la señal, ya que entre muestra y muestra, no se logra 

observar el curso de la señal verdadera. 

Si bien la mayoría de los sistemas físicos se rigen por una naturaleza continua en el tiempo, 

se pueden encontrar sistemas en los que es necesario identificarlos con señales discretas en el 

tiempo. Por otro lado, si es requerido, estas señales se pueden transformar mediante la 

transformada de Fourier para trabajarlas en el dominio de la frecuencia. 
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2.3.3. Criterios  

Por último, para que la identificación del sistema pueda tener solución, es necesario elegir 

un criterio para ajustar los parámetros del modelo seleccionado ante el conjunto de datos 

recabados en las señales. De esta manera, se puede generar una expresión matemática con el 

objetivo de realizar una evaluación del modelo, y, por consiguiente, describir el proceso 

generador de los datos observados. Esto se puede expresar según Trapero [37], mediante el 

error de predicción de un determinado modelo 𝑀(𝜃∗), de tal forma que: 

𝜀(𝑡, 𝜃∗) = 𝑦(𝑡) − 𝑦̂(𝑡, 𝜃∗) ( 2.1 ) 

y contemplando el siguiente conjunto de datos: 

𝑍𝑁 = [𝑦(1), 𝑢(1), 𝑦(2), 𝑢(2), … , 𝑦(𝑁), 𝑢(𝑁)] ( 2.2 ) 

se pueden calcular los errores de predicción para 𝑡 = 1,2, … ,𝑁. De tal modo que se puede hallar 

una norma escalar o alguna función que permita medir el tamaño de 𝜀, o bien hacer que 𝜀(𝑡, 𝜃∗) 

sea cero, para obtener el menor error de predicción. 

2.4. Técnicas para la identificación de parámetros desconocidos de sistemas  

Existen distintas técnicas para la estimación de parámetros, dependiendo del tipo del 

sistema, el enfoque matemático utilizado y los datos disponibles. El filtro integral lineal, filtro 

de Kalman, e identificación por Series de Fourier, son algunas de estas técnicas, sin embargo, 

en [38] se menciona que, debido a la naturaleza de estos métodos son difíciles de implementar 

en sistemas más realistas. Algunos trabajos que implementan técnicas para la identificación de 

parámetros se muestran en [39], [40].  

Estas técnicas se pueden clasificar en: 

Técnicas paramétricas: tienen como objetivo estimar parámetros dentro de un modelo 

especificado (como funciones de transferencia o ecuaciones diferenciales), por lo que es 

necesario integrar un vector de parámetros dentro del modelo. 
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Técnicas no paramétricas: en este tipo de técnicas no se emplea un vector de parámetros de 

dimensión finita para buscar la mejor descripción. Se intenta estimar un modelo genérico a 

partir de respuestas de impulso, de frecuencia, respuestas escalonadas, etc. 

Debido a la necesidad de interpretar sistemas reales en modelos matemáticos más precisos, 

estos métodos han resultado tener un gran impacto en la investigación y tecnología. Con esto 

se puede obtener un mejor análisis, simulación, control y detectar fallas de varios sistemas. 

 

2.5. Identificación algebraica para la estimación de parámetros en distintos 

sistemas 

De acuerdo con la literatura, existen trabajos en los que ha utilizado una técnica diferente a 

los métodos clásicos, conocida como técnica de identificación algebraica. La técnica de 

identificación algebraica fue propuesta en un inicio por Fliess y Sira Ramírez [41], como un 

procedimiento de identificación paramétrica de ciclo cerrado para sistemas lineales, la cual 

mediante simulaciones computacionales demostraron la robustez de esta técnica frente a una 

variedad de perturbaciones. Luego, en [42], Sira-Ramírez et al., tratan dos enfoques distintos 

pero equivalentes para el método de identificación algebraica, un enfoque en el dominio del 

tiempo, el cual ya se había tratado en [41], y el otro en el dominio de la frecuencia. 

Desde la propuesta de la técnica de identificación algebraica para la identificación de 

parámetros desconocidos de sistemas físicos, distintos autores han implementado esta técnica 

para identificar parámetros en distintos sistemas eléctricos, mecánicos y señales [43], [44], [45], 

[46], [47], [48]. 

 También, es importante destacar que la técnica de identificación algebraica ya se ha 

utilizado para identificar parámetros de desbalance en sistemas rotor-cojinete; Arias-Montiel et 

al. [49] hicieron uso de esta técnica para la identificación de parámetros de desbalance en línea 

en un sistema rotor-cojinete. Junto con el Método de Elementos Finitos, sintetizaron un 
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esquema de control activo con el fin de atenuar las amplitudes de vibración lateral en el sistema 

mencionado. 

Colín et al. [1] desarrollaron un modelo matemático de un identificador algebraico en línea 

para determinar el desbalance y su posición angular en sistemas rotodinámicos vibratorios de 

múltiples grados de libertad. El modelo matemático del identificador fue abordado por el 

método de identificación algebraica, y toma como dato de entrada la respuesta de vibración 

debido al desbalance a velocidad constante del sistema rotodinámico.  

Mendoza-Larios et al. [50] en su trabajo presentan una metodología para balancear varios 

modos de vibración a la vez en un sistema rotor-cojinete. La metodología consiste en desarrollar 

un identificador en línea basado en la técnica de identificación algebraica para determinar la 

magnitud y posición angular del desbalance en el rotor, para posteriormente poder llevar el 

sistema al estado de equilibrio mediante el uso de discos de balanceo activo. Los resultados 

obtenidos son favorables, en donde los identificadores convergen a los valores reales en menos 

de 0.02 segundos. 

También Mendoza-Larios et al. [51], desarrollaron una metodología con la implementación 

de la técnica de identificación algebraica para la determinación de coeficientes rotodinámicos 

de rigidez y amortiguamiento en un sistema rotor-cojinete. En el cual consideran efectos de la 

inercia rotacional, momentos giroscópicos, amortiguamiento externo, deformaciones por 

cortante y fuerzas atribuibles a los parámetros de rigidez y amortiguamiento de los soportes. 

Respecto a sus resultados, se puede observar en gráficos, como el identificador propuesto 

determina los parámetros identificados de los cojinetes, en menos de 0.06 seg. Lo que vuelve a 

demostrar la rapidez de la técnica de identificación algebraica para la determinación de 

parámetros. 

Luego, Landa-Damas et al. [52], proponen el desarrollo de un método para identificar los 

coeficientes rotodinámicos de una chumacera presurizada, por medio de la técnica de 

identificación algebraica en línea, considerando un modelo de un sistema rotor-chumacera de 

múltiples grados de libertad a velocidad angular constante. Validaron los coeficientes 

rotodinámicos identificados, mediante la comparación de la respuesta de vibración 
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experimental con la respuesta de vibración obtenida con el modelo de múltiples grados de 

libertad, tomando como dato de entrada los parámetros rotodinámicos identificados. Sus 

resultados demuestran como la identificación algebraica ayuda a determinar los parámetros en 

un tiempo menor a 0.1 segundos. 

En las siguientes figuras, se muestran los gráficos de algunos resultados en el análisis de 

dos sistemas físicos obtenidos con la implementación de identificadores algebraicos. En la 

Figura 2.3, se tiene la respuesta del identificador del parámetro de amortiguamiento de una 

suspensión automotriz regenerativa, en la cual se puede observar, como los valores del 

identificador convergen al valor real alrededor de 0.1 segundos. 

 

Figura 2.3. Gráfico obtenido con identificadores algebraicos para el parámetro de 

amortiguamiento de una suspensión automotriz regenerativa [53]. 

 

En la Figura 2.4, los valores de simulación fueron obtenidos con la técnica de identificación 

algebraica aunada con observadores GPI. En donde se hace uso de identificadores algebraicos 

para la estimación de los parámetros de interés. En la figura se puede ver como las señales de 

los valores de simulación convergen a los valores reales. 
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Figura 2.4. Señales de los valores en simulación con los valores reales, en el análisis de un eje 

pitch de un helicóptero [54]. 

 

Esto muestra como la técnica de identificación algebraica ha ido ganando campo en la 

investigación, convirtiéndola en un método que, a diferencia de otras técnicas de identificación, 

muestra tener una gran robustez frente a incertidumbres que pudieran afectar a la obtención 

correcta de las señales de respuesta de los sistemas. 
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Capítulo 3 

 MARCO TEÓRICO  

 

3.1. Definición y características de los sistemas rotodinámicos 

Se define como sistema rotodinámico a la máquina conformada por rotores, engranajes, ejes 

y turbinas. Estos sistemas involucran fuerzas inerciales, efectos de velocidad angular, efecto 

Coriolis y efectos giroscópicos, así como vibraciones y resonancias, los cuales son efectos que 

impactan en el rendimiento de la máquina rotativa [55]. Estos sistemas están diseñados para 

convertir energía mecánica en eléctrica o viceversa. 

3.2. Análisis rotodinámico  

Según [56] el análisis rotodinámico “es la dinámica de las máquinas rotatorias”, es decir, se 

analizan todos los efectos generados por las fuerzas que actúan en el exterior o en el mismo 

sistema. Debido a que estos efectos provocan el mal funcionamiento de la máquina, algunos de 

los objetivos que tiene este análisis son: predecir velocidades críticas, amplitudes de vibración 

síncrona debido al desbalance, así como la corrección del desbalance, permitiendo de esta 

manera la reducción de la inestabilidad del rotor. 
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3.3. Rotores  

Los rotores son quizá las máquinas rotatorias más conocidas en las distintas industrias, ya 

que estos pueden llegar a tener un gran impacto negativo en toda la maquinaria debido a los 

efectos producidos por las altas vibraciones, es debido a esto por lo que en ellos se centran los 

análisis rotodinámicos para propósitos de balanceo. 

En la Figura 3.1, se muestra un esquema de los elementos que conforman un rotor [57]. 

Consta de un eje (S), soportes o cojinetes (B), representados por resortes y/o amortiguadores, y 

un disco (D), este último es el principal responsable en el aumento del pico de resonancia en 

las velocidades críticas. La masa de desbalance (𝑚𝑢) también es considerada como un elemento 

más del rotor.  

 

Figura 3.1. Esquema de un rotor [58]. 

 
 

3.3.1. El eje 

Generalmente, en el análisis de los sistemas rotodinámicos, el eje se ha considerado como 

una serie de elementos lineales o de viga. Es la pieza o elemento fundamental, ya que rige el 

funcionamiento y determina la velocidad de giro de la máquina, además, es el principal 

responsable de transmitir las vibraciones a los mecanismos presentes en estos sistemas, como 

los rodamientos, acoples, soportes, etc.  
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3.3.2. Soportes o cojinetes 

Habitualmente, en los trabajos presentados sobre el análisis dinámico de las máquinas 

rotatorias, los cojinetes han sido considerados como los únicos elementos entre el eje y la 

carcasa para llevar a cabo el análisis del rotor. Estos son caracterizados en términos de rigidez 

k, y amortiguamiento c, los cuales son considerados conocidos. 

3.3.3. El disco  

El disco es asumido como rígido o como una masa concentrada, por lo que es caracterizado 

únicamente por su energía cinética. 

3.3.4. Masa de desbalance 

El desbalance se define como una masa 𝑚𝑢, la cual se localiza a una distancia a, a partir del 

centro geométrico del eje. Permanece en un plano perpendicular al eje y, y su coordenada 

permanece constantes a lo largo de este eje. 

  

 

Figura 3.2. Masa de desbalance. 
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De acuerdo con el diagrama mostrado en la Figura 3.2 las coordenadas del desbalance se 

expresan como: 

𝑂𝐷 = [
𝑢 + 𝑎𝑠𝑒𝑛(𝜙)
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒
𝑤 + acos(𝜙)

] 
( 3.1 ) 

A partir de la ecuación (3.1), se puede obtener la velocidad, derivando respecto al tiempo: 

𝑉 =
𝑑(𝑂𝐷)

𝑡
= [

𝑢̇ + 𝑎𝜙̇𝑐𝑜𝑠(𝜙)
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒

𝑤̇ − a𝜙̇sen(𝜙)
] 

( 3.2 ) 

La expresión para la energía cinética se expresa como: 

𝑇 =
1

2
𝑚𝑣2 

( 3.3 ) 

Sustituyendo la expresión de la velocidad y la masa de desbalance 𝑚𝑢 en la ecuación (3.3), se 

obtiene: 

𝑇 =
𝑚𝑢

2
(𝑢̇2 + 𝑤̇2 + 𝑎2𝜙̇2 + 2𝜙̇𝑎𝑢̇𝑐𝑜𝑠(𝜙) − 2𝜙̇𝑎𝑤̇𝑠𝑒𝑛(𝜙)) 

 

( 3.4 ) 

El termino 
𝑚𝑢

2
𝑎2𝜙̇2 es una constante y no tiene influencia en las ecuaciones. Además, la masa 

de desbalance se considera pequeña respecto a la masa del rotor. Con estas consideraciones, la 

expresión para la energía cinética se puede escribir de la siguiente manera: 

𝑇 ≅ 𝑚𝑢𝜙̇𝑎(𝑢̇𝑐𝑜𝑠(𝜙) − 𝑤̇𝑠𝑒𝑛(𝜙)) 

 

( 3.5 ) 

Para obtener el vector de fuerza generado por la masa 𝑚𝑢, se aplican las ecuaciones de 

Lagrange. 
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3.4. Rotores asimétricos 

Los rotores pueden ser clasificados en rígidos o flexibles, en el primero existe una mínima 

deformación en el eje, en comparación con los flexibles, los cuales presentan una deformación 

más notable. Estas deformaciones se presentan dentro del rango de velocidades de operación 

de los rotores, independientemente de las dimensiones del eje o del mismo rotor. Por otro lado, 

la ISO clasifica en cinco grupos a los rotores según el tipo de balanceo requerido; rotores 

rígidos, flexibles, cuasi flexibles, de acoplamiento flexible, y rotores flexibles de una única 

velocidad. 

De acuerdo con la rigidez que poseen los rotores en su sección transversal estos pueden 

clasificarse en simétricos o asimétricos; los primeros poseen parámetros de rigidez igual en toda 

su sección transversal, por otro lado, si los parámetros de rigidez son distintos en los ejes 

principales de inercia, se trata de un rotor asimétrico. La asimetría afecta a las velocidades 

críticas y a la magnitud de la respuesta al desbalance de este. También es importante mencionar 

que los rotores simétricos se pueden volver asimétricos solo si se desarrolla una fisura en el eje, 

esto hace que su rigidez ya no sea simétrica. 

Por otro lado, la rigidez implica parámetros como el momento de inercia y el área. En la 

Figura 3.3, se tienen dos secciones transversales, en la primera, el momento de inercia será el 

mismo tanto en x y z, por lo que la rigidez es la misma para ambos planos del sistema, los planos 

xy y yz respectivamente. En la segunda sección transversal, a un eje con geometría circular se 

le han realizado unos cortes. La asimetría generada hace que el momento de inercia con respecto 

de x y z sea diferente. En el caso de esta sección, el momento de inercia respecto a z es mayor 

que el generado respecto a x, debido a que existe una mayor área de rotación, esto hace que se 

tenga una rigidez diferente, afectando directamente el comportamiento dinámico del sistema. 
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En [6], Smith menciona que las velocidades críticas de los rotores con partes giratorias 

asimétricas ocurren en pares que engloban rangos de velocidad altamente inestables, además, 

la fricción interna (la cual él llamó “amortiguación rotatoria”) puede contribuir a la inestabilidad 

del rotor. Al igual en [7], el autor concluye que la fuerza elástica tiene una componente radial 

que es paralela al desplazamiento y una tangencial que es perpendicular a la dirección del 

desplazamiento, esta segunda componente la consideró como una característica única de las 

flechas asimétricas. 

De acuerdo con diversos investigadores, el factor de asimetría modal y de amortiguamiento 

provocan que la respuesta de vibración del rotor presente cambios en los valores de amplitud y 

ángulos de fase para distintas posiciones angulares de la fuerza de excitación. Esto provoca que 

el estudio de estos rotores sea más complejo al momento de utilizar alguno de los métodos 

existentes para llevar a cabo el balanceo. 

El cigüeñal (Figura 3.4), el rotor de dos polos de los turbogeneradores (Figura 3.5), las 

hélices de dos palas, y el árbol de levas, son claros ejemplos de rotores asimétricos.  

 

Figura 3.3. Sección transversal simétrica y asimétrica de un eje [5]. 
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Figura 3.4. Cigüeñal de un motor de combustión interna [59]. 

 

 

Figura 3.5. Rotor de dos polos de un turbogenerador [60]. 
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3.5. Método de Newmark 

El método de Newmark es un método numérico de integración directa utilizado para 

resolver ecuaciones diferenciales, y se basa en la aceleración promedio. Permite la solución 

directa de ecuaciones diferenciales de segundo orden o de un sistema de ecuaciones 

diferenciales de segundo orden sin la necesidad de transformarlas en un par de ecuaciones 

diferenciales de primer orden simultaneas. Este puede ser aplicado en varios campos de la 

ingeniería, particularmente a sistemas de respuesta dinámica.  

En este método, son necesarios los parámetros β y γ, cuyos valores se deben elegir 

correctamente para lograr la precisión y estabilidad deseada en la integración, por lo que pueden 

cambiar dependiendo el enfoque del problema en particular. En el presente trabajo, el uso de 

este método es para solucionar las ecuaciones de movimiento del sistema rotor-cojinete 

asimétrico de dos grados de libertad. Los valores de los parámetros que se consideran para la 

solución de las estas ecuaciones son: β=1/2 y γ=1/4, esto implica que la aceleración se mantiene 

constante en un valor promedio de ( 𝛿̈
(𝑡) + 𝛿̈

(𝑡+∆𝑡) )/2. 

Para poder implementar este método se supone que se conoce el comportamiento del 

sistema rotor-cojinete asimétrico, es decir, se conocen 𝛿(𝑡), 𝛿̇(𝑡) 𝑦 𝛿̈(𝑡), desplazamiento, 

velocidad y aceleración respectivamente, en el instante t.  

En el método de Newmark las expresiones para la velocidad y desplazamiento están dadas por: 

𝛿̇
(𝑡+∆𝑡)

= 𝛿̇
(𝑡) + [(1 − β) 𝛿̈

(𝑡) + β 𝛿̈
(𝑡+∆𝑡) ]∆𝑡  ( 3.6 ) 

𝛿
(𝑡+∆𝑡) = 𝛿

(𝑡) + 𝛿̇
(𝑡) ∆𝑡 + [(

1

2
− γ) 𝛿̈

(𝑡) + 𝛼 𝛿̈
(𝑡+∆𝑡) ] ∆𝑡2 

( 3.7 ) 

A continuación, se muestra el algoritmo del método de Newmark utilizado en este caso para 

determinar el vector de desplazamientos (respuesta vibratoria) del sistema: 
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Tabla 3.1. Algoritmo con base en el método numérico de Newmark. 

Cálculos iniciales Para cada paso de tiempo 

1) Formular las matrices de rigidez [K], 

masa [M] y amortiguamiento [C]. 

2) Condiciones iniciales 𝛿0, 𝛿̇0, 𝛿̈0. 

3) Seleccionar el paso de tiempo ∆𝑡, los 

parámetros β 𝑦 γ, y calcular las 

constantes de integración. 

β ≥
1

2
;   γ ≥

1

4
(
1

2
+ β)2 

𝑎0 =
1

γ(∆𝑡)2
;  𝑎1 =

β

γ(∆𝑡)
; 𝑎2 =

1

γ(∆𝑡)
 

𝑎3 =
1

2γ
− 1;  𝑎4 =

β

γ
− 1;                        

𝑎5 =
∆𝑡

2
(
β

γ
− 2) ; 𝑎6 = ∆𝑡(1 − γ);   

𝑎7 = β∆𝑡  

4) Formular la matriz de rigidez efectiva: 

[𝐾̂] = [𝐾] + 𝑎0[𝑀] + 𝑎1[𝐶] 

5) Triangularizar [𝐾̂]: [𝐾̂] = [𝐿][𝐷][𝐿]𝑇 

1) Calcular el vector de fuerza efectiva 

en el tiempo 𝑡 + ∆𝑡: 

𝐹̂
(𝑡+∆𝑡)

= 𝐹
(𝑡+∆𝑡)

+ [𝑀](𝑎0 𝛿
(𝑡) +

𝑎2 𝛿̇
(𝑡) + 𝑎3 𝛿̈

(𝑡) ) + [𝐶](𝑎1 𝛿
(𝑡) +

𝑎4 𝛿̇
(𝑡) + 𝑎5 𝛿̈

(𝑡) )  

2) Resolver para los desplazamientos en 

el tiempo 𝑡 + ∆𝑡 

[𝐾̂]𝑡+∆𝑡𝛿 = 𝐹̂
(𝑡+∆𝑡)

 

3) Calcular 𝛿̇ y 𝛿̈ en el tiempo 𝑡 + ∆𝑡: 

𝛿̈
(𝑡+∆𝑡)

= 𝑎0( 𝛿
(𝑡+∆𝑡) − 𝛿

(𝑡) ) −

𝑎2 𝛿̇
(𝑡) − 𝑎3 𝛿̈

(𝑡)
  

𝛿̇
(𝑡+∆𝑡)

= 𝛿̇
(𝑡) + 𝑎6 𝛿̈

(𝑡) + 𝑎7 𝛿̈
(𝑡+∆𝑡)
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3.6. Técnica de identificación algebraica  

La técnica de identificación algebraica toma como base el algebra diferencial y cálculo 

operacional para el desarrollo de estimadores que permiten identificar parámetros desconocidos 

de un sistema a partir de su modelo matemático. Es importante mencionar que la estimación de 

estos parámetros se realiza en línea y en tiempo continuo o discreto, esto significa que los 

parámetros de desbalance se pueden obtener mientras el rotor está ejecutando su tarea, además 

los identificadores que se obtienen son completamente independientes de las condiciones 

iniciales. Otra de las ventajas de esta técnica es que presenta buena robustez con respecto a una 

gran variedad de perturbaciones como: incertidumbres paramétricas, dinámicas no modeladas 

y ruido.  

Por otro lado, con esta técnica se puede trabajar por medio de dos enfoques: 

Enfoque en dominio de la frecuencia: en este enfoque se emplea la transformada de Laplace 

y solo funciona para sistemas lineales. 

La metodología para llevar a cabo el desarrollo del modelo del identificador es la siguiente: 

• Aplicar la transformada de Laplace en la ecuación diferencial del modelo dinámico, y 

posteriormente se reordena con un polinomio en s. 

• Derivar dos veces las ecuaciones con respecto a la variable s con el fin de eliminar las 

condiciones iniciales. 

• Multiplicar las ecuaciones por 𝑠−2 con la finalidad de evitar las derivadas y regresar al 

dominio del tiempo. 

• Finalmente, aplicar la transformada inversa de Laplace y despejar las variables de 

interés. 

Enfoque en dominio del tiempo: en este caso, se recurre al uso de integrales, y funciona tanto 

para sistemas lineales, como no lineales. 
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En este enfoque se mantiene una analogía con respecto a la metodología en el dominio de 

la frecuencia. 

• Multiplicar las ecuaciones por 𝑡2 y se integra el resultado dos veces con respecto al 

tiempo 𝑡. 

• Se hace uso de integrales iteradas para integrar toda la ecuación y obtener expresiones 

lineales en los parámetros usando el método de integración por partes. Se integra tantas 

veces sea necesario para igualar el número de ecuaciones al número de incógnitas.  

El enfoque que quizá es el menos complicado, es el que se trabaja en dominio de la 

frecuencia, sin embargo, en este trabajo de tesis se trabajará con el enfoque en el dominio del 

tiempo, puesto que se tiene un sistema no lineal. El uso de esta técnica en sistemas 

rotodinámicos es principalmente para determinar la masa de desbalance y su posición angular. 

Posterior a la determinación de los parámetros mencionados, se puede proseguir a agregar o 

remover material al rotor para llevarlo al estado de equilibrio. 

3.6.1. Base matemática  

La configuración matemática para la identificación de los parámetros en sistemas lineales 

es la siguiente: 

Sea 𝑘 el campo de números ℝ o ℂ (números reales y/o complejos). Se denota 𝐾 como la 

extensión algebraica finita del campo 𝑘(𝛩), generado por el conjunto finito 𝛩 = (𝜃1, … , 𝜃𝑟) de 

parámetros desconocidos. Considere el anillo 𝐾[
𝑑

𝑑𝑡
] de operadores diferenciales con 

coeficientes en 𝑘: 

∑ 𝑐𝑣
𝑓𝑖𝑛𝑖𝑡𝑜

𝑑𝑣

𝑑𝑡𝑣
, 𝑐𝑣 ∈ 𝐾 

( 3.8 ) 

Se supone que los parámetros son constantes, es decir, 
𝑑𝜃𝑖

𝑑𝑡
= 0, 𝑖 = 1, … , 𝑟. Así que, 𝐾[

𝑑

𝑑𝑡
] 

es un dominio de ideales principales conmutativos. Se considera un conjunto finito de 
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indeterminaciones, tal que (𝑦1 , … , 𝑦𝑚 ), en asociación con el anillo de operadores lineales 

diferenciales. 

Estas indeterminaciones representan las variables que describen en el dominio del tiempo, 

las señales de donde se obtienen los parámetros desconocidos. 

La forma más general en que los parámetros pueden aparecer en los coeficientes de una 

expresión diferencial incluye expresiones algebraicas las cuales implican sumas, 

multiplicaciones, raíces, etc., de tales parámetros. Es decir, las expresiones de los parámetros 

provienen de las soluciones de las ecuaciones algebraicas que envuelven los parámetros 

desconocidos. 

Sea 𝑆/𝐾 una extensión algebraica diferencial de dimensión finita, donde una señal es un 

elemento de S. Sea 𝐿/𝐾 una extensión algebraica diferencial y N un subconjunto de L. El sobre-

campo diferencial de K generado por N se escribe tal que 𝐾 < 𝑁 >. 

Identificabilidad 

El conjunto 𝛩 de parámetros desconocidos se dice ser algebraicamente identificable si, y 

solo si, cualquier componente de 𝛩 es algebraico sobre 𝑘 < 𝑡, 𝑦 >.  Se dice ser linealmente 

identificable si, y solo si,  

𝑃 (
𝜃1
⋮
𝜃𝑟

) = 𝑄 
( 3.9 ) 

donde: 

• P y Q son matrices 𝑟 × 𝑟 y 𝑟 × 1. 

• Las entradas de P y Q pertenecen al rango (1, 𝑦)
𝐾[

𝑑

𝑑𝑡
]

 

• det (𝑃) ≠ 0. 
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El rango (1, 𝑦)
𝐾[

𝑑

𝑑𝑡
]

 es el conjunto de todas las combinaciones lineales de (1, 𝑦1 , … , 𝑦𝑚), es 

decir 𝐷0 ∙ 1 + ∑ 𝐷𝑖
𝑚
𝑖=1 𝑦𝑖. Donde los coeficientes 𝐷𝑖 pertenecen a 𝐾[

𝑑

𝑑𝑡
]. Por tanto, 𝐷𝑖 es un 

operador diferencial de la forma:  

∑(
∑ 𝑎𝑘,𝑗𝑡

𝑘𝑘𝑗
𝑘=0

∑ 𝑏𝑙,𝑗𝑡𝑙
𝑙𝑗
𝑙=0

)
𝑑𝑗

𝑑𝑡𝑗

𝑛

𝑗=1

 

( 3.10 ) 

con 𝑎𝑘,𝑗, 𝑏𝑙,𝑗 ∈ 𝑘. 

3.7. Formulismo de Euler-Lagrange 

Todo lo que pasa a nuestro alrededor se puede modelar mediante las Leyes de Newton, estas 

leyes estudian las fuerzas que se ejercen en la interacción de los cuerpos. La naturaleza de estas 

leyes es vectorial, por lo que implican el uso de magnitudes con dirección y sentido, lo cual 

complica el análisis para sistemas complejos. Por otro lado, existe otra formulación que, 

partiendo de la física vectorial de Newton, hace generalizaciones en cuanto a los sistemas 

coordenados y tipos de fuerzas que interactúan en un evento, esto hace que se pueda llevar ese 

análisis vectorial a un estudio de componentes escalares del movimiento, basado en condiciones 

energéticas, llamado formulismo de Euler-Lagrange. 

La ecuación fundamental de Lagrange se escribe como: 

𝑑

𝑑𝑡

𝜕ℒ

𝜕𝑞̇𝑖
−
𝜕ℒ

𝜕𝑞𝑖
= 0 

( 3.11 ) 

donde 𝑞𝑖 es el desplazamiento generalizado y 𝑞̇𝑖 es la velocidad generalizada, con 𝑖 = 1,2, … , 𝑁. 

Las coordenadas generalizadas son un conjunto de coordenadas linealmente independientes que 

especifican la configuración del sistema, y son independientes de cualquier restricción. 

Para las fuerzas que poseen potencial, donde las fuerzas generalizadas 𝑄𝑖 actúan sobre el 

sistema, las ecuaciones de Lagrange se pueden escribir de la forma: 
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𝑑

𝑑𝑡

𝜕ℒ

𝜕𝑞̇𝑖
−
𝜕ℒ

𝜕𝑞𝑖
= 𝑄𝑖 

( 3.12 ) 

El Lagrangiano se define como ℒ = 𝑇 − 𝑈, donde T es la energía cinética y U es la energía 

potencial del sistema. Por lo tanto, sustituyendo esta expresión en la ecuación (3.11), se obtiene 

la siguiente ecuación para un sistema conservativo.  

𝑑

𝑑𝑡

𝜕𝑇

𝜕𝑞̇𝑖
−
𝜕𝑇

𝜕𝑞𝑖
+
𝜕𝑈

𝜕𝑞𝑖
= 0 

( 3.13 ) 

En el presente trabajo de tesis se hace uso de las ecuaciones de Euler-Lagrange de la siguiente 

forma: 

𝑑

𝑑𝑡

𝜕𝑇

𝜕𝑞̇𝑖
−
𝜕𝑇

𝜕𝑞𝑖
+
𝜕𝑈

𝜕𝑞𝑖
= 𝐹𝑞𝑖 

( 3.14 ) 

en donde 𝐹𝑞𝑖 representa las fuerzas generalizadas. 

3.8. Rampa de excitación 

Se denomina rampa de excitación al cambio de la frecuencia de excitación con respecto al 

tiempo, y puede ser expresada mediante una función creciente o decreciente. Según la literatura 

para la mayoría de los sistemas reales esta frecuencia no varía linealmente con el tiempo. Sin 

embargo, si se considera que la variación de la frecuencia es lo suficientemente lenta, la función 

de rampa de excitación puede aproximarse a una función lineal de la forma:  

𝜙̇(𝑡) = 𝜙̇0 + 𝜙̈𝑡 ( 3.15 ) 

donde:  

𝜙̇0= frecuencia de excitación al inicio de la rampa. 

𝜙̈ = tasa de cambio de la frecuencia de excitación con respecto al tiempo t. 
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Capítulo 4 

 MODELADO MATEMÁTICO 

 

En este capítulo se presenta el desarrollo del modelo matemático del sistema rotor-cojinete 

asimétrico de dos grados de libertad. Para el modelo matemático del sistema se consideran dos 

condiciones de operación del rotor asimétrico: velocidad constante y velocidad variable. 

Posteriormente, en este mismo capítulo se muestra el desarrollo de los identificadores 

algebraicos de los parámetros de desbalance del sistema rotor-cojinete asimétrico bajo los dos 

esquemas de velocidad antes mencionados. 

4.1. Modelado del rotor asimétrico 

El modelo del eje es una masa concentrada (m) en M situada a una distancia a 

(excentricidad), desde el eje de rotación: 𝑂 en reposo, 𝑂1 cuando el eje gira. Las componentes 

de rigidez del eje son 𝑘𝑢 y 𝑘𝑣 en el marco de referencia giratorio, UV, fijo al eje. Las 

componentes de rigidez de los soportes son 𝑘𝑥 = 𝑘𝑦 = 𝑘 en el marco de referencia fijo, XY. 

Las coordenadas de 𝑂1 son (u,v) y (x,y). El amortiguamiento no se considera, y las ecuaciones 

se escriben tanto en el marco de referencia fijo como en el giratorio, para ello se utiliza la 

siguiente relación: 

 



Universidad Tecnológica de la Mixteca                                                              Página 39                                                           
 

 
 

 

Figura 4.1. Modelo del sistema. 

 

[
𝑖
𝑗
] = [

𝑐𝑜𝑠 Ω𝑡 𝑠𝑒𝑛 Ω𝑡
−𝑠𝑒𝑛 Ω𝑡 cos Ω𝑡

 ] [
𝐼
𝐽
] ( 4.1 ) 

La ecuación (4.1) se obtiene a partir de la relación de las variables que se muestra en la 

Figura 4.1, en donde i, j son vectores unitarios en las direcciones U y V. Al igual, I, J son 

vectores unitarios en las direcciones X y Y respectivamente, y Ω representa la velocidad de 

rotación constante.  

Las coordenadas del centro de masa M se expresan en los dos marcos de referencia, de modo 

que: 

la cual en el marco de referencia fijo se expresa como: 

 

𝑂𝑀 = [𝑥 + 𝑎𝑐𝑜𝑠 (Ω𝑡 +  𝜙)]𝐼 + [𝑦 + 𝑎𝑠𝑒𝑛 (Ω𝑡 +  𝜙)]𝐽 ( 4.3 ) 

y en el marco giratorio: 

𝑂𝑀 = 𝑂𝑂1 + 𝑂1𝑀 ( 4.2 ) 
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𝑂𝑀 = (𝑢 + 𝑎∗)𝑖 + (𝑣 + 𝑏∗)𝑗 ( 4.4 ) 

Por lo tanto, las expresiones para la velocidad V en los dos marcos de referencia están dadas 

respectivamente por: 

 

𝑉 =
𝑑𝑂𝑀

𝑑𝑡
= [𝑥̇ − 𝑎 Ω sen(Ωt + 𝜙)]𝐼 + [𝑦̇ + 𝑎 cosΩ𝑡 + 𝜙)] 𝐽 ( 4.5 ) 

 

𝑉 =
𝑑𝑂𝑀

𝑑𝑡
= [𝑢̇ − Ω(𝑣 + 𝑏∗)]𝑖 + [𝑣̇ + Ω ∗ (𝑢 + 𝑎∗)]𝑗 ( 4.6 ) 

La expresión para la energía cinética en el marco de referencia fijo es: 

 

𝑇 =
𝑚𝑉2

2
=
𝑚

2
{√[𝑥̇ − 𝑎Ω𝑠𝑒𝑛(Ω𝑡 + 𝜙)]2 + [𝑦̇ + 𝑎Ω cos(Ω𝑡 + 𝜙)]2 }

2

 ( 4.7 ) 

 

𝑇 =
𝑚

2
[𝑥̇2 + 𝑦̇2 + 𝑎2Ω2 − 2𝑎Ω𝑥̇𝑠𝑒𝑛(Ω𝑡 + 𝜙) + 2𝑎Ω𝑦̇ cos(Ω𝑡 + 𝜙)] ( 4.8 ) 

y en el marco giratorio: 

 

𝑇 =
𝑚

2
{√[𝑢̇ − Ω(𝑣 + 𝑏∗)]2 + [𝑣̇ + Ω(𝑢 + 𝑎∗)]2 }

2

 ( 4.9 ) 

 

𝑇 =
𝑚

2
[𝑢̇2 + 𝑣̇2 + Ω2𝑢2 +Ω2𝑣2 + 2Ω2𝑏∗𝑣 + 2Ω𝑎∗𝑢 + Ω2𝑎∗2 + Ω2𝑏∗2

− 2Ω𝑏∗𝑢̇ + 2Ω𝑎∗𝑣̇ − 2Ω𝑢̇𝑣 + 2Ω𝑢𝑣̇] 

 

( 4.10 ) 

 

Aplicando las ecuaciones de Lagrange a (4.8) y (4.10), se pueden obtener las fuerzas inerciales 

que actúan en las direcciones X, Y, U  y V respectivamente:  
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-En el marco fijo: 

 

𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑥̇
) −

𝜕𝑇

𝜕𝑥
= 𝑚𝑥̈ − 𝑚𝑎Ω2cos(Ω𝑡 + 𝜙) 

 

( 4.11 ) 

 

 

𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑦̇
) −

𝜕𝑇

𝜕𝑦
= 𝑚𝑦̈ − 𝑚𝑎Ω2sen(Ω𝑡 + 𝜙) ( 4.12 ) 

-En el marco giratorio: 

 

𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑢̇
) −

𝜕𝑇

𝜕𝑢
= 𝑚(𝑢̈ − 2Ω𝑣̇ − Ω2𝑢 − Ω2𝑎∗) ( 4.13 ) 

 

𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑣̇
) −

𝜕𝑇

𝜕𝑣
= 𝑚(𝑣̈ − 2Ω𝑢̇ − Ω2𝑣 − Ω2𝑏∗) ( 4.14 ) 

 

Fuerzas que actúan sobre el rotor 

-Gravedad 

Debido a que la gravedad tiene solo dirección en J, entonces: 

 

𝐹 = −𝑚𝑔𝐽 ( 4.15 ) 

y de la ecuación (4.1) se obtiene la siguiente expresión: 

 

[ 
𝐼
𝐽
 ] = [

𝑐𝑜𝑠 Ω𝑡 −𝑠𝑒𝑛 Ω𝑡
𝑠𝑒𝑛 Ω𝑡 cosΩ𝑡

 ] [ 
𝑖
𝑗
 ] ( 4.16 ) 
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de tal modo que la ecuación (4.15) se puede escribir como: 

 

𝐹 = −𝑚𝑔(𝑠𝑒𝑛Ω𝑡𝑖 + cosΩ𝑡𝑗) ( 4.17 ) 

 

-Rigidez del eje 

La fuerza que actúa sobre la masa es: 

𝐹 = −𝑘𝑢𝑢𝑖 − 𝑘𝑣𝑣𝑗 ( 4.18 ) 

De la ecuación (4.1) se tienen las componentes de la fuerza en el marco fijo,  

 

[
𝑖
𝑗
] = [

𝑐𝑜𝑠 Ω𝑡 𝑠𝑒𝑛 Ω𝑡
−𝑠𝑒𝑛 Ω𝑡 cosΩ𝑡

 ] [
𝐼
𝐽
]  ;  [ 

𝑢
𝑣
 ] = [

𝑐𝑜𝑠 Ω𝑡 𝑠𝑒𝑛 Ω𝑡
−𝑠𝑒𝑛 Ω𝑡 cosΩ𝑡

 ] [ 
𝑥
𝑦 ]  

 
 

por lo que sustituyendo estas componentes en la ecuación (4.18) se tiene:  

𝐹 = −𝑘𝑢(𝑥𝑐𝑜𝑠(Ω𝑡) + 𝑦𝑠𝑒𝑛(Ω𝑡))(cos(Ωt) I + sen(Ωt)J ) − 𝑘𝑣(𝑦𝑐𝑜𝑠(Ω𝑡)

− 𝑥𝑠𝑒𝑛(Ω𝑡))(cos(Ωt) 𝐽 − 𝑠𝑒𝑛(Ω𝑡)𝐼) 
( 4.19 ) 

y después de realizar un tratamiento algebraico correspondiente a la ecuación anterior, se 

obtiene la siguiente expresión: 

 

𝐹 = −
1

2
[(𝑘𝑢 + 𝑘𝑣)𝑥 + (𝑘𝑢 − 𝑘𝑣)𝑦𝑠𝑒𝑛(2Ω𝑡) + (𝑘𝑢 − 𝑘𝑣)𝑥𝑐𝑜𝑠(2Ω𝑡)]𝐼

−
1

2
[(𝑘𝑢 + 𝑘𝑣)𝑦 + (𝑘𝑢 − 𝑘𝑣)𝑥𝑠𝑒𝑛(2Ω𝑡)

− (𝑘𝑢 − 𝑘𝑣)𝑦𝑐𝑜𝑠(2Ω𝑡)]𝐽 

( 4.20 ) 

 

 

 



Universidad Tecnológica de la Mixteca                                                              Página 43                                                           
 

 
 

-Rigidez de los soportes 

Para expresar la rigidez de los soportes se asume que son simétricos, esto para evitar 

ecuaciones con coeficientes periódicos. 

De tal modo que, la expresión para la fuerza queda como: 

Del esquema presentado en la Figura (4.1), se tienen las relaciones: 

 

[
𝐼
𝐽
] = [

𝑐𝑜𝑠 Ω𝑡 −𝑠𝑒𝑛 Ω𝑡
𝑠𝑒𝑛 Ω𝑡 cosΩ𝑡

 ] [
𝑖
𝑗
] ;  [ 

𝑥
𝑦 ] = [

𝑐𝑜𝑠 Ω𝑡 𝑠𝑒𝑛 Ω𝑡
−𝑠𝑒𝑛 Ω𝑡 cosΩ𝑡

 ] [ 
𝑢
𝑣
 ]  

 
 

con acuerdo a estas relaciones, se realiza un tratamiento algebraico a la ecuación (4.21), por lo 

que se llega a la ecuación siguiente: 

𝐹 = −𝑘𝑢𝑖 − 𝑘𝑣𝑗 ( 4.22 ) 

Ecuaciones  

Para reducir las próximas expresiones a tratar, Se asignan los términos de rigidez a las 

variables 𝐾1 y 𝐾2, como se muestra a continuación: 

 

𝐾1 =
𝑘𝑢 + 𝑘𝑣
2

+ 𝑘 
( 4.23 ) 

 

 

𝐾2 =
𝑘𝑢 − 𝑘𝑣
2

 
( 4.24 ) 

 

𝐹 = −𝑘𝑥𝐼 − 𝑘𝑦𝐽 

 

( 4.21 ) 
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donde 𝑘 es la rigidez de los soportes. 

Las ecuaciones respecto al marco de referencia fijo se expresan como: 

 

𝑚𝑥̈ −𝑚𝑎Ω2 cos(Ω𝑡 + 𝜙) = −
1

2
[(𝑘𝑢 + 𝑘𝑣)𝑥 + (𝑘𝑢 − 𝑘𝑣)𝑦𝑠𝑒𝑛(2Ω𝑡) +

(𝑘𝑢 − 𝑘𝑣)𝑥𝑐𝑜𝑠(2Ω𝑡)] − 𝑘𝑥  

( 4.25 ) 

 

 

𝑚𝑦̈ −𝑚𝑎Ω2 sen(Ω𝑡 + 𝜙) = −𝑚𝑔 −
1

2
[(𝑘𝑢 + 𝑘𝑣)𝑦 + (𝑘𝑢 − 𝑘𝑣)𝑥𝑠𝑒𝑛(2Ω𝑡) −

(𝑘𝑢 − 𝑘𝑣)𝑦𝑐𝑜𝑠(2Ω𝑡)] − 𝑘𝑦  

( 4.26 ) 

 

Sustituyendo las ecuaciones (4.23) y (4.24) en las ecuaciones anteriores se obtienen las 

siguientes expresiones: 

 

𝑚𝑥̈ + 𝑘1𝑥 + 𝑘2𝑦𝑠𝑒𝑛(2Ω𝑡) + 𝑘2𝑥𝑐𝑜𝑠(2Ω𝑡) = 𝑚𝑎Ω
2 cos(Ω𝑡 + 𝜙) ( 4.27 ) 

 

Las ecuaciones (4.27) y (4.28) se pueden expresar de forma matricial como: 

 

Análogamente, para el marco de referencia giratorio se obtienen las siguientes ecuaciones: 

𝑚𝑦̈ + 𝑘1𝑦 + 𝑘2𝑥𝑠𝑒𝑛(2Ω𝑡) − 𝑘2𝑦𝑐𝑜𝑠(2Ω𝑡) = −𝑚𝑔 +𝑚𝑎Ω2 sen(Ω𝑡 + 𝜙) ( 4.28 ) 

[
𝑚 0
0 𝑚

] [
𝑥̈
𝑦̈
] + [

𝑘1 0
0 𝑘1

] [
𝑥
𝑦] + 𝑠𝑒𝑛(2Ω𝑡) [

0 𝑘2
𝑘2 0

] [
𝑥
𝑦] +

cos(2Ω𝑡) [
𝑘2 0
0 −𝑘2

] [
𝑥
𝑦] = [

0
−𝑚𝑔

] + 𝑚𝑎Ω2 [
cos (Ω𝑡 + 𝜙)

𝑠𝑒𝑛(Ω𝑡 + 𝜙)
]  

( 4.29 ) 
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4.2. Solución de las ecuaciones 

-Masa de desbalance 

Los desplazamientos debido al desbalance de la solución de la ecuación (4.30) en estado 

estable son: 

 

De las ecuaciones (4.31) y (4.32), se obtienen los términos: 

𝑘 + 𝑘𝑢 −𝑚Ω
2 = 0   𝑦    𝑘 + 𝑘𝑣 −𝑚Ω

2 = 0 

Suponiendo que 𝑘𝑢 < 𝑘𝑣, las velocidades críticas están dadas por: 

 

[
𝑚 0
0 𝑚

] [
𝑢̈
𝑣̈
] + 2Ω [

0 −𝑚
𝑚 0

] [
𝑢̇
𝑣̇
] + [

𝑘 + 𝑘𝑢 −𝑚Ω
2 0

0 𝑘 + 𝑘𝑣 −𝑚Ω
2] [
𝑢
𝑣
] =

[𝑚𝑎
∗Ω2

𝑚𝑏∗Ω2
] − 𝑚𝑔 [

𝑠𝑒𝑛(Ω𝑡)
𝑐𝑜𝑠(Ω𝑡)

]  

( 4.30 ) 

 

𝑢 =
𝑚𝑎∗Ω2

𝑘 + 𝑘𝑢 −𝑚Ω2
 

( 4.31 ) 

 

𝑣 =
𝑚𝑏∗Ω2

𝑘 + 𝑘𝑣 −𝑚Ω2
 

( 4.32 ) 

 

Ω2 = 𝜔𝑣 = √
𝑘 + 𝑘𝑣
𝑚

 

( 4.33 ) 

 

Ω1 = 𝜔𝑢 = √
𝑘 + 𝑘𝑢
𝑚

 
( 4.34 ) 
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-Gravedad 

La influencia de la gravedad se obtiene de la ecuación (4.30). Multiplicando dicha ecuación 

por 
1

𝑚
, y realizando algunas sustituciones se obtienen las ecuaciones:  

 

Los desplazamientos debido a la gravedad, de las soluciones en estado estable de las ecuaciones 

(4.35) y (4.36), se pueden escribir en la forma: 

En donde 𝑢𝑜 𝑦 𝑣𝑜 son los desplazamientos iniciales del rotor con respecto al centro O. Las 

ecuaciones (4.37), (4.38) y sus respectivas derivadas se sustituyen en (4.35) y (4.36). Posterior 

a esto, se realiza un tratamiento algebraico para obtener las ecuaciones siguientes: 

 

 

 

𝑢̈ − 2Ω𝑣̇ + (𝜔𝑢
2 − Ω2)𝑢 = −𝑔 sen(Ωt) ( 4.35 ) 

𝑣̈ + 2Ω𝑢̇ + (𝜔𝑣
2 − Ω2)𝑣 = −𝑔 cos(Ωt) ( 4.36 ) 

𝑢 = 𝑢𝑜 sen(Ωt) ( 4.37 ) 

  

𝑣 = 𝑣𝑜 cos(Ωt) ( 4.38 ) 

𝑢𝑜 =
−𝑔(𝜔𝑣

2 − 4Ω2)

𝜔𝑢2𝜔𝑣2 − 2Ω2(𝜔𝑢2 + 𝜔𝑣2)
 

( 4.39 ) 

 

𝑣𝑜 =
−𝑔(𝜔𝑢

2 − 4Ω2)

𝜔𝑢2𝜔𝑣2 − 2Ω2(𝜔𝑢2 + 𝜔𝑣2)
 

( 4.40 ) 
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De las ecuaciones anteriores se tiene que una velocidad crítica debido a la gravedad es: 

De acuerdo con la relación 𝑘𝑢 < 𝑘𝑣, se plantea la expresión; 𝜔𝑣 = 𝜔𝑢 + 𝜀𝜔𝑢 = 𝜔𝑢(1 + 𝜀), 

en donde 𝜀 es un factor agregado, debido a que 𝜔𝑣 tiene que ser mayor a 𝜔𝑢 por la suposición 

de rigidez.  Por lo que la ecuación (4.41), se puede escribir como: 

Después de realizar un tratamiento algebraico a la ecuación anterior, se obtiene la expresión 

(4.43). 

Esta velocidad crítica es conocida comúnmente como una velocidad crítica secundaria debido 

a la gravedad, es igual a más o menos la mitad de la velocidad crítica debido a la masa de 

desbalance. Y debido a que un rotor puede llegar a ser asimétrico cuando una grieta aparece y 

crece, esta velocidad puede ser utilizada para monitorearlas. 

 

-Fuerza debido al amortiguamiento externo 

En este caso el amortiguamiento considerado es de tipo viscoso, por lo que es proporcional a la 

velocidad del centro de giro del rotor. En el sistema de coordenadas fijo, puede expresarse 

como: 

  

Ω2 =
𝜔𝑢
2𝜔𝑣

2

2(𝜔𝑢2 + 𝜔𝑣2)
 

( 4.41 ) 

 

  

Ω2 =
𝜔𝑢
4(1 + 𝜀)2

2𝜔𝑢2[1 + (1 + 𝜀)2]
 

( 4.42 ) 

 

   

Ω ≃
𝜔𝑢 + 𝜔𝑣

4
 

 ( 4.43 ) 
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donde 𝑐 es el coeficiente de amortiguamiento externo. 

Agregando la ecuación (4.44) a la ecuación (4.29) se tiene: 

 

4.3. El eje asimétrico en movimiento transitorio  

Los movimientos transitorios aparecen cuando un rotor inicia, se detiene o pasa por una 

velocidad crítica.  

Ahora se considera que la velocidad angular 𝜙̇ ya no es constante y es una función del 

tiempo, es decir: 

De la Figura 4.1, las coordenadas de M se expresan en el marco de referencia inercial como: 

a partir de esta ecuación se obtienen la velocidad y la energía cinética. 

La expresión para la velocidad es: 

  

𝐹 = 𝑐𝑥̇𝐼 − 𝑐𝑦̇𝐽 ( 4.44 ) 

  

[
𝑚 0
0 𝑚

] [
𝑥̈
𝑦̈
] + [

𝑐 0
0 𝑐

] [
𝑥̇
𝑦̇
] + [

𝑘1 0
0 𝑘1

] [
𝑥
𝑦] + 𝑠𝑒𝑛(2Ω𝑡) [

0 𝑘2
𝑘2 0

] [
𝑥
𝑦] +

cos(2Ω𝑡) [
𝑘2 0
0 −𝑘2

] [
𝑥
𝑦] = [

0
−𝑚𝑔

] + 𝑚𝑎Ω2 [
cos (Ω𝑡 + 𝜙)
𝑠𝑒𝑛(Ω𝑡 + 𝜙)

]  

( 4.45 ) 

 

  

𝜙̇ = 𝜙̇(𝑡) ( 4.46 ) 

 

  

𝑂𝑀 = [𝑥 + acos(𝜙 + 𝛼)]𝐼 + [𝑦 + asen(𝜙 + 𝛼)]𝐽 ( 4.47 ) 
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y para la energía cinética se tiene: 

Aplicando las ecuaciones de Lagrange a la ecuación (4.49), se obtienen las siguientes 

ecuaciones: 

 

𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑥̇
) −

𝜕𝑇

𝜕𝑥
= 𝑚𝑥̈ − 𝑚𝑎[𝜙̈𝑠𝑒𝑛(𝜙 + 𝛼) + 𝜙̇2cos (𝜙 + 𝛼)] 

 

( 4.50 ) 

 

𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑦̇
) −

𝜕𝑇

𝜕𝑦
= 𝑚𝑦̈ − 𝑚𝑎[𝜙̇2𝑠𝑒𝑛(𝜙 + 𝛼) − 𝜙̈cos (𝜙 + 𝛼)] 

 

( 4.51 ) 

 

Ecuaciones 

Las ecuaciones en el marco de referencia fijo se expresan de forma matricial como: 

La ecuación (4.52) tiene la forma de la ecuación general de movimiento del sistema rotor-

cojinete asimétrico: 

𝑉 = [𝑥̇ − a𝜙̇sen(𝜙 + 𝛼)]𝐼 + [𝑦̇ + a𝜙̇sen(𝜙 + 𝛼)]𝐽 
( 4.48 ) 

  

𝑇 =
𝑚

2
 [𝑥̇2 + 𝑦̇2 + 𝑎2𝜙̇2 − 2𝑎𝑥̇𝜙̇𝑠𝑒𝑛(𝜙 + 𝛼) + 2𝑎𝑦̇𝜙̇cos(𝜙 + 𝛼)] 

 

( 4.49 ) 

 

  

[
𝑚 0
0 𝑚

] [
𝑥̈
𝑦̈
] + [

𝑐 0
0 𝑐

] [
𝑥̇
𝑦̇
] + [

𝑘1 0
0 𝑘1

] [
𝑥
𝑦] + 𝑠𝑒𝑛(2𝜙) [

0 𝑘2
𝑘2 0

] [
𝑥
𝑦] +

cos(2𝜙) [
𝑘2 0
0 −𝑘2

] [
𝑥
𝑦] = [

0
−𝑚𝑔

] + 𝑚𝑎 [
𝜙̈𝑠𝑒𝑛(𝜙 + 𝛼) + 𝜙̇2cos (𝜙 + 𝛼)

𝜙̇2𝑠𝑒𝑛(𝜙 + 𝛼) − 𝜙̈cos (𝜙 + 𝛼)
]  

( 4.52 ) 
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En donde, [𝑀], [𝐶] y [𝐾] son las matrices de masa, amortiguamiento y rigidez, respectivamente. 

Y del lado derecho de la expresión se tiene a las fuerzas generalizadas. 

 

4.4. Identificación algebraica en línea de la excentricidad para un rotor 

asimétrico: Sistema de dos grados de libertad. 

4.4.1. Modelo matemático del identificador algebraico a velocidad variable 

Se tiene el modelo matemático del sistema: 

donde las medidas de las coordenadas de posición del disco (x,y) se conocen y están disponibles 

para utilizarse en el esquema de identificación. 

Multiplicando las ecuaciones (4.54) y (4.55) por 𝑡2 e integrado el resultado dos veces con 

respecto al tiempo, se tiene: 

  

[𝑀]{𝛿̈} + [𝐶]{𝛿̇} + [𝐾]{𝛿} = {𝑊} + 𝜙̇2𝐹1(𝜙) + 𝜙̈𝐹2(𝜙) 

 

( 4.53 ) 

 

  

𝑚𝑥̈ + 𝑐𝑥̇+𝑘1𝑥 + 𝑘2𝑦𝑠𝑒𝑛(2𝜙) + 𝑘2𝑥𝑐𝑜𝑠(2𝜙)

= 𝑚𝑢𝑑[𝜙̈𝑠𝑒𝑛(𝜙 + 𝛼) + 𝜙̇
2cos (𝜙 + 𝛼)] 

( 4.54 ) 

 

  

𝑚𝑦̈ + 𝑐𝑦̇ + 𝑘1𝑦 + 𝑘2𝑥𝑠𝑒𝑛(2𝜙) − 𝑘2𝑦𝑐𝑜𝑠(2𝜙)

= 𝑚𝑢𝑑[𝜙̇
2𝑠𝑒𝑛(𝜙 + 𝛼) − 𝜙̈ cos(𝜙 + 𝛼)] 

( 4.55 ) 

 

  ∫  [𝑚𝑥̈ + 𝑐𝑥̇+𝑘1𝑥 + 𝑘2𝑦𝑠𝑒𝑛(2𝜙) + 𝑘2𝑥𝑐𝑜𝑠(2𝜙)]𝑡
2

(2)

= ∫ 𝑚𝑢𝑑[𝜙̈𝑠𝑒𝑛(𝜙 + 𝛼) + 𝜙̇
2 cos(𝜙 + 𝛼)]𝑡2

(2)

 

( 4.56 ) 
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las cuales se pueden reescribir como: 

 

donde ∫ 𝜑(𝑡)
𝑛

 son integrales iteradas de la forma ∫ ∫ …∫ 𝜑(𝜎𝑛)𝑑𝜎𝑛 …𝑑𝜎1
𝜎𝑛−1
0

𝜎1
0

𝑡

0
, con 

∫𝜑(𝑡) = ∫ 𝜑(𝜎)
𝑡

0
𝑑𝜎 y n un número entero positivo.   

Después de integrar por partes y realizar un tratamiento algebraico a dichos resultados se 

obtienen las siguientes expresiones en términos de los parámetros del desbalance:  

∫  [𝑚𝑦̈ + 𝑐𝑦̇ + 𝑘1𝑦 + 𝑘2𝑥𝑠𝑒𝑛(2𝜙) − 𝑘2𝑦𝑐𝑜𝑠(2𝜙)]𝑡
2

(2)

= ∫ 𝑚𝑢𝑑[𝜙̇
2𝑠𝑒𝑛(𝜙 + 𝛼) − 𝜙̈ cos(𝜙 + 𝛼)]𝑡2

(2)

 

( 4.57 ) 

  ∫  [𝑚𝑥̈ + 𝑐𝑥̇+𝑘1𝑥 + 𝑘2𝑦𝑠𝑒𝑛(2𝜙) + 𝑘2𝑥𝑐𝑜𝑠(2𝜙)]𝑡
2

(2)

= ∫ 𝑚𝑢𝑑
𝑑

𝑑𝑡
 [𝜙̇𝑠𝑒𝑛(𝜙 + 𝛼)]𝑡2

(2)

 

( 4.58 ) 

 

  

  ∫ [𝑚𝑦̈ + 𝑐𝑦̇ + 𝑘1𝑦 + 𝑘2𝑥𝑠𝑒𝑛(2𝜙) − 𝑘2𝑦𝑐𝑜𝑠(2𝜙)]𝑡
2  

(2)

= −∫ 𝑚𝑢𝑑
𝑑

𝑑𝑡
 [𝜙̇𝑐𝑜𝑠(𝜙 + 𝛼)]𝑡2

(2)

 

( 4.59 ) 

 

  

𝑚𝑡2𝑥 + ∫[𝑐𝑡2𝑥 − 4𝑚𝑡𝑥] + ∫ [2𝑚𝑥 − 2𝑐𝑡𝑥 + 𝑘1𝑡
2𝑥 + 𝑘2𝑡

2𝑠𝑒𝑛(2𝜙)𝑦 +
(2)

𝑘2𝑡
2cos (2𝜙)𝑥] = 𝑚𝑢𝑑cos(𝛼) [(∫ 𝑡

2𝜙̇𝑠𝑒𝑛(𝜙) − 2∫ 𝑡𝜙̇𝑠𝑒𝑛(𝜙
(2)

)] +

𝑚𝑢𝑑𝑠𝑒𝑛(𝛼) [(∫ 𝑡
2𝜙̇𝑐𝑜𝑠(𝜙) − 2∫ 𝑡𝜙̇ cos(𝜙)

(2)
)]  

( 4.60 ) 
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del lado izquierdo de estas expresiones se puede observar que el modelo del identificador de 

desbalance queda en función de los desplazamientos, es decir en función de la respuesta de 

vibración del sistema. 

Posteriormente las ecuaciones (4.60) y (4.61) se puede expresar como un sistema de 

ecuaciones lineales de la forma:  

 

donde {𝜃} = [𝑎𝜂 = 𝑚𝑢𝑑cos(𝛼) , 𝑎𝜉 = 𝑚𝑢𝑑sen(𝛼)]
𝑇
 denota el vector de los parámetros a ser 

identificados (los subíndices 𝜂 𝑦 𝜉 atienden a las direcciones X y Y respectivamente), [A(t)] y 

{b(t)} son matrices de 2 × 2 y 2 × 1, las cuales están dadas por: 

𝐴(𝑡) = [
𝑎11(𝑡) 𝑎12(𝑡)
−𝑎12(𝑡) 𝑎11(𝑡)

] , 𝑏(𝑡) = [
𝑏1(𝑡)
𝑏2(𝑡)

] 

donde,  

𝑎11 = (∫ 𝑡
2𝜙̇𝑠𝑒𝑛(𝜙) − 2∫ 𝑡𝜙̇𝑠𝑒𝑛(𝜙

(2)

)) 

 

𝑎12 = (∫𝑡
2𝜙̇𝑐𝑜𝑠(𝜙) − 2∫ 𝑡𝜙̇𝑐𝑜𝑠(𝜙)

(2)

) 

 

 

𝑚𝑡2𝑦 + ∫[𝑐𝑡2𝑦 − 4𝑚𝑡𝑦] + ∫ [2𝑚𝑦 − 2𝑐𝑡𝑦 + 𝑘1𝑡
2𝑦 + 𝑘2𝑡

2𝑠𝑒𝑛(2𝜙)𝑥 −
(2)

𝑘2𝑡
2cos (2𝜙)𝑦] = −𝑚𝑢𝑑cos(𝛼) [(∫ 𝑡

2𝜙̇𝑐𝑜𝑠(𝜙) − 2∫ 𝑡𝜙̇cos (𝜙
(2)

))] +

𝑚𝑢𝑑𝑠𝑒𝑛(𝛼) [(∫ 𝑡
2𝜙̇𝑠𝑒𝑛(𝜙) − 2∫ 𝑡𝜙̇ sen(𝜙)

(2)
)]  

( 4.61 ) 

 

[𝐴(𝑡)]{𝜃} = {𝑏(𝑡)} ( 4.62 ) 
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𝑏1 = 𝑚𝑡
2𝑥 + ∫[𝑐𝑡2𝑥 − 4𝑚𝑡𝑥]

+ ∫ [2𝑚𝑥 − 2𝑐𝑡𝑥 + 𝑘1𝑡
2𝑥 + 𝑘2𝑡

2𝑠𝑒𝑛(2𝜙)𝑦 + 𝑘2𝑡
2cos (2𝜙)𝑥]

(2)

 

 

 

𝑏2 = 𝑚𝑡
2𝑦 + ∫[𝑐𝑡2𝑦 − 4𝑚𝑡𝑦]

+ ∫ [2𝑚𝑦 − 2𝑐𝑡𝑦 + 𝑘1𝑡
2𝑦 + 𝑘2𝑡

2𝑠𝑒𝑛(2𝜙)𝑥 − 𝑘2𝑡
2cos (2𝜙)𝑦]

(2)

 

 

De la ecuación (4.62), se puede concluir que el vector 𝜃 es identificable algebraicamente, 

si y solo si, la trayectoria del sistema dinámico es persistente en el sentido establecido por Fliess 

y Sira-Ramírez [41], es decir, las trayectorias o el comportamiento dinámico del sistema 

satisface la condición det[𝐴(𝑡)] ≠ 0. En general esta condición se mantiene al menos en un 

intervalo pequeño (𝑡𝑜 , 𝑡𝑜 + 𝛿] donde 𝛿 es un valor positivo y suficientemente pequeño. 

Posteriormente, se soluciona la ecuación (4.62) para obtener el identificador algebraico para 

los parámetros de la excentricidad desconocidos. 

[
𝑎11(𝑡) 𝑎12(𝑡)
−𝑎12(𝑡) 𝑎11(𝑡)

] [
𝑎𝜂𝑒
𝑎𝜉𝑒

] = [
𝑏1(𝑡)
𝑏2(𝑡)

] 

 

Luego, la solución se expresa de la forma: 

 

 

de la ecuación anterior se observa que los parámetros de desbalance están en función 

únicamente de los desplazamientos del sistema: 

 

{𝜃} = [𝐴−1]{𝑏(𝑡)} ∀𝑡 ∈ (𝑡𝑜 , 𝑡𝑜 + 𝛿] 

 

( 4.63 ) 
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𝑎𝜂𝑒 =
𝑏1𝑎11 − 𝑏2𝑎12
𝑎112 + 𝑎122

;  𝑎𝜉𝑒 =
𝑏1𝑎12 + 𝑏2𝑎11
𝑎112 + 𝑎122

 

por lo tanto, el modelo para el identificador de los parámetros del desbalance se denota como: 

 
 

 

Siendo 𝑎𝜂𝑒, 𝑎𝜉𝑒 las componentes del desbalance en dirección X y Y respectivamente, 𝑚𝑢𝑑𝑒 su 

magnitud y 𝛼𝑒 la posición angular. 

 

4.4.2. Modelo matemático del identificador algebraico a velocidad constante 

Anteriormente, se obtuvo el modelo del sistema rotor-cojinete asimétrico considerando una 

velocidad constante, el cual está expresado en la ecuación (4.45). Esta ecuación se puede 

reescribir en la forma: 

 

 

𝑎𝜂𝑒 =
𝑏1𝑎11 − 𝑏2𝑎12
𝑎112 + 𝑎122

𝑎𝜉𝑒 =
𝑏1𝑎12 + 𝑏2𝑎11
𝑎112 + 𝑎122

𝑚𝑢𝑑𝑒 = √𝑎𝜂𝑒2 + 𝑎𝜉𝑒2

𝛼𝑒 = 𝑐𝑜𝑠
−1 (

𝑎𝜂𝑒

𝑎𝑒
)

}
 
 
 
 

 
 
 
 

∀𝑡 ∈  (𝑡𝑜 , 𝑡𝑜 + 𝛿] 

 

( 4.64 ) 

 

𝑚𝑥̈ + 𝑐𝑥̇+𝑘1𝑥 + 𝑘2𝑦𝑠𝑒𝑛(2Ω𝑡) + 𝑘2𝑥𝑐𝑜𝑠(2Ω𝑡) = 𝑚𝑢𝑑Ω
2𝑐𝑜𝑠(Ω𝑡 + 𝜑) ( 4.65 ) 

 

 𝑚𝑦̈ + 𝑐𝑦̇ + 𝑘1𝑦 + 𝑘2𝑥𝑠𝑒𝑛(2Ω𝑡) − 𝑘2𝑦𝑐𝑜𝑠(2Ω𝑡) = 𝑚𝑢𝑑Ω
2𝑠𝑒𝑛(Ω𝑡 + 𝜑) ( 4.66 ) 
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De manera similar al desarrollo presentado en la subsección anterior, se desarrollaron las 

expresiones para el identificador algebraico considerado una velocidad constante.  

 

Una vez que se multiplica por 𝑡2, se integrar dos veces el resultado con respecto al tiempo 𝑡, y 

se realiza el debido tratamiento matemático a las ecuaciones (4.65) y (4.66), se obtienen las 

siguientes: 

 

 

Estas ecuaciones al igual que las ecuaciones (4.60) y (4.61), se expresan en un sistema de 

ecuaciones linealmente independientes de la forma de la ecuación (4.62).  

con:  

{𝜃} = [𝑎𝜂 = 𝑚𝑢𝑑 cos(𝜑) , 𝑎𝜉 = 𝑚𝑢𝑑 sen(𝜑)]
𝑇
 

y las expresiones siguientes: 

𝑎11 = (Ω2∫ 𝑡2cos (Ω𝑡)
(2)

) 

𝑚𝑡2𝑥 + ∫[𝑐𝑡2𝑥 − 4𝑚𝑡𝑥] + ∫ [2𝑚𝑥 − 2𝑐𝑡𝑥 + 𝑘1𝑡
2𝑥 + 𝑘2𝑡

2𝑠𝑒𝑛(2Ω𝑡)𝑦 +
(2)

𝑘2𝑡
2cos (2Ω𝑡)𝑥] = 𝑚𝑢𝑑Ω

2 cos(𝜑) [(∫ 𝑡2cos (Ω𝑡))]
(2)

−

𝑚𝑢𝑑Ω
2 sen(𝜑) [(∫ 𝑡2sen (Ω𝑡))]

(2)
  

( 4.67 ) 

 

  

𝑚𝑡2𝑦 + ∫[𝑐𝑡2𝑦 − 4𝑚𝑡𝑦] + ∫ [2𝑚𝑥 − 2𝑐𝑡𝑦 + 𝑘1𝑡
2𝑦 + 𝑘2𝑡

2𝑠𝑒𝑛(2Ω𝑡)𝑥 +
(2)

𝑘2𝑡
2cos (2Ω𝑡)𝑦] = 𝑚𝑢𝑑Ω

2 cos(𝜑) [(∫ 𝑡2sen (Ω𝑡))]
(2)

+

𝑚𝑢𝑑Ω
2 sen(𝜑) [(∫ 𝑡2cos (Ω𝑡))]

(2)
  

( 4.68 ) 
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𝑎12 = (Ω
2∫ 𝑡2sen (Ω𝑡)

(2)

) 

𝑏1 = 𝑚𝑡2𝑥 +∫[𝑐𝑡2𝑥 − 4𝑚𝑡𝑥]

+∫ [2𝑚𝑥 − 2𝑐𝑡𝑥 + 𝑘1𝑡
2𝑥 + 𝑘2𝑡

2𝑠𝑒𝑛(2Ω𝑡)𝑦 + 𝑘2𝑡
2cos (2Ω𝑡)𝑥]

(2)

 

 

𝑏1 = 𝑚𝑡2𝑦 +∫[𝑐𝑡2𝑦 − 4𝑚𝑡𝑦]

+∫ [2𝑚𝑥 − 2𝑐𝑡𝑦 + 𝑘1𝑡
2𝑦 + 𝑘2𝑡

2𝑠𝑒𝑛(2Ω𝑡)𝑥 + 𝑘2𝑡
2cos (2Ω𝑡)𝑦]

(2)

 

el identificador algebraico se puede expresar en la forma de la ecuación (4.64). Como resultado 

de la solución se obtienen los parámetros: desbalance y su posición angular, considerando una 

velocidad de operación del rotor constante. 
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Capítulo 5 

 SIMULACIÓN Y RESULTADOS 

 

En este capítulo se presentan los resultados de las simulaciones de los identificadores 

algebraicos de los parámetros de desbalance de un sistema rotor-cojinete asimétrico de dos 

grados de libertad, al considerar dos condiciones de operación de la velocidad del rotor: 

velocidad constante y velocidad variable. Para el caso de velocidad variable se considera una 

rampa de excitación de tipo lineal. 

5.1. Identificación de los parámetros de desbalance a velocidad constante 

En esta sección se muestran los resultados de la simulación del identificador algebraico de 

los parámetros de desbalance del sistema rotor-cojinete asimétrico de dos grados de libertad. 

La determinación en línea, mediante la técnica de identificación algebraica, tanto de la magnitud 

como de la ubicación angular del desbalance, se realiza a partir del análisis de la respuesta 

vibratoria del rotor en el dominio temporal. Para ello, se emplea como dato de entrada el vector 

de desplazamientos (es decir, la respuesta vibratoria del sistema), el cual se obtiene resolviendo 

la ecuación (4.45) mediante el método de integración numérica de Newmark, programada en la 

herramienta computacional Matlab Simulink, asumiendo que el rotor opera a velocidad 

constante. Es importante señalar que se utilizó un intervalo de muestreo de 0.1 milisegundos, 

ya que se comprobó que con dicho periodo el método de Newmark presenta convergencia en la 
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solución de la ecuación (4.45). Asimismo, se confirmó que dicho intervalo es compatible con 

las capacidades de los sistemas experimentales de adquisición de datos. En la Tabla 5.1 se 

presentan los parámetros utilizados para la simulación. Estos parámetros se establecen de 

acuerdo con la literatura [57]. 

 

Tabla 5.1. Parámetros físicos de simulación del sistema a velocidad constante. 

𝑚 = 14.29 kg 𝑐 = 10 N∙s/m Ω = 1000 y 3600 𝑟𝑝𝑚 

𝑚𝑢 = 1𝑥10
−4 kg 𝑘𝑣 = 3.195𝑥10

6 N/m 𝛼 = 45, 125 y 250 ° 

𝑑 = 0.5 m 𝑘𝑢 = 1.195𝑥106 N/m  

   

𝑚: masa del disco.                           𝑘𝑣: rigidez del eje del rotor respecto al eje V. 

𝑚𝑢: masa de desbalance. 𝑘𝑢: rigidez del eje del rotor respecto al eje U. 

𝑑: excentricidad. Ω: velocidad de operación cte. del rotor. 

𝑐: coeficiente de amortiguamiento. 𝛼: ángulo del desbalance.  

 

 

Figura 5.1. Respuesta vibratoria del sistema rotor-cojinete asimétrico a velocidad constante. 
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En la Figura 5.1 se muestran las respuestas de vibración del sistema rotor-cojinete asimétrico 

de dos grados de libertad en las direcciones 𝑥 y 𝑦, considerando una velocidad de operación 

constante Ω = 1000 rpm. Estas señales de vibración constituyen los datos de entrada que 

alimentan al identificador algebraico propuesto.  

 

Por otro lado, en las Figuras 5.2 y 5.3 se muestra el comportamiento en el tiempo del 

identificador algebraico de los parámetros de desbalance del sistema rotor-cojinete asimétrico 

de dos grados de libertad a velocidad constante. Cabe señalar que solo se consideró un valor de 

desbalance en tres posiciones angulares diferentes. De acuerdo con los resultados que se 

presentan en las figuras, el identificador algebraico converge rápidamente a los valores de 

referencia de los parámetros de desbalance, de hecho, la convergencia se alcanza en menos de 

0.1 segundos. Además, una vez que el identificador ha convergido se mantiene constante en el 

tiempo. 

 

 

Figura 5.2. Identificación de la magnitud del desbalance a Ω=1000 "rpm". 
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Figura 5.3. Identificación de la posición angular del desbalance a Ω=1000 "rpm". 

 

 

 

Figura 5.4. Identificación de la magnitud del desbalance a Ω=3600 "rpm". 
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Posteriormente, en las Figuras 5.4 y 5.5 se puede observar el comportamiento del 

identificador algebraico del sistema rotor-cojinete asimétrico de dos grados de libertad, al 

considerar una velocidad de operación constante de magnitud Ω = 3600 rpm. Esto con la 

finalidad de mostrar que el identificador algebraico funciona correctamente para la 

identificación de los parámetros de desbalance del sistema para diferentes condiciones de 

velocidad. Los parámetros de desbalance utilizados tanto en la simulación del sistema rotor-

cojinete asimétrico, como en la simulación del identificador algebraico, son los que se muestran 

en la Tabla 5.1. 

 

 

Figura 5.5. Identificación de la posición angular del desbalance a Ω=3600 "rpm". 

 

Como es de observarse en las Figuras 5.4 y 5.5 la identificación de los parámetros de 

desbalance se realiza en tiempos menores a 0.1 segundos, de manera similar a los resultados 

obtenidos en la simulación anterior. 
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5.2. Identificación de los parámetros de desbalance a velocidad variable 

La identificación en tiempo real del desbalance y su posición angular se llevó a cabo 

utilizando la respuesta vibratoria del rotor como función del tiempo. Esta respuesta se calculó 

resolviendo la ecuación (4.52) mediante el método de integración numérica de Newmark, el 

cual también se programó en la herramienta computacional Matlab Simulink. Para simular el 

funcionamiento del sistema, se aplicó una rampa de excitación de tipo lineal, con una 

aceleración angular constante de 𝜙̈ = 10 rad/s². Se utilizó un periodo de muestreo de 0.1 

milisegundos, el cual demostró ser adecuado para garantizar la convergencia del método de 

Newmark en la resolución de la ecuación (4.52), considerando los parámetros 𝛽 = 0.5 y 𝛾 = 

0.25 (según lo indicado en la sección 3.5). En la Tabla 5.2 se presentan los parámetros físicos 

utilizados en la simulación del sistema rotor-cojinete asimétrico bajo la condición de operación 

de velocidad variable. 

 

Tabla 5.2. Parámetros físicos de simulación del sistema a velocidad variable. 

𝑚 = 14.29 kg 𝑐 = 10 N∙s/m 𝜙̈ = 10 𝑟𝑎𝑑/𝑠 

𝑚𝑢 = 1𝑥10
−4 kg 𝑘𝑣 = 3.195𝑥10

6 N/m 𝛼 = 45, 125 y 250 ° 

𝑑 = 0.5 m 𝑘𝑢 = 1.195𝑥10
6 N/m  

El análisis gráfico presentado en las Figuras 5.6 y 5.7 permite observar que el método de 

identificación algebraica propuesto es altamente eficiente, ya que logra estimar tanto la 

magnitud del desbalance como su posición angular en un tiempo inferior a 0.1 segundos. Este 

corto periodo de identificación es indicativo de la rapidez con la que el algoritmo responde ante 

las condiciones dinámicas iniciales del sistema. Una vez que el parámetro es identificado 

correctamente, se mantiene estable y constante a lo largo del tiempo, incluso mientras el rotor 

incrementa su velocidad hasta alcanzar el régimen nominal de operación. Para facilitar el 

estudio del proceso de convergencia del identificador, se ha limitado la visualización de los 

resultados en las figuras mencionadas a los primeros 0.1 segundos del análisis. Esta ventana 

temporal es suficiente para mostrar el momento exacto en que el identificador en línea alcanza 

el valor final, y permite evaluar con claridad su desempeño en términos de rapidez y estabilidad.  
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Figura 5.6. Identificación de la magnitud del desbalance a velocidad variable. 

 

Figura 5.7. Identificación de la posición angular del desbalance a velocidad variable. 
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A partir de las simulaciones realizadas en este capítulo con los identificadores algebraicos 

propuestos, se ha comprobado que es factible estimar con precisión los parámetros asociados al 

desbalance en sistemas rotor-cojinete asimétrico de dos grados de libertad. Esta validación se 

llevó a cabo tanto para condiciones de operación del rotor a velocidad constante como para 

escenarios de velocidad variable, en particular utilizando una rampa de aceleración lineal en el 

tiempo. 

Los resultados obtenidos permiten destacar dos aspectos clave del desempeño de los 

identificadores: su capacidad de convergencia y la rapidez con la que logran determinar los 

parámetros del desbalance. En ambos esquemas de velocidad de operación: velocidad constante 

y velocidad variable los identificadores mostraron un comportamiento consistente, con tiempos 

de convergencia reducidos y estimaciones de los parámetros de desbalance precisas. 

A continuación, en la Figura 5.8 se muestra un diagrama de flujo indicando la metodología 

que se llevó a cabo en esta investigación, para la identificación algebraica de los parámetros de 

desbalance de un sistema rotor-cojinete asimétrico de dos grados de libertad. 
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Figura 5.8. Diagrama de flujo del proceso de identificación de los parámetros de desbalance. 
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Capítulo 6 

 CONCLUSIONES  

 

En este trabajo de tesis se presenta el desarrollo de un modelo matemático de un sistema 

rotor-cojinete asimétrico de dos grados de libertad considerando las velocidades de operación 

constante y variable. El modelo matemático se desarrolló mediante la implementación del 

formulismo Euler-Lagrange. Con la finalidad de desarrollar una nueva metodología de balanceo 

de rotores asimétricos, se propuso la implementación de la técnica de identificación algebraica 

para la generación de modelos algebraicos de identificación, capaces de determinar los 

parámetros de desbalance desconocidos de un sistema rotor-cojinete asimétrico simplificado de 

dos grados de libertad. De la implementación de la técnica de identificación algebraica se 

obtuvieron dos identificadores: uno que identifica la magnitud del desbalance presente en el 

sistema y el otro capaz de estimar la posición angular de la masa de desbalance. Cabe destacar 

que los identificadores algebraicos mencionados se desarrollaron considerando las dos 

condiciones de operación del sistema rotor-cojinete asimétrico. Asimismo, estos identificadores 

requieren como dato de entrada la respuesta de vibración del rotor, en este caso obtenida en 

simulación. Al igual se corrobora, que para la identificación de los parámetros de desbalance y 

su posición angular se requiere un mínimo de datos de respuesta de vibración del rotor durante 

la rampa de excitación, evitando así, la zona de resonancia y llevar el rotor a su velocidad 

nominal, como no sucede con la mayoría de las técnicas de balanceo. 
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Por otro lado, los resultados obtenidos mediante simulación numérica evidencian que el 

método de identificación algebraica propuesto posee una elevada eficacia en términos de 

rapidez y precisión. En particular, se observó que al igual que se han obtenido resultados 

correctos con la implementación de la técnica de identificación algebraica para identificar 

parámetros de desbalance en rotores simétricos, el algoritmo es también capaz de estimar con 

éxito los parámetros del desbalance en un sistema rotor-cojinete asimétrico, específicamente su 

magnitud y su posición angular en un tiempo aproximado de 0.1 segundos desde el inicio de la 

respuesta vibratoria del sistema, y esto es independiente de las condiciones de operación del 

sistema: velocidad constante o velocidad variable. Una de las principales fortalezas del enfoque 

desarrollado radica en que permite llevar a cabo la identificación del desbalance sin necesidad 

de operar el rotor a su velocidad nominal. Este aspecto resulta fundamental desde el punto de 

vista operativo, ya que evita el cruce por las distintas velocidades críticas del sistema. Dichas 

velocidades representan zonas de resonancia donde la vibración alcanza amplitudes máximas, 

lo que puede comprometer tanto la integridad mecánica del equipo como la seguridad del 

entorno de operación. 

6.1. Trabajos futuros 

Los resultados obtenidos en el presente trabajo demuestran la efectividad de la técnica de 

identificación algebraica para identificar la magnitud del desbalance y su posición angular en 

un sistema rotor-cojinete con eje asimétrico de dos grados de libertad. Para complementar el 

presente trabajo desarrollado, se sugieren los siguientes proyectos a futuro, con el objetivo de 

mejorar aspectos en el desarrollo de los identificadores y extender los resultados: 

• Realizar pruebas experimentales implementado los identificadores propuestos en 

este trabajo. 

• Realizar una comparación entre los resultados obtenidos experimentalmente y los 

presentados en esta investigación, con el fin de demostrar la exactitud de los 

identificadores. 
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• Obtener el modelo del sistema rotor-cojinete asimétrico considerado más efectos 

que afectan el comportamiento dinámico de este tipo de sistemas. 

• Implementar con alguna técnica de balanceo, por ejemplo, con el uso de discos de 

balanceo activo (DBAs). 
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