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Introduccion

Los fundadores de la geometria analitica Pierre de Fermat (1601-1665) y René Des-
cartes (1596-1650) tienen una gran influencia en la teoria espectral, puesto que entre sus
escritos se encuentra el principal teorema de los ejes de la geometria analitica, a este
teorema se le puede reconocer como precursor directo del teorema espectral.

La generalizacion de la parte algebraica de este teorema la realiz6 Joseph Louis Lagrange
(1736-1813) en un articulo sobre maximos y minimos de funciones de varias variables.

David Hilbert (1862-1943) fue un matematico destacado del siglo XIX y principios del
siglo XX quien trabajo en ecuaciones integrales, y por medio de una serie de seis articulos,
los cuales fueron publicados en Gdttingen Nachrichten, describi6 las definiciones y teore-
mas basicos de la teoria espectral.

John Von Neumann (1903-1957) durante 1927-29 revolucion6 el estudio de la teoria es-
pectral al introducir el concepto abstracto de un operador lineal en el espacio de Hilbert,
esto fue un gran avance desde el punto de vista de la teoria espectral. La teoria de Von
Neumann fue desarrollada en 1930 por Frederic Riesz (1880-1956) y més ampliamente,
por Marshall H. Stone (1903-1989) en la Universidad de Yale.

Por ultimo se tiene que Toeplitz (1881-1940) extendio el teorema espectral de Hilbert
a formas cuadraticas normales completamente continuas al mostrar que dicha forma era
unitariamente equivalente a una forma diagonal. De manera méas general, la resolucion
espectral [9)].

La teoria espectral es un término inclusivo para las teorias que extienden la teoria de
vectores y valores propios (autofunciones y autovalores, respectivamente) de una matriz
cuadrada a la més amplia teoria de la estructura de operadores en espacios matematicos
especificos. Con ayuda de esta teoria, un operador lineal que cumpla ciertas condiciones
puede ser expresado como una combinacion lineal de operadores, los cuales son méas sim-
ples, a esta combinacion se le conoce como descomposicion espectral. Este trabajo solo se
enfocard en estudiar esta teoria en espacios de dimension finita.

VII



VIII Introduccién

El trabajo de tesis se encuentra enmarcado en la teoria de operadores lineales en espacios
vectoriales con producto interior, este trabajo tiene como proposito reafirmar conocimien-
tos adquiridos en asignaturas como algebra lineal, analisis matemaético y anélisis funcional
para poder utilizarlos de manera adecuada en el estudio de la teoria espectral de operado-
res en espacios de dimension finita. Por una parte, el estudio de la teoria espectral durante
la licenciatura es muy escaso, con este proyecto se podria complementar la formacion y
puede ser material de apoyo para el estudio de teoria espectral de operadores en espacios
de dimensién infinita, que generalmente son impartidos en posgrado.

Por otra parte, la teoria espectral es muy amplia y tiene diversas aplicaciones, por ejemplo,
[6] describe como las vibraciones y ondas son propagadas a lo largo de un sistema semi
infinito de masas y resortes, [14] utiliza la teoria espectral para estudiar ondas en redes y
cristales, todos estos problemas se abordan en espacios de dimension infinita. En |2, 7, 13|
se abordan diversas aplicaciones en espacios de dimension finita. Por ejemplo, problemas
en fisica, tales como vibraciones mecénicas y circuitos eléctricos, asi como aplicaciones en
biologia, incluidos modelos de crecimiento poblacional e interacciones presa-depredador,
también se exploran aplicaciones en finanzas (economia) mediante el anélisis de sistemas
de Markov.

Para poder presentar el teorema espectral y a su vez hacer uso de él, con el fin de analizar
y resolver un modelo de un sistema mecéanico de particulas en interaccion, es necesario el
estudio de algunos conceptos y teoremas que ayudan a la comprension de este resultado,
razon por la cual este trabajo considera estructurarse de cuatro capitulos en los cuales se
planea alcanzar tal fin.

En el primer capitulo se presentan las definiciones y resultados fundamentales que consti-
tuyen la base para el teorema espectral. Entre estos conceptos destacan valores y vectores
propios, la norma en un espacio vectorial y la representaciéon matricial, entre otros, los
cuales pueden ser consultados en [8, 10]. Cabe destacar que, en espacios de dimension
finita, el andlisis espectral de operadores es equivalente al estudio de los datos espectrales
de las matrices, lo cual se debe a la representacion matricial tinica de los operadores en
dichos espacios.

El segundo capitulo se centra en los operadores, se muestran las definiciones y propie-
dades de cada uno de ellos, teoremas en los cuales estdn involucrados y son importantes
para el entendimiento del teorema espectral [8], todos estos resultados fueron trabajados
y se muestran sus respectivas demostraciones. Ademéas se presenta el teorema espectral
con una demostracion detallada, esto serd posible contando con el anélisis y estudio de
este capitulo y el anterior.

El tercer capitulo se reduce a matrices de Jacobi, aqui se analizan sus propiedades, como
estan dados sus datos espectrales y como obtenerlos, asi mismo, resultados de su funcion




Introduccién IX

espectral, presentados en [12]. Este anélisis se basa en resultados mas generales que se
presentan en [1, 4]. El estudio de las matrices de Jacobi sera fundamental para el desarro-
llo del cuarto capitulo, ya que estas matrices no solo desempenan un papel crucial en la
formulacion del problema sino que también de ellas surgen ecuaciones en diferencias [7].
Para complementar este capitulo se presentan ejemplos de matrices con el propoésito de
que se tenga una mayor comprension de esta clase de matrices.

En el cuarto capitulo se plantea y formula el problema de un sistema mecénico de masas
y resortes, para después construir un modelo de un sistema de particulas en interaccion.
Una vez definido el modelo, se utiliza la teoria espectral, desarrollada en el tercer capitulo,
para resolverlo. Esto se debe a que el sistema de ecuaciones de segundo orden que pro-
porciona la soluciéon al problema esta relacionado a las entradas de una matriz de Jacobi,
tal solucion resulta ser una superposicion de oscilaciones armonicas que dependen de las
caracteristicas mecénicas del sistema.

Ademaés, en el cuarto capitulo se analiza el problema inverso asociado al sistema me-
cénico [11]. Para abordar el problema inverso, se parte de una funcion escalon, la cual
permite construir un espacio vectorial con producto interior. La representacion matricial
del operador de multiplicacién con respecto a polinomios ortonormales en este espacio,
genera una matriz de Jacobi. Una vez obtenidos los elementos de la matriz de Jacobi, se
procede a reconstruir un sistema de masas resortes. Esta reconstruccion se realiza me-
diante las razones entre las constantes de elasticidad y las longitudes de los resortes, asi
como los valores de las masas del sistema. Cabe destacar que para determinar todas las
caracteristicas del sistema, es indispensable conocer previamente el valor de al menos una
masa y una razon. Finalmente, se presentan un par de ejemplos de reconstrucciéon de una
matriz de Jacobi a partir de una funciéon espectral.
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Capitulo 1

Preliminares

En este capitulo se enuncian algunas definiciones y resultados que son muy tutiles para
comprender enunciados posteriores. Todos estos conceptos son parte del conocimiento
basico en el curso de Algebra Lineal I. Solo algunos de estos resultados cuentan con su
respectiva demostracion debido a que esta tesis se esta enfocando en presentar resultados
més avanzados y reproducir las demostraciones limita el espacio, sin embargo se indicara
la referencia bibliografica confiable en donde se pueden consultar tales demostraciones.

1.1. Espacios vectoriales

A continuacién se presenta la definicion detallada de un espacio vectorial y de igual
manera lo que se puede definir y analizar en tal espacio, como por ejemplo subconjuntos
que poseen la misma estructura que el conjunto en si. De manera resumida un espacio
vectorial es un conjunto no vacio de elementos a los cuales se les nombran vectores, en tal
conjunto se definen dos operaciones que son la adicion y la multiplicacion por escalares.
Estos escalares pertenecen a un campo, denotado por F' (véase [10, Def.1, Cap.1|) que en
este trabajo corresponde al conjunto de los nimeros reales R, o bien, al de los nimeros
complejos C.

Definicién 1.1. Un espacio vectorial V sobre un campo F' es un conjunto de elementos
llamados vectores, en el que estan definidas dos operaciones, (adicion y multiplicacion por
escalares). Estas operaciones cumplen que para cualquier par de elementos v y w en V
existe un elemento tnico v + w en V', y para cada elemento c en F' y cada elemento v
en V existe un elemento tnico cv en V. Ademas, se deben satisfacer los siguientes axiomas:

a) Para toda v,w € V, v+ w = w + v (conmutatividad de la suma).
b) Para toda v,w,u € V, v+ (w + u) = (v + w) + u (asociatividad de la suma).

c) Existe en V un tnico vector 0 (el origen) tal que v + 0 = v para todo vector v en V.
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d) Siwven V le corresponde un tnico vector —v tal que v + (—v) = 0.

e) Para cada par ¢,d € F'y v € V, ¢(dv) = (cd)v (asociatividad en el producto de
escalares).

f) Para todo vector v € V, 1v = v, donde 1 € F (identidad).

g) Para cada c € Fyv,weV, ¢(v+w) = cv+ cw, (la multiplicacion por escalares es
distributiva con respecto al vector suma).

h) Para cada ¢,d € Fyv € V, (¢c+ djv = cv + dv (la multiplicacion de vectores es
distributiva con respecto a la suma de escalares).

A continuacion se definen los conceptos de conjunto linealmente dependiente e indepen-
diente.

Definicion 1.2. Sean V un espacio vectorial sobre un campo F'y S = {vy,va,...,v,} un
subconjunto finito de vectores en V. El conjunto S es linealmente dependiente, si existe
un conjunto correspondiente de escalares {ci, ca,...,c,} C F, no todos cero, tal que
n

Z CU; = 0.

i=1
Si, por el contrario, Zcm = 0 implica que ¢; = 0 para cada v = 1,2,...,n, el conjunto

i=1

S es linealmente independiente.

Teorema 1.3. (|10, Teo. 1, Secc.6]). Sea V un espacio vectorial sobre un campo F. El

conjunto de vectores distintos de cero {vy,vs,...,v,} en V es linealmente dependiente si
y solo si algin v, para k =1,2,3,...,n, puede ser reescrito de la forma

n

Vg = E CiUs,

i=1

i#k
donde ¢y, ..., Ck_1,Cks1, - .., Cy sON elementos de F'.
Definicién 1.4. Sean V un espacio vectorial y S = {vy,vo, ..., v,} un conjunto de vecto-

Y Y )

res en V. El conjunto de todas las combinaciones lineales de vectores de S se define como
conjunto generado por Sy se denota por gen(S).

Con ayuda de las Definiciones 1.2 y 1.4, es posible determinar el concepto de una base.

Definicién 1.5. Sea V un espacio vectorial. Una base [ es un conjunto de vectores
linealmente independientes de V' tales que todo vector en V' es una combinacion lineal de
elementos de 3.
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La Definicion 1.5 permite afirmar que si 8 es una base de un espacio vectorial V .y v € V
entonces v € gen(f3).

Proposicion 1.6. ([8, Cor. 2, Secc 1.6]). Sea V un espacio vectorial y  una base de V. Si
[ tiene exactamente n elementos, entonces cualquier subconjunto de V' que contenga mas
de n elementos es linealmente dependiente. Consecuentemente, cualquier subconjunto de
V' linealmente independiente contiene como maximo n elementos.

Proposicion 1.7. (|8, Cor. 3, Secc 1.6]) Sea V' un espacio vectorial y § una base de V.
Si [ tiene exactamente n elementos, entonces toda base para V' contendra exactamente n
elementos.

El niimero de elementos de una base da lugar al concepto de dimension.

Definicién 1.8. Un espacio vectorial V' se dice de dimension finita si tiene una base que
consta de un namero finito de elementos; el tnico nimero de elementos en cada base de
V' se llama dimension de V' y se denota por dim(V').

Teorema 1.9. (|10, Teo. 1, Secc. 7]). Sea V un espacio vectorial de dimension finita. Si

{v1,v9,..., v} es un conjunto de vectores linealmente independiente en V', entonces el
conjunto {Ul,Ug, - ,vm} es una base, o existen vectores Um11, Vm+2, - - - s Um4-ps tales que
el conjunto {vy,...,Vm,Vmi1,- .., Umipt forma una base de V. En otras palabras, cada

conjunto linealmente independiente puede ser extendido a una base del espacio vectorial.

Definicién 1.10. Sea V un espacio vectorial de dimensioén finita. Una base ordenada para
V' es una base para V establecida con un orden especifico.

Un espacio vectorial consiste en un conjunto de elementos en el que se definen ciertas
operaciones. Es posible analizar si un subconjunto no vacio de este conjunto hereda dichas
propiedades, y por tanto pueda considerarse un espacio vectorial por si mismo.

Definicién 1.11. Sean V un espacio vectorial sobre un campo F y W un subconjunto
de V. Se dice que W es un subespacio de V', si W es un espacio vectorial sobre F' bajo
las operaciones de suma y multiplicacién por escalares definidas en V. Se denota que W
es un subespacio de V' mediante W < V.

Teorema 1.12. ([8, Teo. 1.3, Secc. 1.3]). Sea V' un espacio vectorial sobre un campo F'y
W un subconjunto de V. El subconjunto W es un subespacio de V' si y solo si se satisfacen
las siguientes condiciones

a) 0 e W.
b) v+ w € W para v,w € W.
c) coeWparace FyveW.

A continuacion se muestran algunas operaciones entre subespacios de un espacio vectorial.
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Teorema 1.13. (|8, Teorema 1.4, Secc. 1.3|). Sea V' un espacio vectorial. La interseccion
de toda coleccion de subespacios de un espacio vectorial V' es un subespacio de V.

Teorema 1.14. (|8, Teorema 1.7, Secc. 1.4]). Sean V un espacio vectorial y S # () un
subconjunto de V. El subconjunto generado por S, denotado por gen(S) es el subespacio
de V mas pequeno que contiene a S.

Teorema 1.15. ([8, Teo. 1.12, Secc. 1.6]). Sean V un espacio vectorial de dimension n.
Si W es un subespacio de V', entonces W es de dimension finita y dim (W) < n. Ademas,
si dim(W) = n, entonces W = V.

Definicién 1.16. Sean V un espacio vectorial, Wi, W, C V tales que W, # 0, Wy # ().
La suma de Wi y Wy se expresa como Wi 4+ Ws v se define por

W1+W2:{w1+w2:w1GlewQEWQ}.

Teorema 1.17. Sean V un espacio vectorial. Si W; y W5 son subespacios de V', entonces
W1 + Wy es un subespacio de V.

Definicién 1.18. Sean V' un espacio vectorial y W7,W5 subespacios de V. Se dice que
V es la suma directa de Wy y Wy, expresada como V = W, & Ws, si Wy N Wy = {0} y
Wi+ Wy =1V.

Teorema 1.19. (|8, Teo. 1.6, Secc. 1.3]). Sean V un espacio vectorial y W;,W, subespacios
de V. El espacio vectorial V' es la suma directa de Wy y W5 si y solo si cada elemento v
de V puede ser escrito de manera tnica como v = vy + vg, donde v; € Wi y vy € Wi,

Teorema 1.20. (|8, Teorema 1.13, Secc. 1.6]). Sea V un espacio vectorial. Si Wy y Wy
son subespacios de V' de dimension finita, entonces W7 + W5 es de dimension finita y

dzm(W1 + WQ) == dzm(Wl) + dZTTL(Wg) - dzm(Wl N Wg)

Corolario 1.21. Sea V un espacio vectorial. Si W, y W5 son subespacios de V' de dimen-
si6n finita tales que V. = Wy + W5, entonces V es la suma directa de Wy y W5 si y solo
si

dim(V) = dim(W) + dim(W5).

1.2. Transformaciones lineales

Las transformaciones lineales desempenan un papel fundamental en el dlgebra lineal,
debido a que son funciones especificas que establecen una relaciéon entre dos espacios
vectoriales. Tal relacion preserva la estructura inherente de estos espacios.

Definicién 1.22. Sean V' y W espacios vectoriales sobre un campo F'. Una transformacion
lineal es una funcion T: V' — W que satisface
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T(cv+w)=cT(v)+T(w),
para cada v,w € Vyce F.

Proposicion 1.23. ([8, Cor. 2.7, Secc. 2.1]). Sean V' y W espacios vectoriales, V' un
espacio de dimension finita y 8 = {vy,...,v,} una base para V. Si U,T : V. — W son
transformaciones lineales y U(v;) = T'(v;) para ¢ = 1,...,n, entonces U = T.

Se define una operaciéon entre transformaciones lineales, que es la composicion.

Definiciéon 1.24. Sean V,W y Z espacios vectoriales y sean T : V - Wy S: W — Z
transformaciones lineales. La composicion de dos transformaciones lineales S 'y T, es
U = ST y esta definida por la ecuacion U(v) = S(T'(v)) para toda v € V.

Definicién 1.25. Sean V', W espacios vectoriales y sea T : V' — W una transfromacion
lineal. Se dice que U : W — V es la inversa de T si TU = Iy y UT = I,. Ademés, T es
invertible si T' tiene una inversa.

Observacion 1.26. En [8, Ap. B| se establece que si una transformacion lineal T' es
invertible, su inversa es tnica. Debido a esto, la notacién para la inversa de T es T~ 1.

Teorema 1.27. (|10, Teo. 2, Secc. 36]). Sea V' un espacio vectorial de dimension finita.
Una transformacion lineal 7' : V' — V' es invertible si y solo si para cualquier v € V' que
satisface que T'(v) = 0 implica que v = 0.

Teorema 1.28. (|10, Teo. 3, Secc. 36]). Sean V un espacio vectorial de dimension finita
sobre un campo F'y S,T : V — V transformaciones lineales. Si .S y T son invertibles,
entonces

a) ST es invertible y (ST)~! =T-15"1.
b) ¢S es invertible y (¢S)~' =157 donde c € F\ {0} .

¢) S7! es una transformacion lineal invertible y (S~1)~1 = S.

Definiciéon 1.29. Sean V, W espacios vectoriales y 7' : V' — W una transformacion
lineal. Se define el espacio nulo (o kernel) de T como N(T) ={v € V : T(v) =0} y el
rango (o imagen) de T como R(T) ={T(v) :v € V'}.

Teorema 1.30. (|8, Teo. 2.2, Secc. 2.1]) Sean V W espacios vectoriales y T : V —
W una transformacion lineal. Los conjuntos N(7T') y R(T') son subespacios de V'y W,
respectivamente.

En esta seccion se introdujo el concepto de transformacion lineal entre dos espacios vecto-
riales, a continuacion se muestra una clase particular de transformaciones conocidas como
proyecciones.

Definicién 1.31. Sean V un espacio vectorial y Wi un subespacio de V. Una transfor-
macion lineal T': V' — W se llama proyeccion sobre W7, si
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a) Existe un subespacio Wy tal que V- =W; & Wh.
b) Para v = v + vq, donde v; € Wy y vy € Wo, se tiene T'(v) = v;.

Teorema 1.32. ([10, Teo. 1, Secc. 41]). Sean V' un espacio vectorial y W un subespacio
de V. Una transformacion lineal 7' : V' — W es una proyeccion en el subespacio W si y
solosi T? =T.

Teorema 1.33. ([8, Teo. 2.1, Secc. 2.1]) Sean V' un espacio vectorial, W; un subespacio
de V. y T :V — W una proyeccion sobre Wi. Si Wy es un subespacio de V' tal que
V =W; & W,, entonces

La siguiente definicion destaca en esta seccion debido a que son conceptos que se usan
directamente en el Teorema espectral.

Definicién 1.34. Sea V' un espacio vectorial sobre un campo F'. Un vector no nulov € V
se llama vector propio de la transformacion T, si existe un escalar A € F tal que T'(v) = Av.
A ) se le conoce como valor propio de T correspondiente a v.

Observacion 1.35. Sea V un espacio vectorial sobre un campo F. SiT : V — V es
una transformacion lineal e Iy, : V' — V es la transformacion identidad en V', es decir,
Iy (v) = v para todo v € V, entonces T'— Al : V' — V es una transformacion lineal para
cualquier valor propio A de T. Asimismo, por el Teorema 1.30, se tiene que N (T — \ly)
es un subespacio vectorial. De modo que si v € N(T — Aly ), entonces para todo o € F'
se tiene que av € N(T — Aly). Esto es, si v es un vector propio de T' asociado al valor
propio A, entonces cualquier miltiplo escalar v, con o # 0, también es un vector propio
de T' correspondiente al mismo valor propio .

1.3. Representacion matricial de una transformacion li-
neal

Posteriormente se verd que es 1til poder representar una transformacién lineal por
medio de una matriz, debido a que a través de matrices se describen y operan transforma-
ciones lineales. Ademaés, en ocasiones resulta mucho mas facil hacer operaciones, calculos
y manipulacién de transformaciones lineales por medio de matrices. La asociacién entre
transformaciones lineales y matrices se basa en fijar las bases de los espacios vectoriales
(véase la Definicion 1.5).

Definicién 1.36. Sean V' un espacio vectorial de dimension finita sobre un campo F'y
f = {vi,...,v,} una base ordenada para V. Dado un elemento v € V se define al vector
coordenado de v relativo a B, denotado por [v]z, mediante
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[U]ﬁ: ) ala"'7an€F

donde

v = Zaivi, a; € F.

=1

Sean V' y W espacios vectoriales de dimension finita con respectivas bases ordenadas

B={v,...on}yy={w1,...,wyp}. SiT: V — W es una transformacion lineal, entonces
existen escalares tinicos a;; € F' (i=1,...,my j=1,...,n) tales que
T(’Uj) :ZCLUU)Z‘, paraj = 1,...,71. (11)
i=1

Definicién 1.37. La matriz A de m x n cuyos elementos son a;; dados en (1.1), se llama
representacion matricial de la transformacion lineal T : 'V — W respecto a las bases
ordenadas 8y . Ademaés se denota por A = [T]g SiV =Wy g =r,entonces A= [T]s.

La representacion matricial [T]g pertenece al espacio vectorial de matrices de m X n
sobre el campo F'. Este espacio sera denotado por M,,x,(F) (véase [8, Ej.2, Secc. 1.2]).
La siguiente afirmacion se considera relevante, razéon por la cual se muestra con detalles
la prueba.

Lema 1.38. Sean V' y W espacios vectoriales de dimension finita sobre un campo F' con
bases ordenadas (8 y 7, respectivamente, y sean T, U : V — W transformaciones lineales.
Si [T]; = [U]; entonces T = U.

Demostracion. Sean V' y W espacios vectoriales de dimension finita y 8 = {vy,...,v,},
v =A{ws,...,wy,} sus respectivas bases ordenadas.
Para cada v; € 3 existen escalares a;;, b;; € I tales que

T(v;) = anwy + -+ + Qi Wi,
U(U,) = bﬂwl + -+ bimwm,

parai=1,...,n.
Como [T]; = [U]} entonces a;; = b; para todai=1,...,ny j=1,...,m, lo que implica
que T'(v;) = U(v;), por el Corolario 1.23 se tiene que T' = U. [ |

Teorema 1.39. ([8, Teo. 2.9, Secc. 2.2]) Sean V' y W espacios vectoriales de dimension
finita sobre un campo F'y con bases ordenadas [ y 7, respectivamente. Si T, U : V — W
son transformaciones lineales, entonces

a) [T+ Uy =[T1;+ U]}
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b) [aT]} = a[T} para toda a € F.

Teorema 1.40. (|8, Teo. 2.16, Secc. 2.3|) Sean V' y W espacios vectoriales de dimension
finita con bases ordenadas [ y 7, respectivamente. Si T': V' — W es una transformaciéon
lineal, entonces para toda v € V' se tiene

La afirmacion presentada a continuacion es relevante para el desarrollo del trabajo y
se incluye junto con su demostraciéon para complementarlo.

Teorema 1.41. Sean V, W y Z espacios vectoriales de dimensién finita con bases ordena-
das «, 8,7, respectivamente. Si T : V — W y U : W — Z son transformaciones lineales,
entonces

TN} = [UT5[T]a

«

Demostracion. Sean V, W y Z espacios vectoriales de dimension finita con bases ordenadas
a, By 7, respectivamente. Dado v € V, sea [v], el vector de coordenadas de v relativo a
~. Aplicando la transformacion T a v, del Teorema 1.40 se tiene

[U(T ()}, = [UT (0)]s = [UT13 [V]a- (1.2)
Nuevamente por el Teorema 1.40,
[U(T(v))]y = [UT]3[v]a- (1.3)
De las ecuaciones (1.2) y (1.3) se sigue que
[UT) [v]a = U1 [V]as

para toda v € V. Si se sustituye v por los elementos de «, se tiene que cada una de las
columnas de [UT]] y [UJ3[T]} son las mismas. Por lo tanto [UT]}, = [U]3[T]5. |

67

En el Teorema 1.41, es posible considerar el caso particular V=W = Z con el cual se
tiene el siguiente corolario, que de igual manera este se menciona en [8, Secc. 2.3|.

Corolario 1.42. Sea V' un espacio vectorial de dimensién finita con una base ordenada
B.SiT,U :V — V son transformaciones lineales, entonces

[UT]s = [U][T]p-

Teorema 1.43. ([8, Teo. 2.13, Secc. 2.3]) Sea V un espacio vectorial de dimension n sobre
un campo F. Si § es una base ordenada de V, entonces [Iy]|z = I,,, donde I, es la matriz
identidad en M,y (F) e Iy : V — V es la transformacion identidad en V.
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Proposicién 1.44. (|8, Cor. 1, Secc. 2.4]) Sean V un espacio vectorial de dimension finita,
[ una base ordenada de V' y T : V — V una transformacion lineal. La transformaciéon T’
es invertible si y solo si [T]s es invertible. Ademas, [T~ = [T]El.

Proposicién 1.45. (|8, Cor. 2, Secc. 4.3]) Sea A € M,,«,,(F). La matriz A es no invertible
si y solo si det(A) = 0.

Teorema 1.46. (|8, Teo. 5.5, Secc. 5.1]) Sean V' un espacio vectorial de dimension finita
y T : V — V una transformacion lineal. Si 5y (' son bases para V', entonces se tiene que

det([T]5) = det([T]):

La afirmacion anterior muestra que el determinante de una representaciéon matricial
de una transformacion lineal es independiente de la base elegida, lo que permite formular
la siguiente definicion.

Definicién 1.47. Sean V un espacio vectorial de dimension finita, 7" : V' — V una
transformacion lineal. Se define el determinante de T como el determinante de [T']5, donde
[ es cualquier base de V.

Teorema 1.48. ([8, Teo. 5.6, Secc. 5.1]) Sean V' un espacio vectorial de dimension n
sobre un campo F'y T : V — V una transformacion lineal. Si A es un escalar de F'y
una base para V', entonces

det(T — My ) = det(A — A1),
donde A = [Ts.

Teorema 1.49. (|8, Teo. 5.7, Secc. 5.1]) Sean V un espacio vectorial de dimension finita
sobre un campo F' y T : V — V una transformacién lineal. El valor A € F' es un valor
propio de T si y solo si det(T — Aly) = 0.

Corolario 1.50. Sean V un espacio vectorial de dimension finita sobre un campo F, una
transformacion lineal T : V' — V' y  una base para V. El valor A € F' es un valor propio
de T si y solo si es un valor propio de [7T's.

Definicién 1.51. Sean V un espacio vectorial de dimension n, T : V' — V una trans-
formacion lineal y S una base para V. Se define al polinomio caracteristico p(\) de T
como

p(A\) = det(A — \,,),
donde A = [Tg.
Definicién 1.52. Sean V un espacio vectorial de dimension finita y 7' : V — V una

transformacion lineal. La transformacion lineal T es diagonalizable si existe una base 3
para V' tal que [T sea una matriz diagonal.
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Teorema 1.53. (|8, Teo. 5.4, Secc. 5.1|) Sean V' un espacio vectorial de dimesion finita
sobre un campo F'y T : V — V una transformaciéon lineal. La transformacion lineal T’

es diagonalizable si y solo si existe una base § = {vy,...,v,} de V' y escalares \; € F
(no necesariamente distintos) tales que T'(v;) = A\v; para i = 1,2,...,n. Ademas, la
representacion matricial de 7" respecto a la base 5 que es [T]g coincide con la matriz
diagonal cuyas componentes diagonales son {\,...,\,}, esta matriz diagonal se denota

por diag{\i,..., A\, }.

1.4. Espacios con producto interior

En la Seccion 1.1 ya se defini6 lo que es un espacio vectorial, se vio que cuenta con dos
operaciones que son adiciéon y producto escalar, ahora agregando una operacién més que
es el producto interior a un espacio vectorial, se obtiene un espacio con producto interior.
La operacion de producto interior ayuda a generar una norma y con ella se puede conocer
la longitud que existe entre cualquier par de vectores en el espacio vectorial, de igual
manera ayuda a obtener conceptos como ortogonalidad y ortonormalidad entre vectores,
las propiedades y definiciones de los conceptos mencionados se muestran en esta seccion.
La definiciéon formal de un producto interior es la siguiente.

Definicién 1.54. Sea V un espacio vectorial sobre un campo F'. Un producto interior en
V', es una funciéon

() VXV F

que asigna a cada par ordenado de vectores (v, w) € V x V un escalar en F, representado
como (v, w), tal que para toda v,w y z en V' y todo ¢, c2 € F se tiene que:

v,v) > 0; (v,v) =0siysolosiv=0.

= ¢162(v, w), donde ¢, ¢y € F.
= (v, w) + vz, w).

w) = (w,v) .

Al espacio vectorial sobre un campo F' que cuenta con un producto interior (-,-) se
llama espacto con producto interior.

Teorema 1.55. ([8, Teo. 7.1, Secc. 7.1]). Sea V' un espacio vectorial con producto interior
(-,-) sobre un campo F. Para v,w,u € V' y ¢ € F se cumplen las siguientes propiedades

a) (v, cw) =¢(v,w).
b) Si (v,w) = (v,u) para toda v € V, entonces w = u.

Teniendo ya definido lo que es un producto interior, se determina el concepto de norma
en términos del producto interior.
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Definicién 1.56. Sea V un espacio vectorial con producto interior (-,-). Para v € V se
define la norma de v mediante ||v|| = \/ (v, v).

Teorema 1.57. ([8, Teo. 7.2, Secc. 7.1]). Sea V' un espacio vectorial con producto interior
(-,+) sobre un campo F'. Para toda v,w € V' y ¢ € F se tiene:

a) |levl| = [ef - [[o]]-
b) [[v]| > 0; [|v|| = 0 siy solo si v =0.

c) [{(v,w)| < ||v|| - ]|w]| (Desigualdad de Cauchy-Schwarz).
)

d) [Jv+ wl|| <||v|| + ||w]| (Desigualdad del triangulo).

Definicion 1.58. Sea V' un espacio vectorial con producto interior (-, -). Un vector v € V/
es un vector unitario si satisface que ||v|| = 1.

Dado V' un espacio vectorial con producto interior (-,-) sobre un campo F'y v,w € V,
el producto interior (v, w) da como resultado un valor del campo. En algunos casos, este
valor es cero, y cuando esto ocurre, los vectores que cumplen esta propiedad reciben un
nombre especifico.

Definicion 1.59. Sea V' un espacio vectorial con producto interior (-,-). Los vectores
v,w € V se llaman ortogonales si (v, w) = 0.

Definicién 1.60. Sea V un espacio vectorial con producto interior (-, -). Un subconjunto
S de V' es un subconjunto ortogonal si cualquier par de elementos de S distintos entre si
son ortogonales. Un subconjunto S de V es un subconjunto ortonormal si S es ortogonal
y esta formado tnicamente de vectores unitarios.

Al combinar el concepto de base y un conjunto ortonormal se obtiene un nuevo concepto.

Definicion 1.61. Sea V' un espacio vectorial con producto interior (-,-). Un subconjunto
£ de V' es una base ortonormal para V, si 3 es una base ordenada ortonormal.

Teorema 1.62. (|8, Teo. 7.4, Secc. 7.2]) Sean V un espacio vectorial de dimension finita

con producto interior (-,-) y S = {wy,ws,...,w,} un subconjunto de V linealmente
independiente. Definase el conjunto S’ = {vy,va,...,v,}, donde v; = w; y
L e 0)
Vp = Wi — E Hk—’H;vj k=23,...,n. (1.4)
U.
j=1 7

S” es un conjunto ortogonal de vectores no nulos tales que gen(S’) = gen(S).

A la construccion del conjunto S’ por medio de la ecuacion (1.4) se le conoce como
proceso de ortogonalizacion de Gram-Schmaidt.
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Teorema 1.63. (|8, Teo. 7.6, Secc. 7.2|) Sea V' un espacio vectorial de dimension finita
con producto interior (-,-). Si f = {vy,vs,...,v,} es una base ortonormal para Vyv € V,

entonces
n

v= Z (v, v;)v; .

=1

Definicién 1.64. Sean V un espacio vectorial con producto interior (-,-) y S un sub-
conjunto de V. Se define S* como el conjunto de todos aquellos vectores de V que son
ortogonales a todos los vectores de S; esto es, St = {v € V : (v,w) = 0, para toda
w € S}. A St se le llama complemento ortogonal de S.

Teorema 1.65. (|8, Teo. 7.6, Secc. 7.2|). Sea V' un espacio vectorial con producto interior
(-,-). Si W es un subespacio de dimensién finita de V, entonces V = W & W+.




Capitulo 2

Operadores lineales y el Teorema espectral

La teoria presentada en este capitulo corresponde a resultados clasicos de dlgebra li-
neal, la mayoria de estos estan basados en [8].
Al hablar de operadores lineales se hace referencia a transformaciones lineales, los opera-
dores lineales son un caso particular de las transformaciones. En otras palabras, se sabe
que una transformacion lineal es una funcion entre dos espacios vectoriales V' 'y W, como
caso particular es que V' y W sean el mismo espacio vectorial. Por lo anterior se tiene la
siguiente definicion.

Definicion 2.1. Sea V' un espacio vectorial. Se llama operador lineal en V' a toda trans-
formacion lineal T: V — V.

Definicién 2.2. Sean V un espacio vectorial de dimension finita sobre un campo F'y A
en M, «,(F). Se define el operador Ly : F™ — F™ por

La(v)=Av, Yve ™.
Observaciéon 2.3. Observe que de la Definicién 2.2 se obtiene lo siguiente:
a) Si f es la base canonica del espacio vectorial F", se tiene que [L]g = A.
b) Si Ly = Lp, entonces A = B.

En las secciones de este capitulo se presentan distintos tipos de operadores y algunas
propiedades de estos. Se analizaran propiedades espectrales de los operadores normales,
autoadjuntos y unitarios.

2.1. Operador adjunto

Un operador lineal T" define un nuevo operador llamado adjunto de T, denotado por
T*. El operador adjunto se relaciona con el operador lineal T' solo en espacios vectoriales
con producto interior. Para determinar la existencia de dicho operador se analizan las
siguientes afirmaciones para posteriormente dar su definicion.

13
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Teorema 2.4. Sea V un espacio de dimension finita con producto interior (-,-) sobre un
campo F. Si g : V — F es una transformacion lineal, entonces existe un tnico vector
w €V tal que g(v) = (v, w) para toda v € V.

Demostracion. Sean = {v1, v, ..., v,} una base ortonormal para V. Considere a w € V

dado por
w = Z g(v;)v;
i=1

y la funcién h : V' — F definida por h(v) := (v,w). La funcién h es una transformacion
lineal, debido a la linealidad del producto interior. Asi, para cada j =1,...n.

h(v;) = (v}, w)

= <Uj7 Z mw

Como g y h son lineales y h(v;) = g(v;) para j = 1,...,n, por la Proposiciéon 1.23 se tiene
que g = h.

Ahora, para ver que w es nico, supéngase que existe w’ € V' tal que g(v) = (v, w’), para
todo v € V. Asi

(v, w) = (v, w')
y por el Teorema 1.55, w = w’. Lo que concluye la prueba de la afirmacion. [ |

Teorema 2.5. Sea V' un espacio vectorial de dimension finita con producto interior (-, -).
Si T un operador lineal en V', entonces existe un tinico operador lineal 7 en V' tal que se
satisface (T'(v), w) = (v, T*(w)) para todo vector v,w € V.

Demostracion. Sea w un elemento fijo en V. Considere la funciéon g : V' — F' como

g) = (T (w),w)y, YveV. (2.1)
La funcién g es una transformacion lineal. En efecto, sean vy,v5 € V y ¢ € F. Se tiene
que
(T(cvr + v2), w)
= (cT(v1) + T'(v2), w)
= (cT'(v1), w) + (T'(v2), w)
= cg(v1) + g(v2).

glcvy +v9) =
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Por otro lado, del Teorema 2.4 existe un tnico vector w’ € V tal que g(v) = (v, w’). Asi,
de la ecuacion (2.1)

(T(v),w) = (v,w'y, YveV.
Ahora, definiendo la funcion 7% : V' — V tal que T*(w) = w/, se tiene que
(T'(v), w) = (v, T"(w)) . (2.2)

La funcion T* es un operador lineal y es el tinico que satisface (2.2).
En efecto, sean v,v;,v3 € V y ¢ € F. Luego

(v, T*(cv1 +v9)) = (T'(v), cvy + Vo)

Por el Teorema 1.55, se tiene que T™*(cvy+v9) = ¢T™(v1)+T*(vs). Para mostrar la unicidad
de T™, supongase que existe R : V' — V tal que

(T'(v),w) = (v, R(w)), para todo v,w e V.

Luego, de (2.2)
(v, T*(w)) = (v, R(w)), para todo v,w €V,

de modo que T* = R. [ |

Definicién 2.6. Sean V un espacio vectorial de dimension finita con producto interior
(-,-) y T un operador lineal en V. El operador T* que satisface

(T'(v),w) = (v, T*(w)) para todo vector v,w € V,
se llama operador adjunto de T.

Definicion 2.7. Sea A € M,x,(F). Se define la matriz transpuesta conjugada (o adjunta)
de A como la matriz A* en M, ., (F) donde (A*);; = Aj;.

Teorema 2.8. Sean V' un espacio vectorial de dimensién finita con producto interior
(-,-) v B una base ortonormal para V. Si T es un operador lineal en V', entonces la
representacion matricial de T con respecto a [ coincide con la adjunta de la representacion
matricial de T respecto a la misma base. Esto es,

(1715 = [TT5-
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Demostracion. Sean = {vi,vs,...,v,} una base ortonormal para V y las matrices
A =[T|gy B = [T*|. Debido a la Definicion 1.37, se tiene que T'(v;) = > o, Ajjvi ¥
T*(v;) = > i, Bijv; para cada j = 1,...,n. De modo que por el Teorema 1.63 para cada
i,j=1,....n

es decir, [T*]s = [T7}. |
Corolario 2.9. Sea A € M,,..,(F). Se cumple que L= = (La)*.
Demostracion. Sea [ la base canoénica para F™. Asi

[(La)]s = [Lals = A" = [Lar]s,

donde se ha utilizado el Teorema 2.8 e inciso (a) de la Observacion 2.3. Ademas por el
Lema 1.38 es posible concluir que (L)* = La-. |

Teorema 2.10. Sea V un espacio vectorial de dimensién finita con producto interior
(-,+) sobre un campo F. Si T, U e I son operadores lineales en V', donde I es el operador
identidad entonces

a) (T+U)*=T*+U"

b) (cI')* = ¢ T* para cualquier ¢ € F.
c) (TU)* =U*T*.

d) T =T.

e) I* = 1.

Demostracion. Considere a T, U operadores lineales en V, v, w elementos arbitrarios en
V' y ¢ cualquier elemento del campo F'.

a)

Por el inciso (b) del Teorema 1.55, se tiene que (7" + U)*
todo w € V, por tanto (T + U)* = T* + U*.
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b)

Debido al inciso (b) del Teorema 1.55, se tiene que (¢T)*(w) = ¢T™*(w) para todo
w eV, asi ()" =¢cT™.

c)

Por el inciso (b) del Teorema 1.55, se tiene que (TU)*(w) = U*T™*(w) para todo w € V,
por consiguiente, (TU)* = U*T™.

Asi, T**(w) = T'(w) para todo w € V, esto debido al inciso (b) del Teorema 1.55, como
w es arbitrario entonces 17" =T

(v, I"(w)) = (I(v),w)

= <U7w>
— (v, I(w))

Utilizando nuevamente el inciso (b) del Teorema 1.55, se tiene que I*(w) = I(w) para
todo w € V, por tanto I* = I.

Cada uno de los cinco incisos ha sido demostrado, con lo cual la demostracion queda
completada. [

Corolario 2.11. Sean A, B € M,,«,(F). Se cumple lo siguiente
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a) (

b) (cA)* = ¢A* para toda c € F.
) (

d) A* = A.

A+ B)"= A"+ B*.

o

AB)* = B*A*.

e) I* =1

Demostracion. Las afirmaciones seran probadas empleando la Definicion 2.2, la Observa-
cion 2.3, el Corolario 2.9 y el Teorema 2.10.

a)
Liaypy = (Layp)" = (La+ Lp)" = (La)" + (Lp)" = La- + Lp- = L(a~y p).
b)
L(cA)* = (LcA)* = (CLA)* = E(LA*) = Lga-.

c)
Liapy = (Lap)* = (LaLp)* = (Lp)*(La)* = (Lp+)(La-) = Lpea-.

d)
Lay~ = (La+)" = (La)™ = La.

e) Observe que L;(v) = I(v) para todo v € F™, es decir, es el operador identidad del
espacio V' que aparece en el inciso (e) del Teorema 2.10. Asi,

Ly-= (L))" =1Lj.

Se han demostrado los cinco incisos, por tanto, la demostracion queda completa. |

2.2. Operadores normales

Teniendo claro el concepto de operador adjunto 7™ se define un nuevo tipo de ope-
radores, llamados operadores normales, en pocas palabras, un operador normal es aquel
operador que conmuta con su adjunto.

Definicién 2.12. Sean V un espacio vectorial de dimensién fnita con producto interior
(-,-) y T un operador lineal en V. Se dice que T' es un operador normal si TT* = T*T.
Anélogamente, una matriz A € M, (F) es normal si AA* = A*A.

Proposicion 2.13. Sean V' un espacio vectorial de dimensién finita con producto interior
(-,+), 5 una base ortonormal de V' y T un operador lineal en V. El operador T" es normal
siy solo si [T es normal.
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Demostracion. Sea [ una base ortonormal de V' y [Tz la representacion matricial del
operador lineal T' con respecto a (.
(=) Supodngase que T' es un operador normal, es decir TT* = T*T.

donde la primera y quinta igualdad se garantiza por el Teorema 2.8, la segunda y cuarta
por el Corolario 1.42. Asi, [T']s es normal.
(<) Supoéngase que [T]3 es normal. De modo que

[TT*] Ts[T"]s
175
T
s[T]s
Js -
Es decir, los operadores TT™ y T™*T tienen la misma representacion matricial con respecto
a (. Asi por el Lema 1.38, se tiene que T7T™* = T*T. |

@

S
™

]
]
]

—

™ *

*

S

ﬁﬁqﬁﬁ
ﬂ_

T*

Teorema 2.14. Sea V un espacio vectorial de dimension finita con producto interior (-, -)
sobre un campo F'. Si T es un operador normal en V', entonces se cumple lo siguiente

a) ||T(v)|| = ||T*(v)|| para toda v € V.
b) T — ¢l es normal para toda ¢ € F.

c) Si A € F es un valor propio de T, entonces X es un valor propio de T*. De hecho,
T(v) = Av implica que T*(v) = Av.

d) Si Ay y Ay son distintos valores propios de T' con vectores propios correspondientes vy
y vy, entonces vy y vy son ortogonales.

Demostracion. Sean T un operador normal en V.

a) Utilizando el hecho de que T' es normal, se tiene lo siguiente

17()[[* = (T(v), T(v))
= (v, T*(T(v)))
= (v, T(T"(v)))
= (I"(v), T"(v))
= |

|T*(v)||*>, para todov €V .
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b) Sea ¢ € F. Haciendo uso del Teorema 2.10, se tiene que

(T — cI)(T — eI)* = (T — eI)(T* — &)
=TT" —¢l' — I + cel
=TT —¢I' — cT* + cel
— (T* —eI)(T — ¢I)
=(T—c) (T —cl).

¢) Sea A un valor propio de Ty v su respectivo vector propio, esto es, T'(v) = Av. Luego
0= (T = A1)(v)]
= [[(T = A1)*(v)]|
= [[(T" = M) (v)|
= [|T*(v) = M (v)]]
= |IT"(v) = Mvl],

donde la segunda igualdad se da por (a) de este mismo teorema.
De modo que, T*(v) = Av debido al Teorema 1.57.

d) Sean A; y Ay valores propios de T distintos entre si, con vectores propios correspon-
dientes vy y vq, esto es, T'(vy) = Aoy v T'(ve) = Agvg. Asi

)\1<U1,U2> = <>\1U1,U2>
= (T'(v1), v2)
= (01, T"(v2))
= <7J1,)\_2112>
= Ao (v1,09),

donde la cuarta igualdad se debe al inciso (c¢) del presente teorema. Asi, dado que
(A1 — A2){v1,v9) =0y A # Ao, entonces (vy,v2) = 0. Es decir, v; y vg son ortogonales.

Se han demostrado cada uno de los cuatro incisos del teorema, por tanto, la demostracion
queda completa. [ |

Definicién 2.15. Sea T" un operador lineal en un espacio vectorial V. Un subespacio W
de V se llama subespacio T-invariante de V, si T(W) C W.

Observacion 2.16. Dado T un operador lineal en un espacio vectorial V' y W un subes-
pacio de V', para mostrar que W es T-invariante, basta probar que para todo elemento
v € W se cumple que T'(v) sigue estando en W.

Proposicion 2.17. Sean V' un espacio vectorial de dimensién finita con producto interior
(,-), T un operador lineal en V' y W un subespacio T-invariante de V. Si Ty, : W — W
es un operador tal que Ty (v) = T'(v) para todo v € W, entonces
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a) El subespacio W+ es T*-invariante de V.
b) Si W es T-invariante de V' y T*-invariante de V', entonces (Tyw)* = (T*)w

¢) Si T es un operador normal de V' 'y W es un subespacio T-invariante y T*-invariante
de V, entonces Ty es un operador normal en W.

Demostracion. Considere a T' un operador lineal en V' y W un subespacio T-invariante
de V.

a) SiveW ywe W, entonces por la Definicién 1.64 y Definicion 2.15 se obtiene que
T(v) e Wy (I'(v),w) =0. De modo que,

(0, T"(w)) = (T'(v),w) =0,

esto es, T*(w) € W+. Por lo tanto, T*(W+) C W+, es decir, W= es un subespacio
T*-invariante de V.

b) Supodngase que W es un subespacio T-invariante y T*-invariante de V. Asi (T*)w
se puede definir andlogamente como se definio Ty,. Observe que Ty y (T*)w son
operadores lineales debido a que W es un subespacio T-invariante y T*-invariante de
V. Dados v y w elementos arbitrarios de W, se sigue que

(v, (Tw)"(w)) = (Tw(v), w)
= (T(v), w)

= (v, (T")(w))

= (0, (T")w(w)) -

Por inciso (b) del Teorema 1.55 se tiene que (Tw)*(w) = (T*)w (w) para todo w € W,
por tanto (Tw)* = (T*)w. Debido a la igualdad de operadores, a partir de ahora se
omitiran los paréntesis, es decir, se considera el operador 77, .

c¢) Supongase que T es un operador normal en V' y W es T-invariante y T*-invariante de
V. Dados que v y w son elementos arbitrarios de W, se tiene que

{(Tw Ty (v), >

Por inciso (b) del Teorema 1.55 se tiene que Ty Ty, (v) = Ty, Tw(v), para todo v € W,
es decir, Tw 1y, = Ty, Tw, esto es que Ty en el subespacio W es un operador normal.

Asi, se han probado los tres incisos, por lo que la demostraciéon queda completa. [ |
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Teorema 2.18. Sean V' un espacio vectorial de dimension finita con producto interior
(-,-) sobre el campo C. Si T es un operador lineal en V', entonces el operador T tiene un
valor propio.

Demostracion. Sean T un operador lineal en V' sobre el campo C y f el polinomio carac-
teristico de T'. Como f tiene coeficientes complejos, el teorema fundamental del algebra
asegura la existencia de un nimero complejo A en el cual el polinomio f evaluado en dicho
ntmero es cero. Esto es,

FA) = det(T — AI) = 0,

lo que implica que T — Al no es invertible. Asi, existe un vector v # 0 en V tal que
(T'— M)v =0, o bien, Tv = Av. Lo que prueba que X es un valor propio. [ |

Teorema 2.19. Sean V' un espacio vectorial de dimensiéon finita con producto interior
(-,+) sobre el campo C y T un operador lineal en V. El operador T es normal si y solo si
V' tiene una base ortonormal formada por vectores propios de T'.

Demostracion.

(=) La demostracion sera por induccion para n = dim(V). Es decir, se mostrard que
para todo espacio vectorial V' de dimension finita, si 7" es un operador lineal normal en
V', entonces V tiene una base ortonormal formada por vectores propios de T'.

Caso k = 1: Sea V un espacio vectorial de dimensién 1y T un operador normal en V. Se
toma un vector propio v de T cuya existencia se debe al Teorema 2.18. Luego v # 0

y V = gen{v}. De modo que 5 = {ﬁv} es una base ortonormal para V formada
por vectores propios de 1.

Caso k = n — 1: Por hipotesis de induccion supongase que para todo espacio vectorial V'
de dimension n — 1 se cumple que: si T' es un operador normal en V entonces V'
tiene una base ortonormal formada por vectores propios de T

Caso k = n: Sean V un espacio vectorial sobre el campo C de dimension ny T un operador
normal en V. Por el Teorema 2.18 el operador T tiene un valor propio, digamos \; y
vy su correspondiente vector propio, con el supuesto de ||vy|| = 1. Sea W = gen{v, }.
Ya que v; es un vector propio de T y al ser T normal, v; es también un vector
propio de T™* debido al inciso (¢) del Teorema 2.14. Ademéas, W es T-invariante y
T*-invariante de V', esto es T(W) C W y T*(W) C W.

Por el inciso (a) de la Proposicion 2.17 se tiene que W+ es T*-invariante de V.
Ademas, dado que W es T*-invariante, aplicando nuevamente el inciso (a) de la
Proposicion 2.17 junto con el inciso (d) del Teorema 2.10 se tiene que W+ es T-
invariante de V. Como T es normal y W+ es un subespacio T-invariante y T*-
invariante de V' por el inciso (¢) de la Proposicion 2.17 se deduce que Ty o es
normal. Dado que dim (V) = ny dim(W) = 1, por el Corolario 1.21 se tiene que
dim(W+) = n — 1. Aplicando la hipétesis de induccién a Ty, . se obtiene una base
ortonormal v = {vy,vs,...,v,} para W+ y que esta formada por vectores propios
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de Ty 1, que a su vez son vectores propios de T'. Por lo tanto, § = {vy,ve, ..., v,}
es la base ortonormal para V', formada por vectores propios de T

(<) Supongase que V tiene una base ortonormal 3, formada por vectores propios de T
La matriz [T es una matriz diagonal y de la Definicion 2.7 la matriz [T]}; también es
una matriz diagonal. Por el Teorema 2.8 se tiene que [T = [T*]s, de donde se obtiene
que [T*]p es una matriz diagonal. Por tanto se tiene que [T]5[T*]s = [T%]5[T s, esto es,
[T]s es normal. Por la Proposicion 2.13 se tiene que 7" es normal. [

2.3. Operadores autoadjuntos

Una clase més de operadores son los operadores autoadjuntos, estos son aquellos que
cumplen con T' = T" donde T™ es el operador adjunto de T". En esta seccién se analizaran
las propiedades de estos operadores.

Definicién 2.20. Sea V' un espacio vectorial con producto interior (-,-). Un operador
lineal T se llama autoadjunto si

(T(v),w) = (v, T(w)), Yv,welV.

Con la definicion anterior, claramente se obtiene la afirmacion de que todo operador
autoadjunto es un operador normal, pues T*T = T? = TT*.

Proposiciéon 2.21. Sean V un espacio vectorial con producto interior (-,-) sobre un
campo Iy T un operador lineal autoadjunto en V. Si A es un valor propio de T', entonces
A es un numero real.

Demostracion. Sean T' es un operador autoadjunto, es decir, A un valor propio de 7'y v
su correspondiente vector propio. Debido a que T' = T™ se tiene que

M =T(v) =T*"v) = v,

la ultima igualdad se debe al inciso (¢) del Teorema 2.14 (dicho teorema tiene por hipotesis
que T sea un operador normal pero al ser 7" un operador autoadjunto es normal). Asi,
(A — X)v =0, dado que v es un vector propio, entonces v # 0, asi A = \, es decir, A es un
numero real. |

Ya se ha mencionado la estrecha relacion entre operadores y matrices. En particular, al
abordar el caso de operadores autoadjuntos, esta relacion se refleja directamente en el
comportamiento de sus matrices asociadas, lo que motiva la siguiente definicion.

Definiciéon 2.22. Una matriz A € M, «,(F), se dice autoadjunta si cumple que
A= A",

donde A* es la matriz adjunta (véase Definicion 2.7). En particular, si ' = R, entonces
A es una matriz simétrica, y si F' = C, entonces A es una matriz hermitiana.
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Proposicion 2.23. Sean V' un espacio vectorial de dimension finita con producto interior
y [ una base ortonormal para V. Un operador lineal 7" es autoadjunto si y solo si (T3 es

*

una matriz autoadjunta, es decir, [T]5 = [TT5.

Demostracion. Sea [ una base ortonormal para V.
(=) Si T es un operador autoadjunto, esto es, T' = T*, se tiene que

[T]p = [T"]s = [TT3,

donde la ultima igualdad se da por el Teorema 2.8. Asi, [T]s es una matriz autoadjunta.
(<) Supongase que [T']5 es una matriz autoadjunta. Se cumple que

[T]s = [TT5 = [T"]3,

la dltima igualdad se da de nuevo por el Teorema 2.8. De modo que 7' es un operador
autoadjunto. [ |

Observacion 2.24. El Teorema 2.18 garantiza la existencia de un valor propio cuando
el espacio V' esta definido sobre el campo C. La Proposicion 2.21 establece que este valor
propio es real si el operador es autoadjunto. Sin embargo, cuando V' esté definido sobre el
campo R para asegurar la existencia de un valor propio es necesario que 7" sea un operador
autoadjunto, tal como se muestra en el siguiente teorema.

Teorema 2.25. Sea V' es un espacio vectorial de dimensioén finita con producto interior
(-,-) sobre el campo R. Si T es un operador lineal autoadjunto en V| entonces 7" tiene un
valor propio real.

Demostracion. Sea [ una base ortonormal para V. Dado que T es un operador autoad-
junto, por la Proposicion 2.23 la matriz [T]z es autoadjunta. Dendtese por A := [Tz la
matriz donde sus elementos son reales y considérese al operador lineal T4 sobre C" dado
por la Definicion 2.2. Por el Teorema 2.18 se tiene que T4 posee un valor propio, A. Se
sabe que si 7y es la base canonica de C" entonces [T4], = A (véase la Observacion 2.3),
con esto [T4], tiene elementos reales. Utilizando nuevamente la Proposicion 2.23 se tiene
que T4 es un operador autoadjunto. Ahora por la Proposicién 2.21 se concluye que A\ es
un valor propio real de T4 y por lo tanto A es un valor propio para A y a su vez de T
debido al Corolario 1.50. [ |

Proposicién 2.26. Sean V' un espacio vectorial de dimensién finita con producto interior
(-,-), T un operador lineal en V' y W un subespacio T-invariante de V. Si T" es un operador
autoadjunto, entonces Ty, es un operador autoadjunto.

Demostracion. Supoéngase que T es un operador lineal autoadjunto. Sean Ty y 17, los
operadores en W definidos como en la Proposicion 2.17. Asi, para cualquier elemento v
en W. Se tiene que

Tw(v) =T(v) =T*(v) = Ty (v). (2.3)

En particular, (2.3) es valida al sustituir v por cualquier elemento de una base W. Por
lo tanto, de la Proposicién 1.23 se tiene que Ty = Ty, es decir, Ty es un operador
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autoadjunto. [ |

La Observacién 2.24 muestra la importancia de distinguir entre los campos R y C. La
siguiente afirmacion debe analizarse y notar las diferencias con respecto al Teorema 2.19,
considerando los campos distintos.

Teorema 2.27. Sean V' un espacio vectorial de dimensién finita con producto interior
(-,-) sobre el campo R y T un operador lineal en V. El operador T' es autoadjunto si y
solo si V' tiene una base ortonormal formada por vectores propios de 7.

Demostracion.

(=) La demostracion sera por induccion para n = dim(V'). Es decir, se mostraré que para
todo espacio vectorial V' de dimension finita, si 7" es un operador lineal autoadjunto en
V', entonces V tiene una base ortonormal formada por vectores propios de T'.

Caso k = 1: Sea V un espacio vectorial de dimension 1 y T" un operador normal en V.
Se toma un vector propio v de T' cuya existencia se debe al Teorema 2.25. Como
v# 0y V = gen{v} entonces 5 = {v} es una base ortonormal para V' formada por
vectores propios de T

Caso k =n — 1: Por hipotesis de induccion supéngase que para todo espacio vectorial V'
de dimensién n — 1 se cumple que: si 7' es un operador autoadjunto en V' entonces
V' tiene una base ortonormal formada por vectores propios de T

Caso k = n: Sean V un espacio vectorial sobre el campo R de dimensién n y T un opera-
dor autoadjunto en V. Por el Teorema 2.25 el operador T" tiene un valor propio real,
A1, con su correspondiente vector propio unitario v;. Al ser T autoadjunto, T es
normal y por el inciso (c¢) del Teorema 2.14, vy es un vector propio de T™*. Observese
que si W := gen{v;}, entonces se obtiene que W es un subespacio T-invariante y
T*- invariante de V. Asi, por el inciso (a) de la Proposicion 2.17 se tiene que W+
es T*-invariante de V. Aplicando nuevamente el inciso (a) de la Proposicion 2.17
junto con el inciso (d) del Teorema 2.10 se concluye que W+ es T-invariante de V.
Luego al ser T" autoadjunto, por la Proposicion 2.26 el operador Tj-1 también es un
operador autoadjunto.

Dado que dim(V) = n y dim(W) = 1, por el Corolario 1.21 se obtiene que
dim(W+) = n — 1. Aplicando la hipotesis de induccion a Ty 1 se obtiene una base
ortonormal denotada por v = {vs,vs,...,v,} para W+ y que es formada por vecto-
res propios de Ty, que a su vez son vectores propios de 7T

Por lo tanto 8 = {vy,vg,...,v,} es la base ortonormal para V', formada por vectores
propios de T'.

(<) Supodngase que V tiene una base ortonormal 3, formada por vectores propios de 7.
En la base §, la matriz [T]s es diagonal. Dado que V' es un espacio vectorial sobre el

campo R, de la Definicion 2.7 se tiene que la matriz [T]; = [T]j. Por el Teorema 2.8 se
sigue que [T']; = [T"]3. Con esto se tiene que

[T)s = [T = [TT5 = [T"]s-
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Finalmente, por el Lema 1.38 se concluye que T'= T, asi T' es autoadjunto. [ |

Definicién 2.28. Sean V' un espacio vectorial de dimensién finita con producto interior
(-,-) sobre un campo F', T un operador autoadjunto y § una base ortonormal para V. Se
dice que T es un operador definido positivo, si (T'(v),v) > 0 para todav € V y v # 0.
Anélogamente, una matriz A € M,.,(F) es una matriz definida positiva, si z'Az > 0
para toda z € F™ \ {0}.

Proposicion 2.29. Sean V' un espacio vectorial de dimension finita con producto interior
(-,-) sobre un campo F'y T un operador autoadjunto. El operador T es definido positivo
si y solo si todos sus valores propios son positivos.

Demostracion. Sea T un operador autoadjunto.
(=) Supongase que T es definido positivo, A un valor propio de T'y v su correspondiente
vector propio. Como T es definido positivo, de la Definicion 2.28 se tiene que

0 < (T(v),v) = (A, v) = AlJo]|*,

de aqui A > 0.

(<) Al ser T' un operador autoadjunto, por el Teorema 2.27 el espacio V' tiene una
base ortonormal = {v,vs,...,v,} formada por vectores propios de T'. Considere el
valor propio A; > 0 correspondiente al vector propio v; para ¢ = 1,...,n. Ademas, sean
ve V\{0}yc € F tales que v =", c;v;, observe que ¢; # 0 para algin i = 1,...,n

ya que v # 0. Luego
(T'(v),v) = (Z czvl> chvz>

(
<

Z AU, zn:czvz>

z‘|0z" ||Uz‘\|2

=1

.

>

Por lo tanto T es definido positivo. |

2.4. Operadores unitarios

Los operadores unitarios se caracterizan por conservar la norma, es decir, cuando se
aplica el operador unitario a un vector, la norma de este es igual a la norma del vector.
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De igual manera preservan el producto interno entre dos vectores, esto es, el producto
interno entre dos vectores es el mismo que el producto interno de sus imagenes bajo el
operador unitario. En la presente seccion se muestran los detalles de lo ya mencionado.

Definicién 2.30. Sean V' un espacio vectorial de dimensién finita con producto interior
(-,-) sobre el campo F'y T un operador lineal en V. Si ||T'(v)|| = ||v|| para toda v € V,
se llama a T un operador unitario si F' = C y un operador ortogonal si F' = R.

Lema 2.31. Sean V' un espacio vectorial de dimensi6n finita con producto interior (-, -)
sobre un campo F'y U un operador autoadjunto en V. Si (v, U(v)) = 0 para toda v € V,
entonces U es el operador cero en V.

Demostracion. Como U es un operador autoadjunto, por el Teorema 2.19 el espacio V
tiene una base ortonormal [ formada por vectores propios de U. Si v € [, entonces
U(v) = Av, donde A es el valor propio asociado a v. Asi,

0= (v,U(v)) = (v, \v) = Mo,v) = A,
pues v € B C V. De modo que, para todo v € 3 se tiene que
Uw)=M=0=0.

Concluyendo que U = 0 por el Corolario 1.23. [ |

Teorema 2.32. Sea V' un espacio vectorial de dimensién n con producto interior (-, -)
sobre un campo F'y sea T un operador lineal en V', las siguientes condiciones son equi-
valentes.

a) TT* =TT = 1.

b) (T(v),T(w)) = (v, w) para toda v,w € V.

)

)

¢) Si B es una base ortonormal para V', entonces T'(f) es una base ortonormal para V.

d) Existe una base ortonormal /3 para V tal que T'(5) es una base ortonormal para V.
)

e) [T (v)|| = ||v|| para toda v € V.

Demostracion. Sea T un operador lineal.
(a) = (b) Supdngase que TT* =T*T = I.
Si v, w €V, entonces
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(b) = (c¢) Supongase ahora que se cumple (T'(v),T(w)) = (v,w) para todo v,w € V
y sea [ = {vy,vq,...,v,} una base ortonormal para V. El conjunto T'(3), dado por
T(B) ={T(v1),T(vg),...,T(vn)}, es un conjunto ortonormal. En efecto,

(T'(v:), T(vy)) = (vi,v5) =0
donde 7,7 =1,2,...,n,e i # j. En el caso para i = j,
T (va)[] = (T(v:), T(vs)) = (vg, v1) = 1.

Como T'(/3) es un conjunto ortonormal, es linealmente independiente, ya que al considerar
Z?zl ¢;T(v;) = 0, se tiene que

0= <ZCZ'T('UZ'),T<U]‘)> =c, Vje{l,...,n}.

De modo que T'(3) es base ortonormal de V' pues |T'(5)| = n = dim(V).

(¢) = (d) Dado que V es un espacio vectorial de dimension finita con producto interior,
existe una base ortonormal 3, por lo supuesto en el inciso (c), se tiene que T'(/3) es una
base ortonormal para V.

(d) = (e) Por el inciso (d), existe una base ortonormal 5 = {vy,vs,...,v,} de V tal que
T(B) = {T(v1),T(vq),...,T(v,)} también es una base ortonormal de V. Dado que 3 es

n

una base, cualquier vector v € V puede expresarse como v = E c;v; para ciertos escalares
i=1

C1,C2y ..., Cp. AsT
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Ahora, aplicando el operador lineal T" a v, se tiene T'(v Z ), luego

o= (S5 o UJ>
e {o o U]>
_ZQZQ
=Z‘=Z||

De aqui, [[T'(v)[| = [[v]].
(e) = (a) Supongase que ||T'(v)|| = ||v|| para todo v € V.
Para cualquier vector arbitrario v de V' se tiene que

(v,0) = || = [ITW)I]* = (T(v), T(v)) = (v, T*(T(v))),

esto es
(v,(I =T*T)(v)) = 0 para todo v € V. (2.4)

El operador I — T*T es autoadjunto. En efecto, debido a las propiedades de T dadas en
los incisos (a), (e) v (d) del Teorema 2.10 se tiene que

(I—=TT) =I* = T*T* = I — T*T.

Como I—T*T es autoadjunto y satisface (2.4), por el Lema 2.31 se obtiene que [ —T*T = 0,
es decir, [ =T"T.
Dado que I = T*T, se tiene que [I]g = [T*T]4, para una base 3 de V. Por el Corolario
1.42 se tiene que [I]g = [T7]|[T]g. Por el Teorema 1.43 se sabe que [I|z = I,,, de modo
que

1 = det(1,,) = det([T7]) det([T]p)-

Asi, de la Proposicion 1.45 la matriz [Tz es invertible y por la Proposicion 1.44 se sigue
que el operador T' es invertible. Como T*T = I, entonces por la unicidad de la inversa
(véase Observacion 1.26) se tiene que T* = T~ !, por lo tanto I = T*T = TT* . [ |

Observaciéon 2.33. El Teorema 2.32 sigue siendo vélido si se remplaza T por T en los
incisos (b)-(e).

Observacién 2.34. Si T es un operador unitario, entonces es invertible y su inversa esta
dada por T—! = T*.
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Definicién 2.35. Sea A € M,,»,(F). Una matriz A se llama matriz unitaria si satisface
AA* = A*A =1, (2.5)

y F' = C. En el caso que la matriz cumpla con (2.5) y F' = R entonces la matriz se llama
matriz ortogonal.

Por la primera propiedad del Teorema 2.32 se tiene que todo operador unitario es un
operador normal. Sin embargo el reciproco no es cierto, es decir no todo operador normal
es necesariamente un operador unitario. Para ilustrar esto, considere el siguiente ejemplo
de una matriz que es normal pero no unitaria.

Ejemplo 2.36. Considere a las matrices A y A* definidas como,

2 0 . (2 0
A:(o 2i> A _(0 —22')‘

La matriz A es normal debido a que

AAT = (3 §2> (?) —022') - (3 91)
s (3G,

esto es, AA* = A*A. Sin embargo la matriz A no es unitaria, AA* # I.

Teorema 2.37. Sean V un espacio vectorial de dimension finita con producto interior
(-,-) sobre el campo C y T un operador lineal en V. El operador T' es unitario si y solo
si el espacio V' tiene una base ortonormal de vectores propios de T' cuyos valores propios
correspondientes tienen moédulo uno.

Demostracion. Sea T un operador lineal en V.

(=) Supongase que T es un operador unitario, es decir, TT* = T*T = I y por lo tan-
to T es normal. El Teorema 2.19 implica que el espacio V' tiene una base ortonormal
B = {v1,v9,...,v,} formada por vectores propios de T, esto es T(v;) = \v; para \;
correspondientes, donde ¢ = 1,2,...,n. Asi,

[Aillloil| = [IAaval [ = [T @) = vl

la ltima igualdad se dio debido a que T" es un operador unitario. Asi se tiene que [\;| = 1,
parai=1,2,... n.

(<) Supongase que V' tiene una base ortonormal 5 = {vy,vs,...,v,} donde cada v; es un
vector propio de T' con valor propio correspondiente \; que satisface |\;| = 1, para cada
1 =1,2,...,n. Por el Teorema 2.19, el operador T" es normal, luego,
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por el Corolario 1.23 se tiene que T*T = T*T = I. Esta es una equivalencia a que el
operador 71" sea unitario como se muestra en el Teorema 2.32. |

Definicion 2.38. Sea A € M,,x,(F). Se dice que A es unitariamente equivalente a una
matriz B si existe una matriz unitaria () tal que

B=0Q"AQ.

Se dice que A es ortogonalmente equivalente a una matriz B si existe una matriz ortogonal

Q tal que
B=Q'AQ.

Teorema 2.39. Sea A € M,,»,(C). La matriz A es normal si y solo si A es unitariamente
equivalente a una matriz diagonal.

Demostracion. Sea A una matriz en el espacio M, (C).

(=) Supodngase que A es una matriz normal. Por la Proposicion 2.13 el operador Ly
determinado en la Definiciéon 2.2 es normal. Debido al Teorema 2.19, el espacio C™ tiene
una base ortonormal f = {vy,vs,...,v,} formada por vectores propios de Ly4. Por el
Teorema 1.53 se tiene que el operador L, es diagonalizable. Se sabe que la matriz [L]g
es una matriz diagonal dada por diag{\i, Aa,..., A\, }, donde A; es un valor propio del
operador Ly correspondiente a v; para cada ¢ = 1,2,...,n. Dendtese D = [Lalg, que
satisface D = diag{\1, A2, ..., \n}. Luego [Lals = Q@ 1AQ, donde Q es una matriz de
n X n, en donde la columna 7 es el vector propio v; para ¢ = 1,2,...,n. De este modo
Q*Q =1, ya que (Q*Q)i; = (v;,v;) = d;;. Observe que debido a

QTAQ =Q"A [vl - Un]

=Q" [Avl o Avn}
=Q" [)\1111 e )\nvn}
=Q" [vl vn} D
= *QD

la matriz A es unitariamente equivalente a una matriz diagonal y la invertibilidad de la
matriz () se debe a que () es unitaria.

(«<=) Ahora supdéngase que A es unitariamente equivalente a una matriz diagonal D,
esto es, existe una matriz unitaria ) tal que D = Q*AQ. Asi, por un lado se tiene

AA* = (QDQ")(QDQ")"
= (QDQ)(DQ ) ")
= (QDQ)(QD"Q")
=QDD*Q".
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Por otro lado,

A'A = (QDQ")(QDQ")
= (DR Q")(QDQ")
= (QD*Q")(QDQ")
= QD" DQ"
=QDD*Q".

Lo que implica que A es normal. [ |

2.5. Proyecciones ortogonales

En la Definiciéon 1.31 se introdujo el concepto de proyeccion, un operador lineal cuya
funciéon es asignar a cada vector su proyecciéon sobre un subespacio vectorial. Las pro-
yecciones ortogonales son un caso particular de las proyecciones. De igual manera, estas
pueden dividir el espacio vectorial en dos subespacios, con la diferencia de que ahora estos
dos subespacios son ortogonales entre si.

Definicién 2.40. Sean V un espacio vectorial de dimensién finita con producto interior
(.Y y T : V — V una proyeccion sobre V (véase Definicion 1.31). Si la proyeccion T
satisface que R(T)* = N(T) y N(T)* = R(T), se dice que T es una proyeccion ortogonal.

Teorema 2.41. Sea V un espacio vectorial de dimension finita con producto interior
(-,-). Si W es un subespacio de V' y T': W — W es una proyeccion ortogonal sobre W,
entonces para cualquier v € V', el vector T'(v) es el tinico elemento de W més cercano a
v. Esto es, |[v = T(v)|| < ||Jv — w]|| para toda w € W.

Demostracion. Sean v € V', W un subespacio de V' y T" una proyeccion ortogonal sobre
W. Dado que W es un subespacio de dimension finita, por el Teorema 1.65 se tiene que
V =W @& W+ y como T es una proyeccion ortogonal sobre W, se sigue que W = R(T) y
V =R(T)® R(T)* = R(T)® N(T).
Reescribiendo a v se tiene

v=Tw)+v—T(v),

donde T'(v) € R(T) y (v —T(v)) € N(T), esto debido a que V= R(T) & N(T) y T es
una proyecciéon ortogonal sobre W.
Siw € W, entonces

o —wl* = |lv—w+T(v) = T(v)|]
=l(v = T(v)) + (T(v) — w)|?
=|lv=T)II* +|T(v) = wl]* + (v = T(v), T(v) = w) + (T (v) —w,v = T(v))
= lv = T)II* + |IT(v) — wl]? (2.6)

T
> |lv =TI,
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donde la cuarta igualdad es debido a que v —T'(v) € Wt y T'(v) —w € W, asi se tiene la
desigualdad ||v — T'(v)|| < ||v — w]|| para todo w € W.

Para probar la unicidad, supongase que |[v — w||* = |Jv — T'(v)||? para toda w € W. De
la ecuacion (2.6) se sigue que ||T'(v) — w||?> = 0 para toda w € W, por tanto T(v) = w.
Con esto se prueba que T'(v) es el tnico elemento de W mas cercano a v. |

El siguiente teorema tiene la finalidad de probar que toda proyeccion ortogonal es idem-
potente y tambien autoadjunta.

Teorema 2.42. Sean V' un espacio vectorial con producto interior (-,-) y 7" un operador
lineal en V. El operador T es una proyeccion ortogonal si y solo si 7% =T = T™*.

Demostracion. Sea T un operador lineal en V.

(=) Supongase que T es una proyeccion ortogonal. Asi, como T es una proyeccion, por
el Teorema 1.32 se tiene que T2 =T,

Como T es una proyeccion, por el Teorema 1.33 se tiene que V = R(T) @ N(T) y al
ser T  una proyeccion ortogonal R(T)+ = N(T). Sean v,w € V, tales que v = v; + vy y
w = wy + wy, donde vy, wy € R(T) y vy, wy € N(T).

Por un lado se tiene,

(v, T(w)) = (V1 + vz, w1)
= (v1, wy) + (v2, w1)

= (vy, wy).

Por otro lado,

por tanto (v, T(w)) = (v, w;) = (v, T*(w)), por el Teorema 1.55 se tiene que 7' = T*,
luego T? =T = T*.

(<) Ahora supongase que T? = T = T*. Por el Teorema 1.32 se tiene que T es una
proyeccion.

Falta probar que R(T) = N(T)* y R(T)* = N(T).

Sean v € R(T) y w € N(T). Dado que T es una proyeccion y T' = T se tiene que
v="T(v) =T*(v). Luego,

(v, w) = (T(v),w) = (T"(v), w) = (v, T(w)) = 0,
esto es, v € N(T)*. Por lo tanto, R(T) C N(T)*.
Ahora, sea v € N(T)*+
ly =TI = (y - T(v),y = T(v)) (2.7)
=y —T) - (T(y),y —T()).
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Como T'(v—T(v)) =T(v) —=T(T(v)) =T(v) —T(v) =0, entonces v — T'(v) € N(T). Asi,
de (2.7) se tiene

lo =T ()|[* = -

de aqui v—T(v) = 0, es decir, v = T'(v). Por tanto N(T')* C R(T). De ambas contenciones
se tiene
R(T) = N(T)*. (2.8)

Notese que N(T') C R(T)*. En efecto, si v € N(T) y w € R(T), entonces
(v, w) = (v, T(w)) = (v, T*(w)) = (T(v),w) =0,

esto es, v € R(T)*.
Supoéngase que v € V y w € R(T)*,

<T(w)?v> = <w’T*(v)> = <w’T('U)> =0,

esto es w € N(T). De modo que R(T)* C N(T).
De ambas contenciones se tiene

R(T)*: = N(T). (2.9)

De las ecuaciones (2.8) y (2.9) se concluye que T es una proyeccion ortogonal. |

2.6. Teorema espectral

En esta seccién se presenta el teorema espectral, en el cual se muestra que un operador
normal o autoadjunto se puede descomponer en una combinacion lineal de proyecciones
ortogonales cuyos coeficientes corresponden a los valores propios del operador normal, y
donde se satisface que la suma de estas proyecciones corresponde al operador identidad
de V. Lo anterior permite reescribir un operador normal o autoadjunto como una suma
de operadores “mas simples”. Este y mas resultados se analizan con detalle en la presente
seccion.

Definicién 2.43. Sea T una transformacion lineal en un espacio vectorial V. El conjunto
{A1, A2, ..., A} se llama espectro de T, donde cada \; es un valor propio de T

Con la teoria desarrollada hasta este punto, se cuentan con las condiciones de pre-
sentar el Teorema Espectral, que formaliza la descomposicién de operadores normales y
autoadjuntos en términos de sus valores propios y proyecciones ortogonales.
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Teorema 2.44. Sean V' un espacio vectorial de dimensién finita con producto interior
(-,+) sobre el campo C (respectivamente, R) y 7" un operador lineal en V. Si T' es un
operador normal (respectivamente, autoadjunto), entonces se satisface:

ay V=W & - oW

b) Si W/ denota la suma directa de los subespacios W; para j # i, entonces W;- = W/.
¢) T;T; = 6;;T; para 1 <i,j < k.

d) I=T+ - +1T

e) T =M1\ + -+ NT.

Donde se ha considerado que Ay, Ao, ..., \; son los valores propios distintos de T" y T; :
V — W; es la proyeccion ortogonal sobre el espacio propio W; = {v € V : T(v) = \v}
correspondiente al valor propio A\;, parai=1,2,... k.

Demostracion. Sea T un operador lineal.

a) Supoéngase que T es un operador normal (respectivamente, autoadjunto). Por el Teo-
rema 2.19 (respectivamente, Teorema 2.27) el espacio V tiene una base ortonormal
formada por vectores propios de T', digamos 5 = {vy,vq,..., v} donde v; € W, para

k
i=1,2,..., k. Enla Definicion 1.18 se describe la operacion @, claramente @ W; C V.
i=1
Ahora, si v € V, entonces existen ¢; € C (respectivamente R) tales que

k
v:clvl—f—n-—kckvke@Wi.

i=1
k
i=1

b) Supongase que W/ =@ W, parai=1,2,...,ky w € W;. Siv € W/, entonces existen

J#
w; € Wj con j # 1, tales que v = ij.
J#i
Por el inciso (d) del Teorema 2.14 se tiene que Z (wj,w) =0 = (v,w) , esto es,

JF
w € Wit. Por lo tanto W/ C W.

k
Del inciso (a) del presente teorema resulta que V' = € W;. Debido al Corolario 1.21
i=1
por un lado se obtiene que

dim(W!) = dim <e|9 Wj> = dim(W;) = dim(V) — dim(W;) .
a J#i
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Por otro lado, del Corolario 1.21 se sabe que
dim(V') = dim(W;) + dim(W;*) ,

despejando dim(W:) = dim(V) — dim(W;), como W/ C Wit por el Teorema 1.15 se
concluye que Wt = W/,

¢) Sea T; una proyeccion ortogonal sobre w; pari=1,...,kyv e V.
De acuerdo al inciso (a) de este teorema existen v; € W; para i =1,2,...,k tales que

k
V= E V;.
=1

Caso i # j: Se satisface que T;T;(v) = T;(v;) = 0 = 6;;T;(v).

Caso ¢ = j: Debido a que T; es una proyeccion ortogonal sobre W;, parai =1,2,... k,
se tiene que T;T;(v) = T2(v) = T;(v) = 6;;Ti(v), donde la segunda igualdad se da
por el Teorema 1.32.

d) Si v € V, nuevamente por el inciso (a), existen v; € W, para i = 1,2,...,k tales que

k
v = E v;. Asi,
i=1

con esto, ZTZ = 1.
i=1
k
e) Siv €V existen v; € W; para i = 1,2,... k tales que v = Zvi. Como v; € W, se
i=1
tiene que T'(v;) = A\v;. Luego,

= Z >\iT¢(U) )

=1
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k
por tanto, T' = Z AT,

i=1
De este modo, la demostracion del Teorema espectral queda completa. |
Observacion 2.45. En el Teorema espectral 2.44, la suma [ = T1+- - -4}, se conoce como

la resolucion del operador identidad inducida por T, y la expresion T'= M1 + - - - + A\/T},
se denomina descomposicion espectral de T

Los siguientes resultados son consecuencias directas del Teorema espectral. Estos incluyen
propiedades sobre la descomposicién espectral y de los valores propios de operadores.

Proposicién 2.46. Sean V' un espacio vectorial de dimensién finita con producto interior
(-,+), T un operador normal en V' 'y \;T1 + - - - + M} la descomposicion espectral de T
n

Sig(x) = Z a;x" es un polinomio con grad(g(z)) = n, entonces
=0

Demostracion. Sustituyendo a T' por su descomposicion espectral y utilizando el inciso
(c) del Teorema 2.44, se tiene que

n

g(T) = Z a; T

=0

=aoT’ + ) a;(MTi + -+ + MTL)

=1

=apl + ) a;(MT} + - + MT})
=1

i=1

n

k
=2 1> a,
j=1

i=0
k
=D _Tig(N).
j=1
Con esto, la proposicion queda demostrada. |
Corolario 2.47. Sean V un espacio vectorial de dimension finita con producto interior

(-,+) sobre el campo C y T un operador lineal. El operador T es normal si y solo si existe
un polinomio g tal que 7% = g(T).
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Demostracion. Sea T un operador lineal sobre el espacio V.

(=) Supoéngase que T es normal. Por el Teorema 2.44 su descomposicion espectral de T
esta dada por T = \MT) + - - - + A\, T),. Asimismo, se tiene que 7% = \Ty + - - - + M\, T} va
que cada T; para i = 1,...,k es una proyecciéon ortogonal y en consecuencia autoadjunta,
segun el Teorema 2.42.

Haciendo uso de la interpolacion de Lagrange, se construye un polinomio ¢ tal que
grad(g(z)) =ky g(\) = N\ parai=1,..., k.

Por el Corolario 2.46, resulta que g(T) es:

(<) Ahora si T* = ¢(T)

= (Xk: aiTZ) T

=g(IT
— T*T.

Por lo tanto T" es normal. [ |

Corolario 2.48. Sean V un espacio vectorial de dimension finita con producto interior
(-,-) sobre el campo C y T un operador lineal. El operador 7" es unitario si y solo si T es
normal y |A\| = 1 para todo valor propio A de T.

Demostracion. Sea T un operador lineal.

(=) Supodngase que T es unitario. Por el Teorema 2.32 el operador T' es normal. Sean A
un valor propio de T'y v € V su correspondiente vector propio. Asi T'(v) = Av, como T
es unitario ||7'(v)|| = ||v||. Luego,

[[oll = 1T ()] = [[Av]] = |Allfoll,
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como v # 0, |\ = 1.

(<) Considere que el operador T es normal y |\| = 1 para todo valor propio A de T'. Sea
k

T= Z A T; la descomposicion espectral de T', donde \; es un valor propio de 7'y T} una
i=1
proyeccion ortogonal sobre W; para i = 1,2,..., k. Se tiene que

k k *
T =Y AZ-TZ) >, AT)
z:l 1:1
= ) AT) Zm)
=1 =1
k
=D NPT
z:l
= Z T,
=1

=1,

donde la tdltima igualdad se da por el inciso (d) del Teorema 2.44. Dado que T" es normal
T*T =TT* =1, por el Teorema 2.32 es equivalente a que 7" sea unitario. |

Corolario 2.49. Sean V un espacio vectorial de dimension finita con producto interior
(-,-) sobre el campo C y T un operador lineal. El operador T es autoadjunto si y solo si
todo valor propio de T es real.

Demostracion. Sea T un operador lineal.
(=) Supdngase que T es autoadjunto y que A es un valor propio de T'. Por el Corolario 2.21

se tiene que A es un nimero real.
k

(<) Supoéngase que todo valor propio de T es real. Sea T = Z AT la descomposicion

i=1
espectral de T', luego

k *
T* = Z AT)

asi T' es autoadjunto. |
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Corolario 2.50. Sea T un operador lineal que satisface las hipotesis del teorema espectral
cuya descomposicion espectral es T = AT + - - - + A\ T},. Cada proyeccion ortogonal T es
un polinomio en 7.

t— A
A — A

k
Demostracion. Sea g; el polinomio dado por g;(t) = H parai,j =1,..., k. Este
i=1

i#]
polinomio satisface ¢;(\;) = d;;. Por el Corolario 2.46 se tiene que

g;(T) = Zgj(/\i)Ti

k
= 5T,
i=1
=T.

Por tanto, cada proyeccion ortogonal 7} es un polinomio en 7. [ |




Capitulo 3

Matrices de Jacobi

En diferentes trabajos generalmente antes de mostrar cierta teoria se presenta una
motivacién mediante un problema a resolver. En esta ocasion, se presenta directamente la
teoria, destacando que tiene un valor e importancia propia, basandose en los desarrollos
presentados en [12]. La aplicacion que se muestra posteriormente es solo un complemento
adicional para ilustar su utilidad.

Las matrices de Jacobi son matrices simétricas si se definen sobre el campo de los reales.
Se caracterizan por tener elementos nulos fuera de la diagonal principal y las diagonales
que estan inmediatamente por encima y por debajo. A las matrices que cumplen estas
propiedades sobre sus diagonales, se les conoce como tridiagonales. En este capitulo se
vera la forma general de obtener en principio los vectores propios de una matriz de Jacobi,
posteriormente determinar sus respectivos valores propios mediante las propiedades de
ciertos polinomios que se obtienen del andlisis espectral. Se incluyen diversos resultados
para ilustrar la teoria asociada a estas matrices, algunos de ellos mas complejos que otros.

3.1. Datos espectrales de matrices de Jacobi

En los textos de algebra lineal se aborda el tema de valores y vectores propios para ma-
trices cuadradas generales y que comunmente se imparten en los cursos de algebra lineal
II. Los valores propios A de una matriz A son tales que satisfacen la ecuacion Av = v
para v # 0, esto es (A— Al )v = 0. Para que exista una solucion no trivial v # 0, el sistema
homogéneo (A — AI)v = 0 no debe tener unicamente la solucion trivial v = 0. Esto sucede
si A — Al no es invertible, es decir, det(A — AI) = 0. Luego los valores propios son las
raices del polinomio caracteristico p(A) = det(A — AI), teniendo ya los valores propios se
pueden encontrar sus respectivos vectores propios. En este trabajo de tesis se muestra una
manera alternativa de encontrar tales valores y vectores propios de una matriz de Jacobi.
En principio, los vectores propios se encuentran, por decirlo de alguna manera, antes que
los valores propios y de una forma mas sencilla. El enfoque de esta seccion es determinar
dichos valores y vectores propios que Marchenko en [13] define como los datos espectrales.

41
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Para la siguiente definicion, se utilizara la nocion de matriz autoadjunta (véase Defi-
nicién 2.22).

Definicion 3.1. Sea A € M, «,(F) una matriz autoadjunta. Al conjunto formado por
valores y vectores propios se denominan datos espectrales de la matriz A.

Definicién 3.2. Una matriz de Jacobi es una matriz simétrica que tiene la forma:

aq b1 0 s 0
by ax by
0 bQ as
J, = (3.1)

Qp—2 bn—? 0
bn72 an—1 bnfl
0 e 0 b1 ay

donde a;,b; € R, con la condicion b; # 0, para i = 1,2,...,n.

Ejemplo 3.3. Algunas matrices que son de Jacobi son las siguientes

2100

>~ 1 3) o\ 5 6/ 710 5 28
0080

Y algunas matrices que no lo son
3 201
3 -1 0

30 2150
a=(1s). m=(1 o8] o=l 07
1071

Estas matrices no son Jacobi porque tienen elementos distintos de cero fuera de la banda
tridiagonal o bien, no es simétrica.

Si 3 es la base canonica de R™, por la Observacion 2.3 se tiene que [Ly, | = J,,. Debido
a que las matrices de Jacobi son simétricas por la Proposicion 2.23 se obtendria que el
operador L; es autoadjunto.
A continuacion se muestran algunas propiedades de los datos espectrales de una matriz de
Jacobi. Sea A un valor propio de J, y ¢ = (¢, ¢a, ..., ¢,)" un vector propio de J,, asociado
a A. Esto es, satisfacen la ecuacion

Jnc = Ac. (3.2)
Equivalentemente (3.2) genera un sistema de ecuaciones en recurrencias dadas por
aicy + blcg = /\Cl, (33)
bi—1ci—1 + ai¢; + biciy1 = gy,
bp_1Cn_1 + ApnCp = Acp, (3.5)

para i = 2,...,n — 1. Ahora el enfoque esta en resolver el sistema anterior.
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Observacion 3.4. Si ¢; = 0, de la ecuacion (3.3) se tendria que co = 0 debido a que
by # 0. Con el mismo anélisis para la ecuacion (3.4) para i = 2,...,n — 1, se obtendria
civ1 = 0. Por lo tanto ¢ = 0, lo cual es una contradiccién debido a que ¢ es un vector
propio de J,.

Proposiciéon 3.5. Dada una matriz de Jacobi J,, definida en la ecuacion (3.1), existe una
sucesion de polinomios { Py, Ps, ..., P, 1} con grad(P;) =i, parai =1,...,n— 1, tal que
para cualquier vector propio ¢ = (cy,¢a, ..., ¢,) asociado al valor propio A de la matriz
Jn, se satisface ¢ = k(1, Py(A\), Po()A), ..., P,_1()\)), para alguna constante k.

Demostracion. Por lo mencionado en la Observacion 3.4, supoéngase que ¢; # 0. Despe-
jando ¢y de la ecuacion (3.3), se tiene que

A—a
Co :Cl( b 1) :Clpl()\)v
1

donde \
P == 4 (3.6)
1

Note que grad(P;) = 1.
De la ecuacion (3.4) para i = 2, resulta

)\62 — b101 — A92Co
C3 =
by

_)\Cl )\—al bl a92Cq )\—al
_E( b )_Ecl_b_g( b )
e [i(k—%)_@(hal)_ﬁ]
e\ b b\ b by

= Clpg()\),

A )\—al as /\_al bl
Py(A) = — - — - —. 3.7
2 b2<b1) bz(bl) by 3D

Note que grad(Py) = 2.
Asi sucesivamente, de la ecuacion (3.4) se tiene que ¢;41 = ¢1 P;(\), con grad(FP;) = i, para
i=3,...,n— 1. Por lo tanto, ¢ = ¢;(1, PL(\), Px(A), ..., Po_1(\))%. [ |

donde

Observacién 3.6. La Proposiciéon 3.5 establece que todo vector propio de la matriz de
Jacobi J, asociado a un valor propio A, es un miltiplo escalar de un vector que tiene la
forma (1, Py(N), Pa(A), ..., P,—1())). Por consiguiente, sin pérdida de generalidad se toma
c1 = 1y asu vez se considera Fy := 1.

Con la finalidad de clarificar aiin mas el algoritmo anterior se presenta la siguiente
proposicion, para la cual se introduce primero la nocién de coeficiente lider.
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Definicién 3.7. Sea P un polinomio de grado n expresado en su forma estandar:

P(z) = ap2™ + ap12™ -+ arx + ag

donde a,,...,aq son escalares en un campo F' vy a, # 0. El coeficiente lider de P es el
coeficiente a,, es decir, el coeficiente que multiplica al término de mayor grado x".

Proposicién 3.8. Dada una matriz de Jacobi J,, definida en la ecuacion (3.1) y los poli-
nomios P; dados en la Proposicion 3.5, el coeficiente lider denotado por «; del polinomio
Pyconi=1,...,n—1, estd dado por o; = (b1by... ;) .

Demostracion. Considerando ¢; = 1 (véase Observacion 3.6), se tiene de la ecuacion (3.6)
que

donde R;(\) es un polinomio tal que grad(R;()\)) = 1. Sucesivamente por construccion
se tendra de la ecuacion (3.4) que

1
P(\) = F()\Pi—l()\) —a; P 1 (A) = b1 Pio(N))
1 , iPi_1(A bi—1 P2 (A
= E)\(O!i—lAz_l + Rz—Q(A)) - - bl( ) - - b 2( )
_ Qi1 N )\3172()\) _ aiPz‘q()\) _ biflpifZ()\)
A )\Ri;Q(/\) _ az‘Pi;()\) _ b¢—1Pbi—2()\)

= Oéi)\i + szl()\)

donde los polinomios R;_2(\) v R;—1()\) son tales que cumplen con grad(R;_2()\)) =i —2
y grad(R;—1(\)) =i — 1.
Por lo tanto, o; = (byby...b;)" es el coeficiente lider para i =1,2,...,n — 1. [ |

La Proposicion 3.5 y la Proposiciéon 3.8 involucran todas las ecuaciones del sistema que
genera (3.2) salvo la ultima ecuacion (3.5). Para que se satisfaga completamente el sistema,
debe analizarse la expresion

bn_lpn_2<>\) + CLnPn_l(/\) — >\Pn—1()\> = O . (38)
La parte izquierda de la ecuacion (3.8) es un polinomio que se define por

Q()\) = /\Pn_1<>\) - CLnPn_l()\> - bn—lpn—2<>\)7 (39)
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donde grad(Q) = n.

La teoria presentada hasta este punto, muestra la forma de los vectores propios en términos
de los valores propios. Ahora, un modo de determinar los valores propios de una matriz
de Jacobi J,, es mediante la siguiente afirmacion.

Proposiciéon 3.9. Sean J, una matriz de Jacobi y @ el polinomio dado en (3.9). Los
ceros del polinomio ) son los valores propios de la matriz J,,.

Demostracion. La ecuacion (3.2) es equivalente al sistema de ecuaciones en recurrencias
dadas en (3.3), (3.4) y (3.5). De acuerdo a la Proposicion 3.5, si Ao es un valor propio de
Jyn, entonces el vector (1, Py(Ag), Pa(Xo), -, Pu_1(Xo)) es un vector propio asociado a g,
donde los polinomios P;(\) satisfacen las ecuaciones (3.3) y (3.4). Al sustituir este vector
en la ecuacion final del sistema (3.5), se obtiene

bn—1Pn-2(No) + anPr1(Ao) = Ao Pr-1(Xo),
lo cual es equivalente a la ecuacion (3.8), por tanto de la ecuacion (3.9) se obtiene
Q(No) 1= bu1Pn2(Ao) + an P 1(Xo) — AoPr1(Ao) = 0.

Con esto se tiene que Ay es una raiz del polinomio Q). [ |

La matriz del siguiente ejemplo es un matriz de Jacobi y debido a la teoria presentada en
esta seccion facilita el calculo de sus datos espectrales.

Ejemplo 3.10. Dada la matriz de Jacobi de n x n por

0 % 0 0
1 1
;2 U3
05 0
Jp = -
1
2
2 0
0 0 5 0
se analizaran sus datos espectrales.
Un vector ¢ es un vector propio de J, si se satisface
Jnc = Aoc. (3.10)
Sean a; = (1,¢,...,t" ) yas = (1,1,..., )" Sias es un vector tal que satisface (3.10)
entonces
1
—t =)\
9 0>
1 . 1 . )
72 =)\t 3.11
92 + 9 0 ) ( )

1
it”*"' =Nt (3.12)
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para i = 2,...,n — 1. Analogamente para ay se cumple
1
~ )\
2% 05
1 1 1
T TR (3:13)
1 1
Sz =0T (3.14)
De las ecuaciones (3.11) y (3.13), las cuales son equivalentes para valores i = 2,...,n—1,

se tiene que

Ao = % (t + %) . (3.15)

La forma de los vectores a; y as permiten considerar a estos como posibles soluciones de
(3.10). Sin embargo, de las ecuaciones generadas por (3.10), el valor de )\, dado en (3.15),
solo se satisface en las ecuaciones (3.11) y (3.13), esto es, falta satisfacer las ecuaciones
(3.12) y (3.14). De este modo, a continuacion se propone la solucion mediante el método
de variacion de parametros comtnmente utilizado en la teoria de ecuaciones diferenciales
(véase [5, Secc. 2.4]) el cual consiste en proponer la solucion ¢ de la forma

Cc = (Cl, Co, ... ,Cn)t = fl(t>a1 + f2<t)a2 s (316)

esto, con el fin de determinar las condiciones sobre f; y fo, para que finalmente la ecuacion
(3.16) determine la solucion de (3.10).
Las componentes del vector ¢ definido en (3.16) satisfacen,

o= HMET+ O, i=1,2,...,n. (3.17)

Si ¢ es un vector propio, es decir, satisface (3.10), entonces se genera el sistema

1
502 :/\001, (318)
1 1
50];1 + §Cj+1 :)\QCj, (319)
1
écn_l :/\()Cn (320)

para j = 2,...,n — 1. La ecuacion (3.19) se cumple al sustituir (3.16), utilizando (3.11) y
(3.13), por lo que basta conocer bajo qué condiciones satisface (3.18) y (3.20), ya que estas
ecuaciones sustituyen a (3.12) y (3.14). Para esto se sustituye (3.17) en la ecuacion (3.18)
y (3.20). De esto se tiene que

fi(t) (%t - Ao) + fa(t) (2% — Ao) =0, (3.21)
fi(®) (%t”Q — Aot“) + fa(t) (%tn% - AO%) =0. (3.22)
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Se verifica que las soluciones de las ecuaciones (3.21) y (3.22) estan determinadas por

fi(t) = o — 2% y fo(t) = % — Ao-
Retomando el vector propio dado en (3.16), al sustituir las funciones f; y fa, se tiene que

1 o
1 t t t1 (2 — 42

c= fil)ar + fo(t)az = (AO — §> : + (5 — )\0) : S :
! oD (" —t7")

Por otro lado, al considerar t = ¢*?. donde ¢ es un dngulo a determinar, de la ecuacién
? ) b

(3.15) se tiene que
(3.23)

=3[t

; (t + 1) = % (ew5 + e_id’) = cos(¢).

1

Ademas, 3(t" —t7") = isen(r¢), asi

isen(¢)
isen(2¢)
c= .

i sen.(ngzﬁ)

De la Observacion 1.35, los vectores propios de J,, son de la forma

1
sen(2¢)
en(@) (3.24)

sen('mb)

sen(9)

asociado al valor propio A¢ que satisface (3.23). Para determinar explicitamente éstos, se

analizan las siguientes ecuaciones
(3.25)

A+ fo()t =0,
(3.26)

f1(t)t2(n_1)+1 + fg(t)t_l _ 07

que se obtienen de sustituir (3.16) en (3.18) y (3.20). Multiplicando a (3.26) por —t* y
sumando (3.25) se tiene f;(¢)(t~! — t2+D+3) = 0. Lo cual implica que

t2(n+1) =1.

De esta forma, las raices n—ésimas de t se describen mediante
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y de la ecuacion (3.23) se obtiene que los valores propios satisfacen

A —cos( hm ) , (3.27)

n—+1

para k = 1,2,...,n . Concluyendo que los datos espectrales estan determinados por (3.27)
y de (3.24) su correspondiente vector propio es

B sen(j arc cos(A)) sen(n arc cos(Ag))\'
&= (1’ ~ 7 sen(arccos(Ag)) 777 sen(arccos(A)) ) ' (3.28)

En el siguiente ejemplo se aplica el teorema espectral a una matriz de Jacobi, mostran-
do explicitamente los subespacios propios, operadores proyeccion, entre otros resultados
presentados en el capitulo anterior. El objetivo es ilustrar el alcance e importancia del
teorema espectral, al igual que mejorar su comprension.

Ejemplo 3.11. Un caso particular del Ejemplo 3.10 para el caso n = 3, esta dado por la
matriz

J3 =

o= O
N= O N
ok O

Los vectores propios de J3 tienen la forma dada en (3.28) mientras que los valores propios
se determinan por (3.27), donde n = 3 y k = 1,2, 3. Obteniendo que sus respectivos datos
espectrales estan dados por

1 —1
M= Ma=0, A= _—.
1 \/5 2 3 \/§
1 1 1
G = \/§ ; Cy = 0 ) C3 = _\/E
1 —1 1

Observe que el conjunto {cy, ¢z, c3} es un conjunto ortogonal. Teniendo los vectores propios
de J3 se definen los espacios propios correspondientes a cada valor propio. Esto es,

1 1 1
Wi=genq | V2| ¢, Wa=gen 0]p, Ws=geng |-V2
1 —1 1

Por el Teorema 1.14 se tiene que Wy, W5, W3 son subespacios de V. Utilizando el Teorema
1.17 se obtiene que Wy + W5 4+ W3 también es un subespacio de de V. Ahora, observe que
dim (W, + Wy + W3) = 3. Por el Teorema 1.15 y Corolario 1.21 se concluye que

W1@W2@W3:R3.
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Considere los subespacios W/ dados por W| = Wy W3, W) =W, & Wy, Wi =W, & Ws,
estos cumplen W/ = W para i = 1,2,3. En efecto, como

W{:{wl—l—wg:lelengWg}
= gen {02503}7

para todo u € W y v € W/ se tiene que existen aj,as, a3 € R tales que u = ajc; y
UV = A9Cy + azcy. Asi

(u,v) = (aic1, ascy + ascs)
= (aicy, ascz) + (aicy, ascs)
= a1az(c1, ¢2) + aras(ci, c3)
=0
donde la tltima igualdad se da debido a que {c;, ¢, c3} son ortogonales. Anélogamente,

se satisface el caso 1 = 2, 3.
Sea (r,v,2)! € R® y considere los operadores T; para i = 1,2, 3 dados por

1 T+v2y+2
x 2 T 1
_ | L 11 1 _ | z+V2y+z
rlw|=1H| G oF o3 (v] =]
z % o z+V2y+2
4
1 T—2
x V2 x 2
1 —1
z =1 z Z—x
V2 2
1 x—\/§y+z
x 2 x 4
_ | = 1 =1 1 —z+V2y—z
Tzly | = V2 (2 V2 2) Yyl = 2—\/;
z % z z—ﬁy+z
4

De manera general, los operadores T; para ¢ = 1,2, 3 se pueden expresar mediante

t
EZHMP,z_Lza (3.29)

Estos operadores satisfacen T; = T? = T} para i = 1,2, 3, asi que por el Teorema 2.42 se
tiene que cada T; es una proyeccion ortogonal. En efecto
t ¢ i
cict e ¢ (i, e) ¢

T? = - =T;. (3.30)
el leal > leall el > [les]]

o\ 1 — 1
Tz’* _ ( CiC; > _ (Cicg)* _ cltet — CECi =T.

e/ el I? el el P
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Ademés, satisfacen que

t ¢ ¢
C;C: Cjcj C; Cj .
T.T; = — = (¢iycj)——= = 0;;Ti. (3.31)
S el el el

Por lo tanto, de (3.30) y (3.31) se tiene que 7;T; = 6;;T, para i,j = 1,2, 3.
Para un elemento z € R3, se tiene de la ecuacion (3.29) que
cick (z,¢;)

Ti(x) = T = ¢, 1=1,2,3,
[l 2 [l 2

dado que a = {(x,¢;)/||ci||* € R. Se sigue que ac; € W;, lo que implica que T} es una
proyeccion sobre W;, para 1 = 1,2, 3.
Considere las proyecciones ortogonales sobre cada W;, para ¢ = 1,2, 3 dadas por Ty, T5, T3

v (z,y,2)! € R3. Estas proyecciones ortogonales satisfacen que

x+\/§y+z T—z z—\/iy—s—z
3 x 4 2 4
T. — -+ 2y+z 0 —z+\/§y—z
Z i\ 2v/2 + * 2v2
=1 z T4v2y+z z—x z—\2y+z
1 2 1
T
z

Esto es, la resolucion de la identidad. Ademaés, note que

z+V2y+2 z—V2y+z2
x x T 1 4 1 4
MOy | +XDL |y +XT5 |y G —I+;/j%+z ) —_M;\%y_z
z z < T+V2y+z T—V2y+z
1 1
X % z N
=lztz|=T{¥]|:
s z

es decir, \{T1+X o To+A3T5 = T, esto es, la descomposicion espectral. Por todo lo mostrado
anteriormente, se verifica que en este caso particular se satisfacen todas las conclusiones
del teorema espectral.

Retomando las propiedades de las matrices de Jacobi, la siguiente afirmacion propor-
ciona una condicién para garantizar que los valores propios de una matriz de Jacobi sean
positivos, haciendo uso de la Proposicion 2.29.

Proposiciéon 3.12. Sea J, una matriz de Jacobi de n x n dada por la ecuacion (3.1) con
a; > 0. Si se satisface la condicion a;a; ., > 4b? parai = 1,2,...,n— 1, entonces la matriz
J, es definida positiva.
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Demostracion. Sea v = (ry,%9,...,Tn_1,T,)" un vector no nulo. Para mostrar que la

matriz J,, es definida positiva, de la Definicién 2.28 se debe probar que
2t > 0.
En ese sentido, se tiene que

a1ry + blfL’Q
t
T JniU = (.771, R R ,l‘n) bi—lmi—l + a;r; + bixi—i-l

bn—lxn—l + ApTp

n—1
= 242 2
= a;T; + 20,2541 | + any,

i=1
nz_l a;w? L Ty a;z? Ly o, n anx? n anz?
= — Tiki
—~ 2 2 i 2 2
n—1 2 2 2
a;x: 2bx anT an
> — 4 20,77, nn o
> ; Tttt +1> +

2
n—1

_alazl n V2biz; \/ai+1$i+1 _'_%

1 aH—l \/§ 2

1=

> 0.

La condicion a;a;1, > 4b? se utilizo al proponer la primer desigualdad, concluyendo que
la matriz J,, es definida positiva. |

Observacién 3.13. La condicion a;a; 1, > 4b? presentada en la Proposicion 3.12 no es
necesaria para garantizar la positividad de una matriz de Jacobi. En efecto, considere la

siguiente matriz
3 -1
=43 7)

la cual es definida positiva ya que dado cualquier z* = (21, 22)" # 0

o' Ar = 323 — 2wy9 + 25
=225 + (11 — 1)?

> 0,

pero no cumple la condicion ajay > 402, pues aja; = 3 # 4 = 4b2.
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3.2. Polinomios generados por una matriz de Jacobi

Tal como se establece en la Proposicion 3.5, una matriz de Jacobi J,, determina
un conjunto de polinomios Fy, Py, P, ..., P,_1 que tienen una relacién estrecha con los
vectores propios de la matriz , estos polinomios desempenan un papel fundamental para el
estudio del anélisis espectral. En esta secciéon se analizaran mas propiedades que satisfacen
estos polinomios.

Definicién 3.14. Se denominan polinomios generados de la matriz de Jacobi J, a los
polinomios {Fy, P, Ps, ..., P,_1} descritos en la Proposicion 3.5 y Py := 1, tomando en
consideracion la Observacion 3.6.

Lema 3.15. Sean J, una matriz de Jacobi en M,.,(R) v Py, Py, ..., P,_1 los polinomios
dados en la Definicion 3.14. Para variables arbitrarias A y p, dichos polinomios satisfacen
que

n—2

Pi(A = bn1[Po1(A) Pooa(pt) — Poo1(p) Poa(A)]-

1:0
donde b,—1 = (Jp)n—1n, esto es, la n — 1,n componente de la matriz J,, (véase ecuacion
de (3.1)).

Demostracion. En consideracion a la Proposicion 3.5, los polinomios Fy, Py, ..., P,_1 sa-
tisfacen las n — 1 ecuaciones del sistema generado por la ecuacion (3.2), las cuales se dan

n (3.3) y (3.4). Asi que para valores arbitrarios A y u se satisfacen tales ecuaciones, esto
es,

a1 Po(\) + P (N) =APy(\), (3.3 a)
ay Po(e) + b1 Py(p) =pPo(p), (3.3 b)
bi_lp'_g()\> + a; P 1()\) + bsz(/\) :>\Pi_1<>\), (34 a)
bi-1Pia(p) + aiPiy(p) + biPi(p) =pPi—a (1) (3.4 b)

para ¢ = 2,...,n — 1. Multiplicando (3.3 a), (3.3 b), (3.4 a), (3.4 b) por Fy(u), Fo(N),
P,_1(1) y P,—1()), respectivamente, para posteriormente restarlas, se tiene que

(A = ) Po(AN) Po(p) =b1(PL(A) Po(p) — Pr(p) Po(N)),
(A = ) PL(A) Pr(p) =b1(Po(N) Pr(p) — Po(p) Pr(N)) + ba(Pr(p) Po(A) — Pr(A) Pa(p)),
(A = 1) Pt (NPt (1) =bi1 (Pra(N) Py (1) — Pra(p) Pa (V)
+ bi(Pi1 () Pi(A) — P (M) Fi(p).-

Sumando las tres igualdades anteriores se obtiene

n—2

Pz = by, I[Pn—l(/\)Pn—2<N) - Pn—l(:u)Pn—2()‘)]a

7,:0

para valores arbitrarios A y pu. [
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Teorema 3.16. Sean J,, una matriz de Jacobi en M, «,(R) y Py, Py, ..., P,_1 los polino-
mios dados en la Definicién 3.14. Todos los valores propios de la matriz .J,, son distintos.

Demostracion. Sean Py, Py,...,P,_1y @ los correspondientes polinomios generados por
la matriz J,, que estan dados en la Definicion 3.14 y la ecuacion (3.9) respectivamente.
Por el Lema 3.15 se cumple que

n—2

(A= 1) D PN Pi() = bt [Pt (A) Pacz (1) = Pt (1) Pa—a (V)] (3.32)

i=0
De la ecuacion (3.9) evaluando en p y A se tiene
anPr1 (1) + bp1 P2 = Py — Q). (3.33)

ClnPn_l()\) + bn_lpn_g = )\Pn—l — Q(/\) (334)

Multiplicando (3.34), (3.33) por P,_1(u) v P,—1(\) respectivamente para después restarlas
se obtiene

b1 (Pp—2(p) Pae1(A) = P2 (A) Pac1 (1)) =(p — A) Pt (M) Poca (1) + Q(A) P (1)
— Q) Pa-1(A). (3.35)

Sustituyendo la parte derecha de (3.35) en (3.32) se tiene que

(= 1) Y POVR(R) = (1 = DPas(NPaa() + Q)P (1) — Qi) Paa (V).
esto es,
>~ POP() = 3@ Pacs (1) = Q) Poca (V). (3.30)

Si en la ecuacion anterior se hace tender A — p, por un lado haciendo uso de la regla de
L "Hoépital en la parte izquierda de (3.36) se tiene

lim (ﬁlu@(x)alw) - @(u)PMu))) QU P () — QWP (). (337)

Por otro lado, de la parte derecha de (3.36) se tiene que

n—1 n—1
lfm PN P, =Y P}u)>1. 3.38
50 (u)) > > 539
Por lo tanto de (3.36), (3.37) y (3.38) muestra que si pu es un valor propio, entonces
Q(r) = 0y Q' (i) no se pueden anular en tal valor, por tanto el polinomio ) no tiene
raices con multiplicidad mayor a 1, lo cual prueba que la matriz J, tiene valores propios
distintos. (]
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Observacion 3.17. Por la Definicién 1.51 y el Teorema 3.16 las raices del polinomio
caracteristico son los valores propios de la matriz J,, asi el polinomio () definido en la
ecuacion (3.9) y el polinomio caracteristico son iguales, a excepcion de un factor constante.

La Observacion 3.17 muestra la relacion existente entre la teoria presentada en esta
seccion con la teoria que comunmente se presenta en libros clasicos de algebra lineal (vease
[8, Secc. 5|). Mediante el siguiente ejemplo se mostrara a detalle lo ya mencionado.

Ejemplo 3.18. Dada la matriz J;, una matriz de Jacobi de 3 x 3, se procederéa a deter-
minar sus vectores propios. Sean

aq b1 0 C1
Js=1b1 ax by|, c=[c2],
O b2 as C3

donde ¢ € R? es un vector no nulo.
Por un lado, de la ecuacion Jsc = Ac¢ y considerando ¢; = 1 (vedse Observacion 3.6) se
tiene el siguiente sistema:
ay + b1C2 = )\,
bl + ascy + bgCg = )\CQ,

bQCQ + ascs = )\Cg.

Despejando ¢y v c3, se obtiene

A aq
¢ = Pi(X) b b
1 as + aq amay by
= Py(\) = A — A L
“ 2( ) b1b2 blbz * (blbg bz)
El poliniomio Q(\) esta dado por
Q(A) =APy(A) — azPa(A) — baPi(A)
1 as + aq aias by Ao
=(\ — 2\ — A B 1 Y N At
A by (b1b2 bz)} 2 <61 b1>
—1
:W[_A3 + (a?) + ag + al))\Q + (b% + b% — a1a9 — G203 — CL16L3)>\
102

+ a1a2a3 — a;;b% — albg].
Por otro lado, el polinomio caracteristico R se define de la siguiente manera
a; — A bl 0

R(/\) = det(J3 - )\I) = b1 a9 — A bg
0 bQ as — A
:(a1 — )\)[agag — )\ag — )\Gg -+ )\2 — b%] — bl [blag — bl)\]
= — N+ (ag + ag + a))N? + (b + b2 — ayay — asas — ajas)\

2 2
+ a1a9a3 — agbl - CL1b2.
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Como se afirma en la Observacion 3.17, los polinomios ) y R coinciden salvo por un
factor constante. En consecuencia tienen las mismas raices, lo que implica que los valores
propios de J3 no cambian sin importar el polinomio utilizado para encontrarlos.

3.3. La funcién espectral

En la Definicion 3.14 se presentaron los polinomios Fy, Py, ..., P,_1, los cuales seran
retomados a lo largo de esta seccion para el desarrollo de nuevos resultados. Ademaés,
se introduce la funcién espectral asociada a una matriz de Jacobi. Como se sabe bien,
los datos espectrales caracterizan completamente a un operador lineal. Por ello, se busca
construir una funcién que preserve dicha informacion espectral de una matriz de Jacobi
J,. Para alcanzar este objetivo, se trabajard directamente en el espacio de polinomios
P,,_1, en lugar del espacio C™.

Teorema 3.19. Sean J, una matriz de Jacobi en M, ., (R) vy Py, Pi,..., P,_1 los poli-
nomios dados en la Definicion 3.14. Los polinomios pertenecen al espacio P, 1, el cual
denota al espacio de todos los polinomios con grado menor o igual a n — 1. Los polinomios
forman una base en el espacio P,,_1.

Demostracion. Sean 3 = {1,\,...,A\""!} la base canénica del espacio P, 1y S € P,_;
un polinomio arbitrario. Como [ es una base, existen aq,...,a,_1 € R tales que
n—1
S =) (3.39)
k=1
Observe que A* puede ser representado de la forma
k
= "biRri(N), (3.40)
i=0
donde R; es un polinomio de grado ¢ y b; escalar para ¢ = 0,1,...,k. En efecto, si se

considera a R;(\) = ch + A+ -+ I\ y ¢! # 0 entonces,
A= (boc) + bicy + bacp + -+ + breh) + (bicy + bact + -+ bpeh)A + -+ - + (brcp) AF,

con cF, by escalares, para i = 0,1,..., k. Esto implica encontrar la soluciéon del siguiente
sistema:

Do + bich + bacg + -+ bpch = 0,
blCi + bQC% + -+ bkclf = 0,
bock + -+ + bpck = 0,

biC§ = 1,

el cual se puede reescribir en forma matricial por
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& ck bo 0

0 2 ¢ b by 0
Ab=10 0 & ck ba | =1]:1,

S I : 0

00 0 - cF b 1

donde A es una matriz triangular superior, cuyos coeficientes de la diagonal principal son
i

distintos de cero, asi que det(A) = H cf # 0. Por la Proposiciéon 1.45 se tiene que A es

k=0
invertible. Por lo tanto,
bo 0
by 0
b=|b2| =A7" [ 1],
: 0
b; 1

lo que prueba que \* puede ser representado como en (3.40). Ahora, para la unicidad,
supongase que la representacion de \* a traves de (3.40) no es tinica. Esto es, sean

k k
=D bhiRi(\), M=) diRi(N).
i=0 =0
Restando las dos igualdades anteriores, se tiene
k k—1
0=> (b —d) = (b — d))Ri(\) + (b, — di) Re(N\)
i=0 =0
k—1
=D (b = di)Ri(\) + [(by — di)eg + (b — di)fA + -+ (b — di)efA]. (3.41)
=0

De la hipétesis, cf # 0, esto es, b, — dy = 0, asf by = dj. De modo que (3.41) se reduce a
k—1

Z (b; — d;)R;(\). Bajo el mismo argumento, se tiene que by_; = di_;. Lo que probaria
i=0

de forma recurrente que b, = dy para k = 0,1,...,n — 1. Por lo tanto la representacion
de \* es tnica. Sustituyendo (3.40) en (3.39) se tiene

Z a; Z kak

=0 =

Dado que Ry es un polinomio abitrario de grado k, en particular se pueden considerar los
polinomios P, para k = 0,1,...,n — 1, los cuales estan descritos en la Definicion 3.14.
En la Proposicién 3.5 se establece explicitamente que el grado de cada P, es k. Como
cualquier polinomio S € P, ; puede expresarse como combinacién lineal de los Py, se
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concluye que los polinomios Fy, P, ..., P,_1 forman una base en el espacio P,,_;. |

Como se mencion6 al inicio de la seccion, es necesario trasladar el analisis desde el espacio
C" al espacio de polinomios P,,_;. Para lograr esto, se introducira la transformada discreta
de Fourier, cuya definicién se presenta a continuacion.

Definicién 3.20. Sean z = (z1,22,...,7,)" € C" un vector y Py, Py,..., P,_1 los po-
linomios dados en la Definicion 3.14. La transformada de Fourier discreta del vector x
denotada por 7 esta dada por

EA) =) apPia(N). (3.42)

Observacién 3.21. La transformada de Fourier es un mapeo lineal del espacio C" al
espacio de polinomios P,_;. Por el Teorema 3.19 los polinomios Py, Py, ..., P,_; forman
una base del espacio P,,_1 y cada vector x € C™ determina de forma tinica una combinacion
lineal de estos polinomios, lo cual garantiza que la transformada es un isomorfismo entre
estos espacios.

Mediante el proceso de ortonormalizaciéon se obtiene una base ortonormal de C", formada
por elementos en C”

e HZH T : g(PO()‘j)apl(Aj)apz()\j)--"Pnfl()‘j))t> (3.43)
ZR?(%‘))

Estos vectores se utilizaran para poder expresar el producto interior de un vector x € C"
con cada vector u; en funcion de la transformada de Fourier discreta, tal como se muestra

a continuacion
n

Z:L’kpk_l()\j) _
(2, uy) = 221 ) (3.44)

donde {x}}_, son las coordenadas del vector x en la base canonica de C" y u; el vector
unitario definido en (3.43). Para elementos x,y € C" se tiene que

x:Z(x,ui>ui, y:Z@aujoa

i=1 j=1

esto debido a que el conjunto de vectores u; es ortonormal y utilizando el Teorema 1.63.




58 3.3. La funcién espectral

Luego,

<$, y) = <Z <x7 ui>ui7 Z <y7 uj>uj>

i=1 j=1

= Z <Z T, i) Ui, (Y, Uj) U >
= Z Z (2, uiyug, (y, uj)ug)

=1 i=1

=0 awg) (y, ) (s, ug)

j=1 i=1

= Z (z,u;) (y, uj)
g(A\j)
_Z P2(N)’

donde g(\) es la transformada de Fourier del vector y, que resulta de sustituir (3.44).
El daltimo término de la igualdad anterior puede ser expresado como una integral de
Riemman- Stieltjes (véase [3, Secc. 7.9]). Asi

(z,7) = / HNFO) do(N), (3.45)

donde p : R — R es una funcién escalon no decreciente, constante en todas partes

a excepcion de los puntos donde ocurren los saltos, que son A, A\g,..., A, y cero para
)\ < )\17 y
1
o PEOV)

La ecuacion (3.45) se justifica de la siguiente manera: sea p una funciéon no decrecien-
te y continua a la izquierda, para —oo < A < oo y S una funcién arbitraria con-
tinua. Si se toman subintervalos semi-abiertos y disjuntos del intervalo [a,b), esto es
lag,a1), a1, as), ..., [an, any1), (00 < @ = ag < b = a,41 < o0), entonces la suma de
Riemman-Stieljes para la funcion S en todo el eje real esta dada por

Ap(Aj) = p(Aj +0) — p(A; — 0) = (3.46)

ZS &) (plajin) — play)),

donde ¢; € [a;,a;41). Luego, la integral de Riemman-Stieljes de S en todo el eje real es

500 dpn) = 1[50 o).
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Si la funcion p es una funciéon escalon, no decreciente, constante en todas partes a excepcion
de los puntos donde ocurren los saltos, que son Ay, Ao, ..., \,, cuyo valor del salto es
Apj = p(A; +0) — p(A; — 0), se cumple que

[ 500 o) = 3" 500, (3.47)
R s
La ecuacion (3.47) se deriva directamente de [3, Teo. 7.11], que aborda la reduccion de

una integral de Riemman-Stieltjes a una suma finita.

Lema 3.22. Dada una matriz de Jacobi J de n x n, existe una funcién escalén p: R — R
asociada, la cual es no decreciente y constante en todas partes. Esta funcién presenta
exactamente n saltos y la suma de los valores de dichos saltos es 1.

Demostracion. Sea ey el primer vector de la base canonica del espacio C™ y €; su trans-
formada de Fourier. De las ecuaciones (3.42), (3.45) se obtiene que

L= (ernes) = (@i, = (R R), = [ ROV o) = 3 8900

Por lo tanto la suma de los saltos de la funcion p()\) es igual a 1. |

A continuacion se muestran propiedades que satisface el producto escalar dado por (3.45)
y que permitiran definir un producto para el espacio P,,_; .

Lema 3.23. Sea p : R — R una funcién escalon, no decreciente, continua por la izquierda
v que cumple con las implicaciones de (3.45). Si R, S son polinomios arbitrarios en el
espacio P,,_; sobre el campo R, se satisfacen las siguientes propiedades

a) /R R(NR(N) dp(\) > 0; /R R(NR(N) dp(\) = 0siy solo si R(\) = 0.

Demostracion. a) Considerando que R(\) # 0, se tiene que

/ ROVERY dp(A) > 0.
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Para el caso en que R(\) =0,

Esto muestra que la integral es cero cuando R(\) = 0.

Ahora considere el caso en que / R(AR(N) dp(M\) = 0. Esto implica que
R

Z R(\)RO)[p(A\+) — p(\—)] = 0.

Ahora, dado que [p(A\j+) —p(A\;j—)] > 0 para j = 1,...,n, se sigue que R(\;)R(\;)
para cada j, esto es, R(\;) = 0 para todos los puntos A;. Como R € P,,_; y R(\;) =
para j = 1,...,n, entonces R(\) = 0.

0
0

b) La linealidad respecto a escalares se cumple, en efecto

n

/RCMR(A)azS(A) dp(A) = ZalR(Aj)azs(%)[ﬂ(A#) —p(N-)]

= a1a_gz RSO [p(A+) = p(A=)]

— /R ROVSON dp(A).

c¢) La integral conjugada resulta ser simétrica,

I
>
>

QU
=

>
S~—
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d) Por 1ltimo, la propiedad de linealidad respecto a la suma se satisface,

n

/R (R + QSN dp(N) =Y (R(N) + QA)S)[p(A\+) = p(A—)]

Jj=1

- Z RSO p(N+) — p(A\—)]
+ Z QS p(A+) = p(A—)]

_ /R ROVSTY) dp(\) + /R QSN dp(N).

Se han demostrado los cuatro incisos, por tanto la demostracion queda completa. W

El Lema 3.23 permite definir un espacio con producto interior de elementos de P,,_;.

Definicién 3.24. Sea p una funciéon escaléon asociada a una matriz de Jacobi de tamano
n X n. Se define un producto interior en el espacio de polinomios P,,_; mediante

(.5}, = | ROVSTV dp(), (3.43)

para todo R, S € P,_;.
Con este producto interior, el espacio P,,_; se denota por P,,_1(p), y se convierte en un
espacio con producto interior de dimensién finita.

Observacion 3.25. De las ecuaciones (3.45) y (3.48) es posible concluir que
(,y) = (. 9)p- (3.49)
A esta ecuacion se le conoce como identidad de Parseval.

Teorema 3.26. El espacio P,,_1(p) es un espacio con producto interior de dimension n,
en el cual, el conjunto {Fy, P, ..., P,_1}, forma una base ortonormal.

Demostracion. Sean © : C" — P,_q, la transformada de Fourier y P, los polinomios

descritos en la Definicion 3.14, para k =0,1,...,n — 1.
Sean e; para i = 1,2,...,n, los vectores de la base canénica de C". Asi

0= (e €5) = (€, €;)p = (Pi1, Pi1)y, (3.50)
parai,j =1,2,...,ne # j. Con esto, se obtiene que los polinomios P, son ortonormales
y por el Teorema 3.19 se tiene que estos forman una base en el espacio P,,_;. |

Definicién 3.27. Sea J una matriz de Jacobi en M, (R), donde \; son sus valores
propios para j = 1,2,...,ny Py, Pi,...,P,_1 son los polinomios generados por esta
matriz (véase Definicion 3.14). La funcién escalén dada por
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1
p(A) = Zzn 1P2( )7

Aj<A
se llama la funcion espectral de la matriz J.

Notese que la funcion espectral contiene informacion de los datos espectrales de la
matriz de Jacobi, debido a que aparecen los polinomios definidos en la Proposicién 3.5 y
los valores propios A; de la matriz.

Por el Lema 3.22 se sabe que la suma de todos los valores de los saltos es 1, esto implica
que p(—o0) = 0y p(4+00) = 1. La grafica de la Figura 3.1 ilustra un ejemplo de una
funcion espectral.

p o
| B
— .
| | 1 | | 1 Y
)\1 )\2 )\3 )\n—l )\n

Figura 3.1: Funcién espectral p.

El siguiente ejemplo utiliza el método visto en la Seccién 3.1 para obtener los poli-
nomios generados por una matriz, ademas se construird su funcion espectral asociada, al
igual que su respectiva grafica.

Ejemplo 3.28. Para la matriz

J3 =

O O
owvi= O

Nl—= Ol

del Ejemplo 3.11 se obtendré su funcion espectral asociada. Los polinomios generados de
la matriz J3 son, Py(\) = 1, P(\) = 2\, P»(\) = 4\* — 1. En el ejemplo 3.11 se obtuvieron
como valores propios a A\| = _\/Liv A =0, A= \/Lg
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De la ecuacion (3.46), se tiene

1 1
ApM) = 55+ = 1
Shoo PROM) 4
1 1
Ap(he) = i = 5
Sioo PEA) 2
1 1
Apd) = = = 7
Yhoo PE(As) 4
Con esto, la funciéon espectral queda determinada por
1
0, A< 2
1L o)<o,
PN = g ﬂo <A<+
49 V2
1
1, 7 < A,

cuya grafica se presenta en la Figura 3.2.

p A
1 £
-
3 |
11 i
|
1 | |
4 €1 I I
—_— ;
1 ‘ E
V2 0 V2

Figura 3.2: Gréafica de la funcion espectral p.

A continuacion se detallan un par de ejemplos del producto escalar (R, S), para funciones
p dadas.

Ejemplo 3.29. Considere las funciones

La ecuacion (3.48), implica que

(R, S), = /Rx* dp(\) = (0)? B _ o} + (1) H _ %
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Ejemplo 3.30. Se consideran a las funciones

0, A<O,
1 0<)<2
R(A) =aX +bA+¢, S(A\)=R()N), A)={3 ’
() =a ¢, S(A) =R p(A) 2 5a<s,
1, 3<A

De la ecuacion (3.48) el producto interior es
1
(R,S), = / (aX? 4+ b +¢)* dp(N) = 3 (97a® + 13b* + 3¢* 4 T0ab + 26ac + 10bc) .
R
El siguiente ejemplo emplea el método de ortogonalizacion de Gram-Schmidt visto en

el Teorema 1.62, utilizando el producto escalar ordinario en un conjunto de vectores.

Ejemplo 3.31. Considere el proceso de ortonormalizacién mediante el método de Gram-
Schmidt aplicado al sistema de vectores

d, = (1,1,..., 1),

utilizando el producto escalar ordinario de C". Este procedimiento permitiré transformar
este conjunto en un sistema ortonormal. En efecto, note que

’U1:d1 = (1,0,07...,O)t,

dy, d
vy = dy — (dz, &) dy
<U17Ul>
=(0,1,0,...,0),
d d
'U3:d3— < 3,U1> L — < 3,U2>'U2
(v1,v1) (v2, )
=(0,0,1,0,...,0)",
d d d
U4:d4— < 47U1>U1 . < 47U2>v2_ < 47U3>Ug
(v1,v1) (va, v2) (vs, v3)
= (0,0,0,1,0,...,0),
vp = (0,0,0,...,0,1)".
Como ||vg|| = 1, para k = 1,...,n, se tiene que {vg}}_;, es una sucesién de vectores

ortonormales.
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El ejemplo anterior fue 1til para comprender el método de ortogonalizacion. Ahora se
utilizard este mismo método pero empleando el producto interior (:,-), definido en esta
seccion, utilizando funciones arbitrarias, no necesariamente espectrales. Lo anterior, con
el proposito de comprender como se pueden construir conjuntos ortonormales de funciones
en el espacio de polinomios con un producto interior, que es parte de lo que se abordara
en el siguiente capitulo.

Ejemplo 3.32. Utilizando el método de ortogonalizacion de Gram-Schmidt se construira
un conjunto ortogonal en el espacio de polinomios P,,_1, a partir de

(N =N,  j=0,123,

utilizando el producto interior definido en (3.48) para las funciones @1, 2 y ©3.

A, A€ (0,1),
a) p1(\) =

0, A¢(0,1).
Para esta funcion se determinaran los vectores ortogonales { Ry, Ry, Ry, R3} en el es-
pacio de polinomios con producto interior (-,-),,. Por el Teorema 1.62 estos vectores
estan dados por

Ro(\) = To(A) =1,
R\ = Ty(n) — S %der
<U07U0><P1
Jo A de
A Je den ®
1
=23
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T: T T
RS()\) = T3()\) _ M’UO _ < 37U1><P1 vy — < 37U2>4p1 Vs

<vav0>¢1 <U17U1>¢1 <U27U2>¢1
_M( _ _%)d%(A_l)
Je der Jo (A= 3)* den 2

N2 -2+ d
ke (2 t62) 1 ()\2—)\—1—})

1 3 1 1 1
— N3 —4(1) - 4 _ ) _ 120 2 _ -
X - T 1<)\ 2) L(A )\+6)

12

=3

3, 3. 1
B S C s W
2" T3 T

Asi, se obtiene el siguiente conjunto, dado por

1 1 3., 3. 1
LA—o A=A+, MoSX242h - —
{’ 2’ e 2" 75 20}’

el cual es ortogonal en el espacio de polinomios bajo (-, ), .

0, A<O,

1, 0< A<,
D) eV =9, 1 aco

3, 2<A\.

El conjunto de vectores ortogonales para la funciéon ¢, se construye de forma anéloga.
Esto es

Ro(A) = To(A) = 1,

Ri(\) = Ty(\) — S es
<U07@0>¢2
—A— —Jjﬂf Ad‘f;‘f (1)
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<T27 U0>4P2 e — <T27 U1>s02

Ry(A) = Th(N) — v
2(A) = T5(N) oo oo
— 22 Je A dpa o [p (A1) d%()\—l)
fR dipy fIR{ —1)? dpy
5 4
-2 - S 1)
1 7
=\ )\N— =
67
T. T T
R3<)\) — Tg()\) . < 3,U0><P2UO . < 37U1>¢2U1 . < 3,U2>(p2 Vo
<U0; UO)ng <U1, U1><P2 <U2, U2>4p2
A d MBA=1)d
:)\3_fR Y2 Je ) 802()\_1)

fR dips )~ fR —1)? dp»

XD (1, 7
Jo (2 =N =)z dg, 2" 6

9 8 L AT
_\3 _ = _ - o 3 2 _ 7
=\ 3(1) 2()\ 1) —% <>\ 5 6)

. 84 82 129
. 3__2__ b
=A 31A 31A+ 31°

Se obtiene el siguiente conjunto

1. 7 84 ., 82 129
(T W D C R L & (i M
{’ ! 2”6 317 31 +31}

que es ortogonal en es espacio de polinomios con (-, -).,.

A e -1,1],
9 pad) = {0, A [-1,1].

Finalmente, para este caso se determinan los vectores ortogonales { Ry, Ry, Ry, R3}
analogamente a los casos anteriores.
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Ro(A) = To(A) =1,
Ry = Ty () — Toodes
<"U0>’Uo>w3
Y fR)\ d903
- (1)
fR dSDS
<T27U0>803 <T27U1><P
Ro(N) = Th(N) — 2o
2( ) 2( ) <vaUO><,03 <U17U1>903 '
2 Je N’ d903(1) _ Je N (A) deps
flR dips fR A dps
2
5 0
=X =31 - 50
3
=\ — 1
37
R3 _ Tg()\) . <T37 U0>s03 N <T37 Ul><.03 vy — <T37U2>503 Vs
<v07v0><,03 <U17U1>4P3 U2,02>¢3
)3 Je X’ des 1 Ja X2(N) des
= A" = (1) — 5 (M)
fR dips fR/\ dps3
B fR /\3(/\2 _ %) d(,Dg (/\2 B 1)
f]R ()\2 — %) dg03 3
0 2 0 1
x-S -3 - ¢ (- 3)
TR o S
3
_\3_ 2
=\ 5)\.

Se obtiene el siguiente conjunto

{1,A,A2—

que es ortogonal en el espacio de polinomios con (-, ),

1 3
D C
PN

3.




Capitulo 4

Sistema mecanico de particulas en interacciéon

En este ultimo capitulo el objetivo es mostrar una aplicaciéon concreta de la teoria es-

pectral desarrollada para matrices de Jacobi, a partir de un sistema mecanico de particulas
en interaccion. Con base en dicho sistema, se propone un modelo matematico utilizando
una matriz de Jacobi. El analisis del modelo se realiza a través de las propiedades espec-
trales asociadas a esta matriz. Se plantea la soluciéon de una ecuacion diferencial, la cual
depende directamente de los datos espectrales de la matriz de Jacobi J.
Posteriormente, se considera un problema inverso, en donde se tiene el conocimiento de
una funcién que posee las propiedades de la funcién espectral, la cual estd asociada a una
matriz de Jacobi, por tanto se busca reconstruir el sistema a partir de sus caracteristicas
mecanicas.

4.1. Modelo de un sistema de particulas en interaccién

En esta seccion se analizard un sistema de n masas puntuales, cada una de ellas determi-
nanda por my,mo, ..., m,. Estas masas estaran unidas por resortes ideales sin peso, tal
como se muestra en la Figura 4.1. Los resortes cuentan con un coeficiente de elasticidad
ki, ko, ..., kyi1 v sus longitudes en estado de equilibrio son Iy, 1o, ... [,11.

mq mo m3 Mn
ll 12 l3 ZTL+1
| | | ﬁ
Ly

Figura 4.1: Sistema de masas y resortes en estado de equilibrio.
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La longitud Ly del sistema es la suma de cada una de las longitudes de los resortes,
n+1

es decir Ly = Z l;. Notese que al estirar el sistema a una longitud L, y fijarlo en ambos
i=1

extremos, [ y de [, 41, se obtiene un nuevo sistema (Figura 4.2). Es importante introducir

un sistema de coordenadas porque ayudard a describir la posicion de cada masa del

sistema. El sistema de coordenas tiene como origen el extremo izquierdo del resorte de

longitud [j.

Figura 4.2: Sistema fijado en sus extremos.

Las nuevas coordenadas para las masas en estado de equilibrio para este sistema estan
determinadas por xq, T, ..., T, respectivamente. El ¢-ésimo resorte estirado tendra una
longitud de z; — x;_1, de donde su elongacion relativa esta dada por %‘l_ll

Dado el sistema en estado de equilibrio se puede notar que para la masa m;, la suma
resultante de las fuerzas aplicada a esta es 0. Por la ley de Hooke se tienen dos fuerzas

que actiian sobre ella, que son

Tit1—Ti—liq1

_k'l’i_l'i—l_li
¢ lit1

I y kin

Y

debido al i-ésimo y (i+1)-ésimo resorte respectivamente. Por lo antes mencionado se
tendria que la suma de ambas fuerzas es nula, esto es,

_];—:(xl — Xj—1 — lz) + ’;111—11 (xi—i-l — Xy — li+1) =0 para 1= 1, oo, n,
donde zy = 0 (el origen) v x,41 = Ly (longitud total del nuevo sistema). La ecuacion
anterior genera un sistema de n ecuaciones lineales, con variables x1, zo, . . ., x,, las cuales
son las coordenadas de las masas m; en estado de equilibrio.

Ahora, considerando que el sistema se mantiene fijo respecto a los extremos y solo se genera
movimiento horizontal sobre el eje x, la masa m; tendra un desplazamiento determinado
por u;(t). Esta funcion que depende de t determinara la posicion de m; en el tiempo t a
partir de la posicion de equilibrio z;. Asi, se tendria que la coordenada de m; en el tiempo

tesx; +u;(t) parai=1,...,n.
Debido a que las coordenadas x; son conocidas, basta con conocer a w;(t) para poder
obtener la posicién de cada masa m; para i = 1,...,n del sistema.

Anteriormente se mencion6 que son tnicamente dos fuerzas que actian sobre la masa m;.
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Considerando las nuevas coordenadas z; + u;(t) se tiene que la suma de ambas es Fj :

Fr= P 4 () — (@i + i (8) — 1)

l;
ki
+7 (@i +uia () — @i+ wit)) = L]
i+1
k; k;
= —— (i =z — )+ —+1($z‘+1 — 2 — liy1)
l; lit1
k; i1
— - (uit) = w1 (t)) + 77— (uia (t) — wi(t))
Li liva
= 1 Uit1 (t) — | =+ +l ul(t) -+ —'Lbl',l(t>. (41)
liva L iy Li
De la segunda ley de Newton, se tiene
d2

De las ecuaciones (4.1) y (4.2) se produce un sistema de ecuaciones, con la variable w;(t) :
Tipitir1(t) — (Tipn + ra)ug(t) + roug1 () = myis(t), (4.3)

donde r; = ';— parai=1,2,...,n, ug(t) = u,41(t) = 0.
El sistema (4.3) reescrito de forma matricial esta dado por

d2

@Mu(t) = —Aul(t). (4.4)
donde,
my 0 0 To + 11 —T9 0 0
) T3+ T2 —TIs 0
0 mo 0
M = , A= 0 —ry T4+ T3 0 :
0 0 Mt 0 0 0 st + T

y u(t) = (ua(t), uz(t), ..., un(t))".
Proposicion 4.1. La matriz A de la ecuacion (4.4) es una matriz definida positiva.

Demostracion. Sea x = (x1,Zs,...,Tn_1,Ty)" un vector no nulo. De la Definicion 2.28 se
debe probar que

2 Axr > 0.
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Asi, se tiene que

(T’Q + 7”1)1’1 — ToX9
.I'tA.’L' = (]}1, N ,.Tn) —T;Ti—1 —+ (TZ‘+1 + T‘i)CCZ‘ — Ti+1%i41

—TnTn-1 + (rn—i-l + rn)xn

n—1
2 2
(Tig1 + 1) Tis1Ti%it1 | + (Tps1 + 7n) Ty,

=1

=] + Z (VTig12; — \/Tz’+1l’z’+1)2> + o177
i1
> 0.

Por lo tanto, la matriz A es definida positiva. |

Retomando la ecuacion (4.3), la cual es equivalente a

A/ ’UHL( ) \/7%’/77%4,1’1144,1@) — ”%jm\/mluz(t) + \/%wmi,lui,l(t).

Introduciendo la notacién

ALl ul( ) - U’L( ) W = _bifla %—:” = Qy,
se obtiene que
U,(t) = —bz‘vi+1(t) — aivi(t) — bi_lvi_l(t).

De esta forma, el sistema (4.4) puede reescribirse por

d2
@v(t) = —Ju(t),

donde J es una matriz de Jacobi dada por

aq b1 0 0
by ay Do

0 b2 as

an—2 bn—2 0
ban Ap—1 bnfl
0 e 0 b,1 ay

cuyas componentes estan dadas por

1 . 4 ,
oL (ml N k_> R 1~ S, (4.5)

m; li+1 l; li—i—l mimiqa
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Por lo tanto el sistema de ecuaciones que modela el sistema de masas y resortes esta dado

por
2

d
ﬁv(t) = —Ju(t). (4.6)

Proposicion 4.2. La matriz de Jacobi J que aparece en la ecuacion (4.6) es una matriz
definida positiva cuyas componentes estan descritas en (4.5).

Demostracion. Sea x = (x1, 2, ..., Ty 1, 2Z,)" un vector no nulo. La matriz J esté relacio-
nada con la matriz A que aparece en la ecuacion (4.4) debido a que los sistemas a los que
estan asociadas estas matrices son equivalentes. La relacion se da mediante la expresion
J = M%AM%, donde M es la matriz que también aparece en la ecuacion (4.4), la cual
es una matriz diagonal con entradas positivas. De la Proposiciéon 4.1 se tiene que la matriz
es definida positiva, por tanto se sigue que

o' Jr = (Jo)r = (Jz,z) = (M%AM%x,x) = <AM%1x,M%1x> > 0.

Esto es, la matriz de Jacobi es una matriz definida positiva. |

4.2. Solucion del comportamiento de particulas en in-
teraccion (Problema directo)

El problema consiste en determinar el desplazamiento de un sistema compuesto por
un numero finito de particulas en interaccion. En esta seccion se resuelve el sistema de
ecuaciones diferenciales que describe dicho comportamiento, el cual fue previamente mo-
delado en (4.6) a partir de las constantes de elasticidad, las masas y las longitudes de los
resortes que conforman el sistema. Al reescribir el sistema de ecuaciones que describen el
sistema masas y resortes, se llega a una ecuacién que involucra a una matriz de Jacobi
y la cual sera resuelta en esta seccion. Esta solucion es una superposicion de oscilaciones
armoénicas que dependen tanto de las caracteristicas mecanicas del problema como de los
vectores propios de la matriz de Jacobi.
De esta forma, se busca dar soluciéon a

d2

ﬁv
donde J es una matriz de Jacobi, cuyas componentes estan dadas en (4.5), las cuales
poseen informacion de las caracteristicas mecanicas del sistema. Se propone buscar solu-
ciones de una forma general que es v(t) = €“’c, a manera que al sustituir en la ecuacion
se cumple —w?c = Jc. Notese que —w? es un valor propio de la matriz de Jacobi, y por
la Proposicion 4.2, esta es una matriz definida positiva, por tanto sus valores propios son
positivos.
La solucion general de (4.7) esta dada por

(t) = —Jo(t), (4.7)

n

v(t) = Z(Ak cos(v/Axt) + By sen(v/Ait))c, (4.8)

k=1
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donde A, y By se obtienen de las condiciones iniciales del problema y /g, ¢x los valores
y vectores propios de la matriz J respectivamente, para k = 1,...,n. Cabe aclarar que ¢
es el k-ésimo vector propio y no una componenete de un vector.

Observacion 4.3. El desplazamiento de cada masa m;, representado por los valores u;,
se obtiene a partir de las componentes del vector v(t), ya que u; = —2—. Por lo tanto,

m; ”

para conocer el desplazamiento de todas las particulas, es necesario determinar v(¢) dada
por (4.8). Cabe mencionar que la matriz J de (4.7) posee las caracteristicas mecanicas
del sistema.

De este modo, basta conocer métodos que den solucion a la ecuacion (4.7). Asi, con-
sidere los siguientes ejemplos.

Ejemplo 4.4. Dada la ecuacion,
d? 10 —4 vy (t)
0= (15 ). o= (),

con sus condiciones iniciales v(0) = (dl) , 0(0) = (?) , el sistema tiene asociado una
2 2

. . 10 —4 .. .
matriz de Jacobi J = (_(31 10 ) Esta matriz tiene como valores propios a Ay = 6 y
. . 1
Ay = 14, con correspondientes vectores propios ¢; = ) ye=1_1)

Como la matriz J es una matriz definida positiva la soluciéon del sistema de ecuaciones se
determina por (4.8), por tanto

() = A, G) cos(v/6t) + B, G) sen(V6t) + Aj (_11> cos(VIdt)  (4.9)
+ B, (_1 ) sen(V/14t),

donde Ay, Ay, B1 v By se obtienen de las condiciones iniciales. Al sustituir la primera
condicion inicial en (4.9) se obtiene que
_dy +dy dy — do

A, = .
9 7 TP

1

Ay

Derivando (4.9) se tiene

v'(t) = AV6 G) sen(v/6t) + B;vV6 G) cos(V6t) — Ay <_11) sen(v/14t)  (4.10)

+ B <_11> cos(V/14t).

De la segunda condicion inicial y de (4.10) se obtiene que

:f1+f2 B:fl—f2
06 0 214

B,
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La matriz J del Ejemplo 4.4 se construy6 a partir de un sistema mecénico cuyas
caracteristicas estan dadas por masas m; = mo = 1kg, constantes de elasticidad de los
resortes k; = 6N/m, ks = 4N/m, k3 = 6N/m, y longitudes en equilibrio [ = [ =
[3 = 1m. En los siguientes dos ejemplos se hace uso de dos formas distintas que puede
resolverse el sistema de ecuaciones diferenciales.

Ejemplo 4.5. Dada la ecuacion,

j—;v(t) = (_0% _0%) o), ot = (5;53) ’

con sus condiciones iniciales v(0) = (Z;) ,0(0) = (Z;) , puede ser reescrita como un
sistema de ecuaciones diferenciales
v (t)" = —%Ug(t), (4.11)
v(t)” = —%vl(t), (4.12)

con condiciones iniciales v1(0) = a1, v2(0) = ag, v{(0) = by,v5(0) = bs.
De (4.11) y (4.12) se obtiene la siguiente ecuacion diferencial homogénea de orden cuatro

(véase [5, Secc. 2.2]):
o = fuilt),
cuya solucion es:

£ _1
vi(t) = Ciev' + Coe V3" + (s cos (\%t) + Cysen (\%t) ,

donde
_ b ba al as _ by ba a1 asz
01_2\/5 N i O NN I 4
aita b1+b2
Gy = %’ Cy = IW

tomando en cuenta las condiciones iniciales.
De (4.11) se obtiene la solucion vy () que es
1 1
vo(t) = —Cieva' — Oye V3" + Oy cos <\/L§t> + (4 sen (\%t) .
Otra forma de resolver el sistema de ecuaciones de segundo orden es convirtiéndolo en un
sistema de cuatro ecuaciones de orden uno (véase |5, Secc. 3.6|):

, 1
Uy = _51}27
, 1
Uy = —51}1,
/ J—
Ul U]_,
/

Sean
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(51 00 0 —% b1

. U2 . 00 —% 0 . b2
X=1ul 27 t0 0 o] *7|a
(%) 0 1 0 0 Q9

De esta manera el sistema se escribe de forma matricial como X’ = AX. El polinomio

caracteristico de A es p(\) = M — }1, sus valores propios son \; = \%, Ao = —\%, A3 = %i,
Ay = —%i, v los vectores propios son
-1 1
% % v 0
1 -1 9 0
C1 1 ) Co 1 ) C3 0 ) Cq 2
1 1 0 2
Se obtiene
1 1 3 1 11
5 v V20 Wi V2 s oo
S SR S S N A
P=1 V2 V2 ., Pl= 2y2 2v2 1 1
-1 -1 0 2 s o2 VY
1 1 0 2 0 0 11
La solucion esta dada por
Lt
eva 0 0 0
1
o 0 e V& 0 0 1
X t - P 1 1 Pi XO,
0 0 coS 7§t —sen <7§t>
0 0 sen \/iit coS <\/L§t>

de donde se obtiene que

eVE + 2sen (%) eV ™73 + 2sen (%) eV
v =by + b

2v2

t ot t ot
ev? —|—2COS(%)+€ V2 —eVv? —|—2cos(%>—e V2
+ay + as )
4 4
_t t t _t
_— e ﬂ+2sen<%>—e\/§ " eﬁ+2sen(\%)—e 2
2 =01 52 2 el

—e% + 2 cos (\%) — 67% e% + 2cos (%) + 67%
+ ay 1 + ag .
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En el siguiente ejemplo J ya no es una matriz de Jacobi, lo cual hace un poco méas
complicada su solucion.

Ejemplo 4.6. Dada la ecuacion
d? 1 -2
i 2 =
dth(t) + (5 1 > v(t) =0,

. 1\ . . . .
con las condiciones v(0) = ( ) ,0(0) = ((1]) , se reescribe como sistema de ecuaciones

diferenciales ]
v (t)" = —ui(t) + 02 (t) (4.13)

’Ug(t)” = —%Ul(t> — Ug(t). (414)

con v1(0) =1, v2(0) = 0, v1(0) = 0,v5(0) = 1.
De ambas ecuaciones del sistema se obtiene la siguiente ecuacion diferencial homogénea
de orden cuatro

v§4) + 20] + 2v; =0,
cuya solucion es
v1(t) = Cre® cos(Bt) + Coe® sen(Bt) + Cse™* cos(Bt) + Cye™* sen(ft),

vy(t) = Cye® cos(Bt) — Cre® sen(Bt) — Cre™* cos(Bt) + Cze™* sen(Bt),

donde,
—2++/5 8 1 o1 (2V5+5)V—-2++5
= a4 R =) 1= 35 9
2 2 _2_,_\/5 2 10
1 1 (2 —2
Cy— Oy — C:_+(\/5+5) +\/5_

(10+4VE)V—2+v5 2 10

De manera similar al ejemplo anterior, se plantea este mismo ejercicio como un sistema
de cuatro ecuaciones de orden uno

1

U = —v1 + Zv2,

2

Sean
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Uy 00 —1 % 0
| e {0 0 —% -1 |1
X=1ul 4710 0 of H7|1
Vg 01 0 0 0
El polinomio caracteristico de A es p(A\) = A\* + 2)\2 + %, los valores propios son

\/ﬁ—zi¢2+\/5z' VVE—2 V24450
2 2 ’

Ay o = Moy = —
1,2 9 5 > 3.4
y sus vectores propios son

2+/5 V5—2 2+/5 V52

2 T -T2 T2
V52 245 V52 2-+V5
2 , 2 , T2 , 2
0 —1 0 1
1 0 1 0

Con los vectores propios se obtiene la matriz P

VB2 Vs VB2 Vs
2 2 2 2

VeV VB2 V2B /B2

P = 2 2 2 2

-1 0 1 0

0 1 0 1
La soluciéon esta dada por
e cos (Bt) —e* sen (Bt) 0 0
B e sen (Bt) e cos (Bt) 0 0 1
X(t)=r 0 0 e cos (Bt) —e *sen (Bt) P Xo,
0 0 e “sen (ft) e cos(Bt)

_ V25 _ 1 : :
donde, o« = ¥Y—5—"=, [ = T asi las soluciones de (4.13) y (4.14) son

—%B + %) e cos (Bt) + <%a) e“ sen (Bt) + (
=S ) e~ sen (81)

1

V5

vi(t) = B+ %) e~ cos (Bt)

1 1

) et cos (BE) + ( v i %) e sen (Bt) + (—ﬁa) et cos (B1)

1 1 —at
+ (%ﬁ + 5) e “sen (ft).

De ambas maneras de resolucion se llegé al mismo resultado.

va(t) =

_l’_
N N TN

4-5
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Observacién 4.7. El ejemplo 4.4 corresponde a un caso particular del modelo de un
sistema mecanico, ya que la matriz involucrada es una matriz de Jacobi y definida positiva.
En cambio, en el ejemplo 4.5 también considera una matriz de Jacobi, pero al no ser
definida positiva no se asocia a un sistema mecanico. Mientras que en el ejemplo 4.6, ni
si quiera cumple con las condiciones para ser una matriz de Jacobi.

4.3. Soluciéon del problema inverso

En esta secciéon se partird de una funcién escalén p : R — R, la cual se utilizara
para ortonormalizar la base canonica del espacio de polinomios con el producto (-,-),.
Posteriormente esta base serd de ayuda para obtener los elementos de una matriz de
Jacobi. Es importante mencionar que para que esta matriz resultante esté asociada a un
sistema de masas y resortes, es necesario contar con la positividad de ésta, para ello,
considere la Proposicion 3.12. Con las componenetes de la matriz, es posible obtener las
caracteristicas mecanicas del sistema, esto con base a la ecuacion (4.5)

Definicién 4.8. Se denota por M, al conjunto de todas las funciones p : R — R que
cumplen las siguientes propiedades

a) p es una funcion escalén no decreciente.

b) Estan normalizada, es decir, que p(A) — 0 cuando A\ — —oo y p(A\) — 1 cuando
A — +00.

c) Tiene exactamente n saltos, los cuales estan dados en los valores )\, para valores
k=1,2,...,n,donde 0 < A\ < Ay < -+ < A,

Dada una funcion p € M,,, por el Teorema 3.26 se tiene que P,,_;(p) denota al espacio
de polinomios de grado a lo més n — 1, dotado con el producto interior definido en
(3.48). Como se realiz6 en la Seccion 3.3, a partir de de los polinomios 1, A, ..., A" se
determina una base ortonormal en este espacio de polinomios. Con ayuda del proceso de
ortogonalizacion de Gram-Schmidt se tiene que una base ortogonal esta determinada por

k—1 ~

. . NP

Py()\) =1, Pk::)\’“—E uPj, k=1,...,n—1.
7=0

155112
Normalizando estos polinomios se obtiene una base ortonormal v = {P,, Py, ..., P,_1},
donde L
P.(\) = (=D¥P, B, 2 Pu()), k=0,1,...,n—1. (4.15)

Proposicién 4.9. Sean p € M,, M el operador de multiplicaciéon por la variable in-
dependiente A, es decir, M : P,_1(p) — P,(p), tal que (MP)(\) = AP(\) y 7 la base
ortonormal dada por (4.15). El operador M actuando sobre la base v satisface la siguiente
relacion de recurrencia:

(MP)()\) = )\Pk(/\) = ak,k_lpk_l()\) + ak,kpk(/\) + ak,kHPkH()\),
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para k=1,2,...,n— 2, y ademas
(MP())()\) = )\Po()\) = a070P0()\) + ao,lPl()\),

donde los coeficientes ay; estan dados por

oni = (WP Py = | AROVRDY dp(),

y cumplen que ay; = @; . Ademas, aj,; = 0si |k —i| > 1.

Demostracion. Como grad(AP,(\)) = k + 1, estos polinomios pertenecen al espacio
P, 1(p) para k < n — 2. Es por ello que el operador de multiplicaciéon por la variable
independiente es

k+1
(MP)(A) = AP(A) =) aiPi(\), k=0,1,....n—2, (4.16)
=0
donde
R

Los escalares ay; tienen tal expresion debido al Teorema 1.63. A causa de que los poli-
nomios P;(\) son ortogonales con cualquier otro polinomio R(\) tal que grad(R(\)) < j,
se tiene que a;; = 0,17 > k+ 10 k > i+ 1. Con ayuda de esto se puede reducir la
ecuacion (4.16) de la siguiente forma,

)\PU()\) = a07opg(/\) + (117()p1<>\),

AP (A) = ag p—1Pe—1(N) + k. Pe(N) + ap g1 Per1 (M),
parak=1,2,...,n— 2. |

Observacion 4.10. El término a,_,—; no es posible expresarlo como producto escalar
porque el polinomio AP, 1(\) no pertenece al espacio P,,_1(p). Se define a,,_1,-1 de la
siguiente manera

A / APy (NP (V) dp(N). (4.18)

Proposicion 4.11. Sea p € M,,, vy v la base ortonormal de P,,_;(p), donde sus elemen-
tos estan dados en (4.15). El operador de multiplicacién M, tiene como representacion
matricial con respecto a la base ortonormal v la matriz de Jacobi dada por:

a by 0 0
bl (05} bQ

0 b2 as

Ap—2 bn72 0
bn—Q ap—1 bn—l
0 e 0 b1 ay
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donde a; >0y b; 0 parai=1,2,...,n
Mas afin, se satisface la relacion de recurrencia

bk—lpk—l()\) + akPk()\) + bkpk+1(/\) = /\Pk()\), k = 0, 1, e, — 2,
donde b_; := 0.

Demostracion. De la Proposicion 4.9 se tiene que el operador M actta sobre la base v de
la forma dada en (4.16), y los coeficientes ay,; cumplen ay; = 0 siempre que |k —i| > 1,
estos coeficientes estan descritos explicitamente en (4.17). Esta propiedad implica que
la matriz asociada al operador M en la base 7 es tridiagonal. Ademas, los coeficientes
ai,; son reales debido a que ay; = @; 1, por tanto la matriz es simétrica. Se definen los

coeficientes de la siguiente manera a; := a,; = (APi_1, Pi—1),, b; == (APj_1, Fj),, y se
considera b_; := 0, esto parat=1,...,n, j=1,...,n— 1. Por un lado
OAB.R)y = [ APTLap= AR [ xdp=INRIE |30 8000 >0
R
j=1

debido a que p satisface la propiedad (a) y (¢) de la Definicion 4.8. Y por otro lado, de la
ecuacion de recurrencias dada en la ecuacion (3.4), que es

bh-1Pr1(A) + apPe(N) + 0pPepi(A) = AP(N), k=1,...,n—1,

para k = 1,2,...,n—2, se tiene que by # 0, debido a que grad(AP;) = k+ 1. Con esto se
establece que la matriz del operador de multiplicaciéon M en la base v es una matriz de
Jacobi J. |

Proposicion 4.12. Sean J la matriz de Jacobi en el espacio M, (R) que se obtuvo de
la Proposiciéon 4.11, p; la funcién espectral asociada a J, p € M,, y v la base ortonormal
dada en (4.15). Las funciones p y p; inducen el mismo producto interior en P,_1(p), es

decir,
/ R(A dpJ / R(A dp()), (4.19)

para todo par de polinomios R(\), S(A) € P,,_(

Demostracion. En la Seccion 3.3 se analiz6 a la func10n pJ, la cual es una funcion escalén
no decreciente y que ademas, los saltos de esta funcion estan dados en las raices del
polinomio

Q()\) = >\Pn—1()\> — anRL—l(/\) — bn—lpn—Q()\);

que fue establecido en (3.9). Ademas, por el Teorema 3.26 los polinomios Py ()\) para
k=0,1,...,n—1 forman una base ortonormal en el espacio P,,_1(p;) y que a su vez por
construccion de estos, forman una base ortonormal en P, ;(p). Por tanto, las funciones
ps(A) v p generan en el espacio P,,_1(p) el mismo producto escalar, asi ,

| ROST) dps(3) = [ RO dp(o. (4.20)
donde grad(R(X)), grad(S(\)) <n —1. [
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Corolario 4.13. Bajo las hipotesis de la Proposiciéon 4.12, los productos interiores indu-
cidos por p y ps coinciden en el espacio de polinomios P, ;. Es decir,

(R,S),=(R,S),,, paratodo R()\),S(\) € P,_1(p).

Proposicion 4.14. Sea p € M,,. Si p; es la funciéon espectral asociada a la matriz de
Jacobi que se obtuvo en la Proposicién 4.11, entonces

p(A) = ps(N), paratodo A € R.

Demostracion. Si al polinomio Q(\) dado en (3.9) se multiplica por P;(\) y se integra
con respecto a la medida dp()\), se tiene

/R QBN dp(A) = / AP A (NP,N) dp(N) — s (Pt P,y — ba(Pos, P,

(4.21)
Notese que si j < n — 2, entonces la parte derecha de la ecuacion (4.21) es cero. Ahora, si
j =n — 2, entonces, de (4.17) se tiene que

/ APy AN P2V dp(A) = by s,

R

Y por la ortonormalidad de los polinomios se tiene
<Pn717pn72>p = 07 <Pn727Pn72>p =1

Con esto, la parte derecha de (4.21) nuevamente es cero. Por tltimo, se analiza cuando
j =n— 1. De (4.17) se tiene que

/ )\Pn—l()\)Pn—l<>\) dp()\) = Ap—1-

R

Por la ortonormalidad de los polinomios se tiene que
<Pn—17Pn—1>p: 17 <Pn—27Pn—1>p:Oa

asi que la parte derecha de (4.21) también se anula. Por lo tanto

/RQ(A)P]-()\) dp(N) =0 j=0,1,....n—1,

Dado que los polinomios P;(\) forman una base en el espacio IP,,_;(p), tal como se muestra,
en el Teorema 3.19, se tiene que

/R QUERY dp(A) =0,
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donde R(A) es un polinomio definido en P,,_;. En particular para R(\) = H A — A}, para
J#jo
AL < Ay < -+ < Ay, que son los puntos en donde ocurren los saltos de la funcion p. Asi

Qo) TT o = M)A, =0, (4.22)
J#Jo
donde Aj; = Ap();,), el cual es el valor del salto en el punto ;.
Debido a que H (Njo — Aj)Aj, # 0, se tiene que Q(Aj,). Esto implica que los valores )\;
J#Jo
son las raices del polinomio @), parai=1,... n.
Con esto, se tiene que los saltos de la funcién p; y p se dan en los mismos puntos.
Ahora, si en (4.20) se considera R(A\) = S(\) = H A — \;, entonces

i#Jo
H (/\jo - /\i)QAj()(J) - H ()‘jo - )‘i)2Aj0'
i#jo i#jo

De aqui Aj (J) = Aj,, donde A; (J) y Aj, son los valores de los saltos de las funciones
ps y pen el punto \j, respectivamente. Por lo tanto, se concluye que p; = p. |

Observaciéon 4.15. A partir de una funcion espectral p € M, las Proposiciones 4.12
y 4.14 permiten reconstruir una matriz de Jacobi J de un sistema de masas y resortes.
Conocer la funcion espectral p (véase la Definicion 3.27) equivale a conocer el comporta-
miento del desplazamiento de las particulas en el sistema. Por lo tanto, la reconstruccion
de la matriz de Jacobi a partir de dicha funcién se interpreta como la determinacion de
las caracteristicas mecanicas del sistema.

Ahora, se mostrara como obtener explicitamente las caracteristicas mecénicas del sistema.
En la ecuacion (4.5) se tiene que los coeficientes a; y b; de la matriz de Jacobi asociada a
un sistema mecanico estan determinados por las expresiones

1 (/fiﬂ k’z) B kit
a; = — + - bj e
m; \ liv1 i lj—i-l\/mjmj—&-l

donde m; representa el valor i-ésima masa, k; la constante de elasticidad del i-ésimo resorte
y [; su longitud en estado de equilibrio. Se introduce la razon r; := ’;’—, la cual influye en
K
los procesos que se desarrollan en el sistema. A partir de estas relaciones, se obtiene el
siguiente sistema de ecuaciones, en donde se necesitan encontrar los valores {m;} , y
{T‘}n+1
ifi=1

m;a; = Tiy1 + T, izl?"'7n7
w/mjmjﬂbj—l-rjﬂ :O, j: 1,...,7’L— 1.

Este sistema cuenta con 2n—1 ecuaciones con 2n+ 1 incognitas. Para resolver este sistema
es necesario conocer al menos el valor de alguna masa y una razén para determinar de
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manera Unica las incognitas restantes.

Si se conoce a la matriz de Jacobi que modela el sistema mecénico, entonces el sistema
de ecuaciones que tiene por incégnitas a las masas y las razones, permite reconstruir
las caracteristicas mecéanicas del sistema, esto es, encontrar el valor de las masas y las
propiedades de los resortes.

A continuaciéon se muestra la reconstruccion de una matriz utilizando la teoria vista en
esta seccion y partiendo de una funcion escaldon no decreciente.

Ejemplo 4.16. Sea

0, A<6,
p(A) =193, 6<A<14,
1, 14 <),

una funcion espectral, cuya grafica estd dada en la Figura 4.3.

p A
1__
-
1 |
2T :
A\ =6 A2 =14

Figura 4.3: Grafica de la funcion espectral p.

A partir de la funcién espectral se reconstruird una matriz de Jacobi de un sistema de
masas y resortes, para después obtener las caracteristicas mecanicas.
Sea {Ro, R1} la base canonica para el espacio P;. Es decir, Ry(\) = 1, Ry(\) = \. Por
medio del proceso de ortogonalizacion de Gram-Schmidt se obtiene una base ortogonal:

~

Py(A) = Ro(M) = 1,

B = By - T p

<P07P0>P ’
N L
Je dp

=\ —10.
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Normalizando cada P, para k = 0, 1:

Py()\) = }:70(/\) __hy L
1B~ i, B,
P = — RICYIN P}(Az _A-10
HPI(/\)H <P17P1>p 4

A—10

se obtiene la base ortonormal dada por {1, — 1

}. Utilizando estos polinomios se

obtienen las entradas de la matriz de Jacobi

2
a1 = (\Py, By, = / Adp =" NAp(N) =10,
R =1
A—10 2 A — 10
/\<— 7 )deZ/\j<— —~ )Ap()\j):—4,
A—10\2 = A — 10\
A<— ; ) dp:Z)\j<—J4 )Ap()\j):K).

b= APy, P, =/

R

a2:<)\P1,P1>p:/

R

La matriz de Jacobi del sistema de masas y resortes queda determinada por:

10 —4
-4 10

Si se conoce que my = 1y r; = 6, por medio del siguiente sistema se pueden obtener los
valores restantes, que son mq, 9 v 13

mia; = To + 1
Moy = T3 + Ty

\/mlmgbl + 1y = 0.

Al resolver este sistema, se tiene que mo = 1,79 = 4 y r3 = 6. La determinacién de las
caracteristicas mecénicas del sistema fue posible en este ejemplo debido a que la matriz
de Jacobi asociada a la funcién p, es una matriz definida positiva.

Ejemplo 4.17. Sea

1
0, A< — 75
1 —1
< —= <A<,
e <A< 75
1
1, 7 <N
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una funcioén espectral, cuya grafica estd dada en la Figura 4.4.

p A
1 £
—_—
3 1
4 T |
! 1
1 1
! |
l ! I
it - :
I ‘ !
I ‘ !
| ! !

Figura 4.4: Gréfica de la funcion espectral p.

Por medio de la funcion espectral se reconstruira una matriz de Jacobi. Sea el conjunto
{Ry, R1, R2} la base canonica para el espacio P,. Utilizando el proceso de ortogonalizacion
de Gram-Schmidt se obtiene una base ortogonal:

A

Py(A) = Ro(N) =1,

. p R
B = Ry - S tblep
<P0)P0>p
Adp
A= B2
R 4P
Py = Ry — B olo (R Py
<P07P0>p <P1,P1>p
:)\2—M()_M(>\)
fR dp fR)\Z dp
1
2t
= A 1

Normalizando cada P para k=0,1,2:
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P = — 1:31(A) 10 _ o,
[P (M) (P, ),

P() = P;Q()‘) _ kW o1,
[[B2(A)]] (P, By),

se obtiene la base ortonormal dada por {1, 2), 4\? — 1}. Con ayuda de estos polinomios
se encuentran las entradas de la matriz de Jacobi:

CL1:<>\P0,P0>p:/

3
Ndp =Y NAp(A;) =0,
R o

3
1
—2Xdp =Y —2XAp(\;) = ~3

j=1

bl = </\P0,P1>p =

—

3
AN = Ndp =) (4M3 = A)Ap(N;) =0,

J=1

a1,3 = <>\P0, P2>p

I
S—

o = <>\P1,P1>p

I
T

3
AN dp =) 4NAp())) = 0.
j=1

3
AN = Ndp = (4MF = A)Ap();) =0,

J=1

asz1 = </\P2, P0>p

I
—

1
by = (AP, P2), = / 2NN = 1) dp =) (—2X3(4AN} — 1) Ap())) = ~5
R —1

3
az = /R)\P2P2 dp = /RA(W —1)%dp =Y _ (N(4X2 = 1)*)Ap())) = 0.
j=1

De esta manera la matriz de Jacobi buscada queda determinada por:

En este ejemplo de igual manera se reconstruyd una matriz de Jacobi, sin embargo esta
matriz no estd asociada a un modelo mecanico de masas y resortes, debido a que no es
una matriz definida positiva.







Conclusiones

En este trabajo se ha logrado cumplir con los objetivos planteados en la introduccion,
abordando de manera rigurosa el estudio de la teoria espectral en espacios de dimension
finita y su aplicacion al modelo del sistema de masas y resortes. A través del analisis y
desarrollo de los cuatro capitulos, se han presentado las definiciones, conceptos fundamen-
tales, resultados tedricos con sus respectivas demostraciones, y ejemplos que permiten una
comprension profunda de la teoria.

En el primer capitulo se estableci6 una base solida mediante la revision de conceptos
fundamentales. Estos conceptos son esenciales para el analisis espectral, donde en espa-
cios de dimension finita, por ejemplo, la representacion matricial tinica de los operadores
permite interpretar el analisis espectral de matrices como equivalente al de operadores.

Posteriormente, en el segundo capitulo, se profundizé en el estudio de los operadores
lineales, definiendo sus propiedades y presentando teoremas clave junto con sus demostra-
ciones. Este enfoque detallado permitié una preparacion exhaustiva para la comprension
del teorema espectral, el cual fue presentado al final de este capitulo. Los dos primeros
capitulos permitieron reafirmar conocimientos de distintos cursos que se tomaron durante
los estudios de la licenciatura, ademés de conocer y profundizar mas detalles de estas
teorias.

El tercer capitulo se centro en el analisis de las matrices de Jacobi, destacando sus propie-
dades y sus datos espectrales. Un resultado relevante en este capitulo fue que, al considerar
una matriz de Jacobi, todos sus valores propios son distintos. Analizar las matrices de
Jacobi no solo sirvi6 para desarrollar herramientas tedricas, sino también para presentar
resultados que complementan la comprension de estas matrices y proporcionan ejemplos
practicos.

En el cuarto capitulo se integré la teoria desarrollada en los capitulos anteriores para
abordar el problema de un sistema mecénico de particulas en interacciéon. Este modelo
demostr6 como la teoria espectral permite resolver sistemas de ecuaciones de segundo
orden mediante matrices de Jacobi, vinculando sus propiedades espectrales con las ca-
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racteristicas dinamicas del sistema. Ademés, se explord el problema inverso asociado,
reconstruyendo el sistema de masas y resortes a partir de la funciéon espectral y las pro-
piedades de la matriz de Jacobi.

En particular, este trabajo ha demostrado como las matrices de Jacobi desempenan un
papel crucial en la conexion entre propiedades espectrales y caracteristicas dinamicas de
sistemas mecanicos. Ademaés, se ha presentado un enfoque claro y accesible para resolver
tanto el problema directo como el inverso, ofreciendo un ejemplo concreto de recons-
truccion basado en una funcion espectral. Cabe mencionar que esta teoria no se estudia
cominmente en los cursos de licenciaturas y el fin es conocer resultados clésicos de ésta
para abordar futuros problemas complejos bajo una teoria méas general.

Finalmente, este trabajo no solo aporta una visiéon accesible y completa de la teoria
espectral en espacios de dimension finita, sino que también establece una base solida para
futuros estudios en la teoria de operadores en espacios de dimension infinita, abriendo
nuevas posibilidades para aplicaciones mas complejas en matematicas y fisica.




Bibliografia

1]

2l

3]

4]

[6]

17l

8]

19]

[10]

[11]

N. I. Akhiezer and I. M. Glazman, Theory of linear operators in Hilbert space. Transl.
from the Russian and with a preface by Merlynd Nestell (Two volumes bound as one).
Repr. of the 1961 and 1963 transl. New York, NY: Dover Publications (1993).

H. Anton and C. Rorres, Elementary linear algebra with supplemental applications,
international student version. 11th ed. Hoboken, NJ: John Wiley & Sons (2014).

T. M. Apostol, Analisis matematico. 2nd edition. Translation of the original published
by Addison-Wesley Plublishing Company. Reverté (2020).

M. S. Birman and M. Z. Solomjak, Spectral theory of self-adjoint operators in Hilbert
space. Vol. 5. Springer Science and Business Media (2012).

M. Braun, Ecuaciones diferenciales y sus aplicaciones. Translation of the original
published by Springer-Verlag New York. Iberoamericana (1991).

R. del Rio and L. O. Silva, Spectral analysis for linear semi-infinite mass-spring
systems. Math. Nachr. 288, No. 11-12, 1241-1253 (2015).

S. N. Elaydi, An introduction to difference equations. New York, NY: Springer (1996).

S. H. Friedberg, A. J. Insel, and L. E. Spence, Algebra lineal. Publicaciones Cultural
(1982).

J. V. Grabiner, Who gave you the epsilon? Cauchy and the origins of rigorous cal-
culus. Am. Math. Mon. 90, 185-194 (1983).

P. R. Halmos, Finite-dimensional vector spaces. 2nd edition. Reprint of the 1958
original published by D. van Nostrand Company. Mineola, NY: Dover Publications
(2017).

A. Kirsch, An introduction to the mathematical theory of inverse problems. Vol. 120.
New York: Springer (2011).

91



92 BIBLIOGRAFIA

[12] V. A. Marchenko and T. V. Misyura, Sefialamientos Metodologicos y Didacticos al
Tema: Problemas Inversos de la Teoria Espectral de Operadores de Dimension Finita.
Monografias IIMAS-UNAM 12, no. 28 (2004).

[13] V. A. Marchenko and V. Slavin, Inverse problems in the theory of small oscillations.
Vol. 247. Translated from the Russian. Providence, RI: American Mathematical So-

ciety (AMS) (2018).

[14] G. Teschi, Jacobi operators and completely integrable nonlinear lattices. Providence,
RI: American Mathematical Society (2000).






