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Prefacio

Naa kavi tu’un savi.
(Leamos en lengua mixteca)

Region mizteca

El analisis de las decisiones humanas ha sido durante mucho tiempo un puente
entre la economia y la matemética. En particular, la teoria de la utilidad espe-
rada ha ofrecido una base formal para comprender cémo los individuos toman
decisiones cuando enfrentan riesgo o incertidumbre. Este marco tedrico, desarro-
llado inicialmente por John von Neumann y Oskar Morgenstern a mediados del
siglo XX, proporciond los primeros fundamentos axiomaticos para representar ma-
tematicamente las preferencias de los agentes econémicos ante apuestas.

El interés por este tipo de modelos surge de una necesidad practica: poder
predecir, comparar y justificar decisiones racionales. En contextos como el consu-
mo, la inversion, los seguros o cualquier elecciéon bajo incertidumbre, contar con
una funcién de utilidad permite cuantificar las preferencias individuales y hacer
comparaciones entre distintas alternativas de manera sistematica.

Esta tesis comienza desarrollando la teoria bajo condiciones de certeza, ademas
de mostrar términos que pudieran ser nuevos para un matematico, pero son usuales
en teoria microeconémica, luego presentamos los axiomas basicos que garantizan la
existencia de una funcion de utilidad, la cual permite representar las preferencias
del consumidor cuando no hay riesgo. A partir de ello, se introduce el contexto
de incertidumbre, donde se trabaja con loterias simples (o juegos de azar), y se
presentan los axiomas adicionales que justifican la existencia de una funciéon de
utilidad de von Neumann-Morgenstern.

También se examinan las condiciones bajo las cuales dicha funcién es tnica,
salvo transformaciones positivas afines; es decir, cualquier otra funciéon que repre-
sente las mismas preferencias debe estar relacionada con la original mediante una
transformacion del tipo u/'(z) = au(x) + b, con a > 0.

En la ultima parte de la tesis se presentan aplicaciones empiricas usando datos
publicos de productos financieros ofrecidos por aseguradoras, mostrando cémo
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estas ideas tedricas permiten entender mejor las decisiones del consumidor ante
diferentes niveles de riesgo. Finalmente, se analiza el papel de la aversion al riesgo
y se aplican herramientas como la medida de Arrow-Pratt y el equivalente cierto
para ilustrar como las preferencias reveladas pueden ayudar a evaluar distintas
alternativas desde una perspectiva cuantitativa.

La unién entre teoria econémica y formalizaciéon matematica permite no solo
describir comportamientos, sino también disenar decisiones mas informadas y ra-
cionales, aunque no llegamos a esto buscamos exponer de manera clara teoremas,
dando en ocasiones solo su enunciado con el fin de llegar a una aplicaciéon concreta.
Este trabajo pretende ser una contribucién sencilla y didactica al entendimiento
de esta relacion.
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(zlosario de términos

= R? : Es el conjunto de vectores en R" con todos sus componentes no nega-
tivos. Es decir, x € R” tal que x; > 0 para todo i =1,...,n.

= R?,: Es el conjunto de vectores en R" con todos sus componentes estricta-
mente positivos, es decir, x € R" tal que z; > 0 para todot=1,...,n.

= > : Se utiliza para representar una relaciéon de preferencia fuerte o una
desigualdad estricta en vectores. En el contexto de preferencias estricta-
mente mondtonas, si X > y, significa que X es estrictamente preferido a y, es
decir, cada componente de x es estrictamente mayor que la correspondiente
eny:
x>y & x>y Vi

En términos de funcién de utilidad, una preferencia es estrictamente mono-
tona si x >y, implica que:

u(x) > u(y).

Esto significa que una mayor cantidad de cada bien siempre genera una ma-
yor utilidad.

= D: Conjunto dominio del problema de optimizacion. Es el conjunto de todos
los pares admisibles (x,a) € R"x A para los cuales la funcion objetivo f(x, a)
esté definida. El conjunto A C R™ representa el conjunto de parametros del
problema. En el contexto del Teorema del méximo, se asume que f : D —
R es continua sobre D, y que las restricciones estan definidas de manera
que generan conjuntos factibles S(a) no vacios y compactos. Por tanto, D
contiene la informacién sobre las decisiones y parametros para los cuales el
problema tiene sentido matematico.






Introduccion

La utilidad de von Neumann-Morgenstern es fundamental en la teoria de decisio-
nes, las finanzas y la economia, donde se utiliza para modelar la toma de decisiones
bajo incertidumbre, especialmente en situaciones de riesgo en las que los indivi-
duos buscan maximizar su utilidad esperada en lugar de solo su ganancia o retorno
esperado.

La teorfa de elecciéon bajo incertidumbre se aplica en diferentes contextos econo-
micos. En el drea de las matematicas, la teoria de optimizacion y teoria de la
utilidad esperada se utilizan para resolver problemas complejos en estos campos.

La utilidad de von Neumann-Morgenstern es una forma de representar las
preferencias de un agente econémico frente a situaciones de riesgo, es decir, cuando
los resultados de una decisiéon no son seguros y estan sujetos a probabilidades.
Este concepto es parte de la teoria de utilidad esperada desarrollada por John
von Neumann y Oskar Morgenstern, la cual proporciona una base matemética
para la toma de decisiones bajo incertidumbre.[11]

La importancia de este estudio radica en su capacidad para explicar el com-
portamiento financiero mediante un enfoque cuantitativo y riguroso, esto ha sido
fundamental no solo en el desarrollo de la teoria de carteras y la administracion de
riesgos, sino también en la comprension de fendémenos como la aversion al riesgo
y las preferencias de inversion.

A pesar de su relevancia, el uso de modelos de utilidad esperada en el sector
de inversiones atin presenta un amplio margen para investigaciones y aplicaciones
practicas. Profundizar en estos modelos y adaptarlos a los contextos actuales de
volatilidad financiera y alta competencia representa un avance significativo tanto
para el analisis econémico como para la matematica aplicada.






Capitulo 1

Conceptos preliminares

Kanu ko ini.

(Que muy grande sea su corazon)

Alusion mizteca

En este capitulo daremos los conceptos necesarios para la lectura de la teoria
econémica y la forma de escribir demostraciones de teoremas matematicos, los
cuales son fundamentales en las estructuras de la teoria moderna del consumidor.

1.1. Notaciones matematicas

Presentaremos algunas definiciones concernientes para el capitulo dos y cuatro
extraidas de [5], con algunas adaptaciones para usarlas en este texto.

Definiciéon 1.1 (Conjunto convexo). Sea © C R"™. Decimos que © es un conjunto
convexo si para cualesquiera puntos u,v € O y para todo o € [0,1], se cumple que
la combinacion conveza:

w=au+ (1 -a)v

también pertenece a ©. Es decir,
au+ (1 —a)veo.

Ahora expondremos las definiciones para funciones con base en [3, Cap. 3, p.
98] para su uso en los primeros teoremas del capitulo uno.

Definicion 1.2 (Funcién estrictamente creciente). Sea f: D C R — R una fun-
cion definida en un subconjunto D de los reales. Decimos que f es estrictamente



Conceptos preliminares 1.1. NOTACIONES MATEMATICAS

creciente si para cualesquiera dos puntos xi,x9 € D, con x1 < x4, se cumple que

fz1) < f(x2).

Es decir, la funcion aumenta estrictamente su valor a medida que la variable
independiente crece. Esta propiedad garantiza que no hay intervalos constantes ni
decrecientes: todo incremento en la variable implica un incremento en la imagen.

Definicion 1.3 (Funcion convexa). Sea f: S — R, donde S CR" es un conjunto
convexo no vacio. La funcion [ se dice convexa en S si para cualesquiera X1, Xy €
S y para todo \ € [0,1], se cumple:

FOAx + (1= A)x2) < Af(x1) + (1= A) f(x2).

Definicion 1.4 (Funcion estrictamente convexa). Sea f: S — R, donde S C R"
es un conjunto convexo no vacio. La funcion f se dice estrictamente converxa
en S si para todo par distinto Xy # X3 € S y para todo A € (0,1), se cumple:

SO+ (1= A)x2) <Af(x1) + (1= A) f(x2).

Definicion 1.5 (Funcion concava). Sea f: S — R, donde S CR" es un conjunto
convexo no vacio. La funcion f se dice concava en S st —f es convexa en S; es
decir, si para todo x1,X2 € S y A € [0,1], se cumple:

FOX1 4+ (1 = XN)x2) > Af(x1) + (1 = N) f(x2).

Definicién 1.6 (Funcion estrictamente concava). Sea f: S — R, donde S C R"
es un conjunto convexo no vacio. La funcion f se dice estrictamente concava
en S si —f es estrictamente convera en S; es decir, si para todo par distinto
xX; £X9 €S y A€ (0,1), se cumple:

FOx1 4+ (1= X)xz) > Af(x1) + (1 = A) f(x2).

Definicién 1.7 (Funcion cuasiconvexa). Sea f: S C R™ — R wuna funcion defini-
da en un conjunto convexo S. Se dice que [ es cuasiconvexa si para cualesquiera
X1,X2 €5 y todo X\ € [0,1], se cumple:

FOX1 + (1= A)x2) < méx{f(x1), f(x2)}.

Definicién 1.8 (Funcion estrictamente cuasiconvexa). Sea f : S C R* — R
una funcion definida en un conjunto convexo S. Se dice que f es estrictamente
cuasiconveza si para cualesquiera Xi,Xs € S con X1 # X, y todo A € (0,1), se
cumple:

SO+ (1= A)xg) < méx{f(x1), f(x2)}-
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Definiciéon 1.9 (Funcion cuasiconcava). Sea f: S C R"™ — R una funcion defini-
da en un conjunto convexo S. Se dice que f es cuasiconcava si para cualesquiera
X1,Xg €5 y todo \ € [0,1], se cumple:

fOX1 + (1= A)x2) > min{ f(x1), f(x2)}-

Definicion 1.10 (Funcién estrictamente cuasiconcava). Sea f : S C R* — R
una funcion definida en un conjunto convexo S. Se dice que f es estrictamente
cuasiconcava si para cualesquiera Xi,Xy € S con X1 # Xa, y todo A € (0,1), se
cumple:

FOXx1 4+ (1 = A)x2) > min{ f(x1), f(x2)}.

Cabe observar que aunque el término “cuasiconcava” pudiera sugerir que la
funcion debe definirse sobre un conjunto concavo, en realidad se requiere que el
dominio sea un conjunto convexo. Esto se debe a que la propiedad de cuasi-
concavidad involucra combinaciones convexas de dos puntos x; y Xs. Para que
dichas combinaciones intermedias del tipo Ax; 4 (1 — A)Xa, con A € [0, 1], también
pertenezcan al dominio, es necesario que dicho dominio sea convexo.

En otras palabras, la cuasiconcavidad de una funcién es una propiedad sobre el
comportamiento de sus valores en los segmentos de linea entre dos puntos dados,
lo cual s6lo puede evaluarse si el conjunto sobre el cual esta definida incluye esos
segmentos. Por esta razon, tanto en analisis matemético como en teoria micro-
econdmica, las funciones cuasiconcavas y cuasiconvexas se definen sobre conjuntos
CONVexos.

Definiciéon 1.11 (Desigualdad componente a componente). Sean x,y € R™. De-
Cc1mos que:

1. x>y sty solo st x; > y; para todot=1,...,n,

2. x >y sty solo six; >y; para todo 1t = 1,...,n y ademds x; > y; para al
menos un j,

3. x>y sty solo si x; > y; estrictamente para todo i =1,...,n.

Estas desigualdades se interpretan componente a componente y son amplia-
mente utilizadas en economia para expresar relaciones de dominancia entre vec-
tores de consumo. Note que para inciso 3 hay una relacion entre las notaciones
matemdticas y economicas que es un punto a tratar en la metodologia y proposito
de este texto.

Observacion: La diferencia entre los incisos 2 y 3 radica en el grado de desigual-

dad:

» Fn x>y, se permite que algunas componentes sean iguales, siempre que al
menos una sea estrictamente mayor.
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s Fnx >y, todas las componentes de x deben ser estrictamente mayores que
las correspondientes en 'y, sin excepciones.

Esta distincion es importante en teoria de preferencias, pues X >y implica una
dominancia clara, mientras que X >y representa una preferencia parcial.

A continuacién pondremos definiciones importantes para su uso en este texto.
Han sido extraidas de [5, p. 65]

Definiciéon 1.12 (Gradiente). Sea f : R" — R wuna funcion diferenciable. El
gradiente de f en el punto x € R"™, denotado por V f(x), es el vector columna que
contiene las deriwadas parciales de f con respecto a cada variable. Esto es,

Este vector representa la direccion de mdxima tasa de cambio de la funcion f en
X.

Definicion 1.13 (Matriz Hessiana). Sea f : R* — R wuna funcidn dos veces
diferenciable. La matriz Hessiana de f en el punto x, denotada por H(x), es la
matriz cuadrada de n X n que contiene las sequndas derivadas parciales de f, de
la siguiente manera:

2y *f ... _9f
Oz Ox10x2 0x10xn
0% f af ... _9f
H(X) _ | 0z2021 0x3 Ox20xn
o2 f o’f ... 9f
| 01,01  OzpnOT2 orZ |

Esta matriz es simétrica si las sequndas derivadas parciales miztas(es decir, que
conmutan el orden de las derivadas) son continuas en un entorno(vecindad) de x*
esto ultimo por el teorema A.4.

Definicion 1.14 (Lagrangiano). Sea f : R" — R wuna funcion objetivo y h :
R™ — R™ un conjunto de funciones de restriccion de igualdad. El Lagrangiano
asociado al problema de optimizacion con restricciones de igqualdad se define como

L£0x,2) = f(x) + ATh(x),

1Con base el teorema de Schwarz (o Young)A.4, la igualdad de las derivadas mixtas esta
garantizada bajo continuidad.



Conceptos preliminares 1.2. NOCIONES ECONOMICAS

donde X € R™ es el vector de multiplicadores de Lagrange. La condicion de La-
grange para que X* sea un minimizador local consiste en que el gradiente de L con
respecto a todas sus vartables sea nulo, es decir,

VL(x" A)=0".

1.2. Nociones econdémicas

Definicion 1.15 (Numéraire). En teoria econdmica, el numéraire [1}] es una
unidad de cuenta normalizada utilizada para expresar los valores relativos de bie-
nes Yy Servicios.

En otras palabras el numéraire es una unidad de valor sin unidades de dinero,
sino con unidades de valor que permitan una comparacion estéatica, lo cual permite
un analisis grafico claro en planos precio-calidad.

Definicion 1.16 (Economia de mercado). Una economia de mercado o eco-
nomia de libre mercado es un sistema economico en el cual las decisiones sobre
produccion, consumo y asignacion de recursos se coordinan a través de los pre-
c1os que surgen en mercados libres. En este tipo de economia, los individuos y las
empresas interactuan voluntariamente en los mercados para intercambiar bienes
y servicios, guiados por incentivos de beneficio y los precios relativos.

El mecanismo de precios actia como incentivo para productores y consumido-
res, reflejando la escasez y las preferencias. El papel del gobierno se limita ge-
neralmente a establecer y hacer cumplir las reglas del intercambio, proteger los
derechos de propiedad y corregir ciertas fallas de mercado cuando estas surgen.

Este sistema contrasta con las economias planificadas, donde la asignacion de
recursos se determina mediante decisiones centralizadas. Con base en [17] plan-
teamos la anterior definicién centrandonos en la idea de economia como el querer
més de lo que se tiene asi como en la tension entre el interés personal y el interés
publico, enfocidndonos en preferencias para el interés de este texto.

También con base en [17] asumiremos el concepto de microeconomia siguiente.

Definiciéon 1.17 (Microeconomia). La microeconomia es el estudio de las eleccio-
nes que realizan los individuos y las empresas, la manera en que dichas elecciones
interactian en los mercados y la influencia que los gobiernos ejercen sobre ellas.
Este campo de la economia se centra en el andlisis de como los agentes economi-
cos responden a los incentivos, como se determinan los precios en distintos tipos
de mercado, y como se asignan los recursos escasos entre diversas actividades
productivas.

Asimismo, la microeconomia examina los efectos de las politicas publicas como
impuestos, subsidios o regulaciones. Tiene que ver sobre las decisiones individuales
y el bienestar social. Su propoésito es dar un marco analitico riguroso para entender
el comportamiento econémico a nivel individual y la estructura de los mercados.
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Definicién 1.18 (Paquete de consumo). Un paquete de consumo (también
llamado canasta de bienes) es una combinacion especifica de cantidades de bienes
que un consumidor puede elegir. Matemdticamente, se representa como un vector
X = (21, %2,...,2,) € R}, donde cada componente x; > 0 indica la cantidad del
bien i que compone dicho paquete.

Desde el punto de vista econémico, este vector representa una eleccion fac-
tible del consumidor, y es el objeto sobre el cual se definen sus preferencias y
niweles de utilidad. Comparando distintos paquetes, el consumidor manifiesta sus
preferencias relativas entre alternativas de consumo.

Desde el punto de vista matemadtico, el paquete de consumo es un elemento
del conjunto de consumo X C R%.

1.3. Conceptos microeconémicos basicos

Las preferencias del consumidor se caracterizan mediante un enfoque axioma-
tico. Este método de modelacion establece el menor niimero posible de supuestos
significativos(axiomas) y distintos para describir la estructura y propiedades de
las preferencias. A partir de estos axiomas, el resto de la teoria se construye 16gi-
camente, y se estiman predicciones del comportamiento mediante deduccién.

Estos axiomas de eleccion del consumidor buscan modelar formalmente los
aspectos fundamentales del comportamiento del consumidor. En conjunto, forma-
lizan la idea de que el consumidor es capaz de elegir y que sus decisiones son
consistentes de una manera particular.

El uso de una relacion binaria para caracterizar las preferencias es significativo
y merece un breve analisis ya que la teoria depende relativamente poco del consu-
midor que describe. Solo exigimos que los consumidores sean capaces de realizar
comparaciones binarias, es decir, que al examinar dos opciones de consumo pue-
dan decidir cual de las dos prefieren. Los axiomas que se presentan a continuacion
establecen los criterios basicos que dichas comparaciones binarias deben cumplir.

En el enfoque basado en preferencias, los objetivos del agente decisor se re-
sumen en una relacion de preferencia, denotada por 7~. Técnicamente, 7~ es una
relacion binaria definida sobre el conjunto de alternativas X, permitiendo la com-
paracion entre pares de alternativas x,y € X. La notaciéon x =~ y se interpreta

como “la alternativa = es al menos tan buena como la alternativa y". A partir de
esta relacion, se derivan dos relaciones fundamentales:

= La relaciéon de preferencia estricta, >, definida como:
Ty <= T yperonoy o x,
que se interpreta como “x es estrictamente preferido a y".

10
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= La relacion de indiferencia, ~, definida como:
T~y = TTYyYT T (1.1)
que se interpreta como “x es indiferente a y".

Axioma 1.1 (Completitud). Para todo z,y € X, se tiene que x ZZy oy = x (o
ambas).

Axioma 1.2 (Transitividad). Para todo z,y,2z € X, si x 7Z y y y 7 2, entonces

La propiedad de completitud implica que el individuo posee una preferencia bien
definida entre cualquier par de alternativas posibles. Este axioma supone que las
decisiones han sido meditadas y completamente evaluadas, incluso en casos de
alternativas que puedan ser ajenas a la experiencia comun.

Por otro lado, la transitividad es fundamental para el concepto de racionalidad,
ya que garantiza que dichas comparaciones binarias deben estar conectadas de
manera coherente. La ausencia de transitividad generaria ciclos de preferencia,
como preferir x a y, y a z, pero también z a x, lo cual resulta incompatible con
una teorfa econémica coherente.

Definiciéon 1.19 (Relacion de preferencia). La relacion binaria 7 en el conjunto
del consumidor X es llamada relacion de preferencia si satisface los axiomas 1.1
y 1.2

Definicion 1.20 (Relacion de preferencia estricta). La relacion binaria = en el
conjunto del consumidor X se define por: x =y si y solo six 5y yy 7 x.

La relacion > se denomina relacion de preferencia estricta inducida por -,
o simplemente relacion de preferencia estricta cuando 77 es clara. La expresion
x > y se interpreta como ‘z es estrictamente preferido a y’.

Definiciéon 1.21 (Relacion de indiferencia). La relacion binaria ~ en el conjunto
del consumidor X se define por: x ~ vy si y solo six =y yy .

La expresion x ~ y se interpreta como ‘x es indiferente a y’. Es decir da lo
mismo la eleccién de cualquier opcion.
Dado cualquier par z y y, exactamente una de tres posibilidades mutuamente
excluyentes debe cumplirse: x =y, y = x o0 x ~y

Definicion 1.22 (Curva de Indiferencia). Sea u : R — R una funcion de utilidad
continua que representa las preferencias de un consumidor. Dado un paquete de
consumo(1.18) x' = (z1,z3), la curva de indiferencia que pasa por x' se define
como el conjunto:

{(1,22) € RY | u(w1, 22) = ufay, )}

11
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Este conjunto representa todas las combinaciones de bienes x1 y xo que otorgan
al consumidor el mismo nivel de utilidad que el paquete x'. Si la funcion u es
diferenciable y satisface condiciones requlares® , esta curva puede representarse
localmente como una funcion xo = f(xy).

Definicién 1.23 (Tasa Marginal de Sustitucion del bien 2 por el bien 1). Sea
x = (x1,29) € ]R%r un paquete de consumo tal que u : ]R%r — R es una funcion
de utilidad diferenciable que representa las preferencias del consumidor. La tasa
marginal de sustitucion® del bien 2 por el bien 1 en X se define como:

D
£

()

MRSy(x) = | 5ot

Oz

N

Esta tasa representa cudnta cantidad del bien xo estd dispuesto a sacrificar el
consumidor para obtener una unidad adicional de x1, manteniéndose indiferente.
Equivale al valor absoluto de la pendiente de la curva de indiferencia que pasa
por X. Bajo preferencias estrictamente mondtonas y convexas, esta tasa es estric-
tamente decreciente a lo largo de una curva de indiferencia, lo cual expresa el
principio de la Tasa Marginal de Sustitucion Decreciente.

Lo que se buscamos capturar aqui son aquellas alternativas que son alcanzables
considerando las realidades econémicas a las que el consumidor se enfrenta. Sus
elementos son los paquetes de consumo que el individuo puede consumir dadas las
restricciones fisicas impuestas por su entorno.

1.4. Canastas de consumo y relaciéon de preferen-

cias. Propiedades.

Para cada vector x del conjunto X sus coordenadas se relacionan con la can-
tidad de bienes asociados al consumidor.

Supuesto 1.1 (Propiedades del conjunto del consumidor, X'). Los requisitos mi-
nimos sobre el conjunto de consumo son:

1. X CR".

2Las condiciones regulares que permiten representar la curva de indiferencia como una fun-
cion x9 = f(x1) provienen del teorema de la funcién implicita. Estas requieren que la funcion de
utilidad u(z1,x2) sea continuamente diferenciable en un entorno del punto considerado, y que
al menos una de las derivadas parciales, como du/dz2, no se anule en dicho punto. Econémica-
mente, esto implica que el consumidor valora ambos bienes.

3Al final de este capitulo se da el desarrollo matematico de esta ecuacién con base en su
analisis econémico.
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2. X es cerrado.
3. X es convexo.

4. 0 € X.

El conjunto factible B se define como el subconjunto del conjunto del consu-

midor X que satisface las restricciones que limitan el acceso del consumidor a los
bienes.
Dichas restricciones pueden derivarse de realidades practicas, institucionales o
econdmicas. La forma en que se especifiquen estas restricciones en una situacion
particular determinara las propiedades especificas de B. Por el momento, simple-
mente consideramos que B C X.

1.5. Relaciones de preferencia y funciones de uti-
lidad

Ahora revisaremos como ha evolucionado el concepto de “utilidad” en economia
y como se relaciona con las preferencias del consumidor.

En la teorfa clasica, economistas como Edgeworth y Mill, desde una visiéon uti-
litarista, pensaban en la utilidad como algo medible y comparable entre personas,
asociado a sensaciones como el placer o el dolor. Con el tiempo, esta idea se fue
mejorando. Fue Debreu en 1959 ([8]) quién formalizo la teoria del consumidor,
reduciéndola a sus ideas esenciales con un enfoque mas general y riguroso.

Hoy en dia, la utilidad se entiende como una forma de representar las pre-
ferencias del consumidor, que expresan cémo compara diferentes opciones segin
sus gustos. La relacion de preferencia define como elige entre alternativas y si
sus decisiones son consistentes. Para este punto ya podemos definir un conjunto
débilmente convexo en el contexto de estas relaciones, él cual ocuparemos més
adelante.

Definiciéon 1.24 (Conjunto débilmente convexo). Un conjunto C' C R’ se dice
débilmente convexo con respecto a una relacion de preferencia —, si para cuales-

~?

quiera dos puntos X,y € C, y para todo o € (0,1), se cumple que*
x~y = ax+(l—-a)yzx
Esta propiedad tmplica que el consumidor muestra una débil preferencia por

combinaciones balanceadas, es decir, por distribuciones intermedias entre dos ces-
tas indiferentes.

4Lo que dice exactamente esta implicacién es que si x ~ y, entonces cualquier combinacién
convexa estricta entre x y y (como ax + (1 — a)y) es al menos tan buena como x, es decir, se
encuentra en el conjunto de consumo débilmente preferido a x.
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Definicion 1.25. Conjuntos en X derivados de la relacion de preferencia
Sea x° un punto cualquiera en el conjunto de consumo X. En relacion con este
punto, se pueden definir los siguientes subconjuntos de X :

1. = (x%) = {x | x € X,x = x°}, llamado el conjunto de las alternativas “al

menos tan buenas como” xV.

~Y

mejores que” xV.

2. 2 (%% = {x|x e X,x" = x}, llamado el conjunto de las alternativas “no

3. < (x%) = {x| x € X,x% = x}, llamado el conjunto de las alternativas

“peores que” xV.

4. (x°) = {x | x € X,x = x°, llamado el conjunto de las alternativas

“mejores a” x°.

5.~ (x%) = {x | x € X,x ~ x°, llamado el conjunto de las alternativas

“indiferentes a” xV.

Un conjunto de preferencias que satisface los Axiomas 1.1 y 1.2 se ilustra en la
Figura 1.1 para X = R2. Cualquier punto dentro del conjunto de consumo, como
x? = (29, 29), representa un plan de consumo con una cantidad determinada z
del bien 1 y una cantidad z9 del bien 2. Bajo el Axioma 1.1, el consumidor es capaz
de comparar x° con cualquier otro punto en X y decidir si la otra alternativa es

al menos tan buena como x" o si x° es al menos tan buena como la otra opcién.

Dados los conjuntos definidos en relaciéon con x°, los Axiomas 1.1 y 1.2 ga-
rantizan que el consumidor es capaz de clasificar todos los puntos en X dentro
de una de tres categorias mutuamente excluyentes con respecto a x°: cada otro
punto en el conjunto de consumo es peor que x°, indiferente a x° o preferido a x°.
En consecuencia, para cualquier vector x°; los conjuntos < (x°), ~ (x°) y = (xY)
forman una particion del conjunto de consumo.

Las preferencias representadas en la Figura 1.1 pueden parecer poco conven-
cionales. Poseen solo una estructura minima, pero siguen siendo completamente
consistentes con los primeros dos axiomas. Hasta el momento, no se ha asumido
nada que impida ciertas “irregularidades” en la representacion de las preferen-
cias, como zonas de indiferencia “gruesas”, “huecos” o “curvas” dentro del conjunto
de indiferencia ~ (x°). Estas caracteristicas solo pueden descartarse imponiendo
condiciones adicionales sobre las preferencias.

A partir de ahora, necesitamos nuevos axiomas sobre las preferencias. Uno
de ellos tiene un impacto minimo desde el punto de vista del comportamiento y
se enfoca exclusivamente en los aspectos matematicos de la representacion de las
preferencias. Las demas hipotesis se relacionan directamente con la caracterizacion
de los gustos del consumidor sobre los bienes en el conjunto de consumo.

El primer axioma adicional que se considerara impone una cierta regulari-
dad topologica sobre las preferencias. Su contribucién principal serd més evidente
posteriormente. A partir de ahora consideraremos X = R
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X2

> (x9)

< (x9)

X1

Figura 1.1: Preferencias hipotéticas que satisfacen los axiomas 1.1 y 1.2.

Axioma 1.3 (Continuidad). Para todo x € R, el conjunto “al menos tan bueno
como” 7 (x) y el conjunto “no mejor que” 3 (x) son cerrados en R’ .

En matematicas un conjunto es cerrado si su complemento es abierto. Por lo
tanto, decir que 77 () es cerrado en R’ implica que su complemento < (z) es
abierto en R;. La continuidad garantiza que no se produzcan inversiones repenti-
nas de preferencias.

Axioma 1.4 (No satisfaccion local). Para todo x” € R’} y para todo € > 0, existe
algin x € B.(x°) NR" tal que x > x°.

Este axioma establece que, dentro de cualquier vecindad de un punto dado
xY, por pequeiia que sea, siempre habra al menos un punto x que el consumidor
prefiera estrictamente a x°. Este axioma tiene un impacto importante en la estruc-
tura de los conjuntos de indiferencia, ya que excluye la posibilidad de que existan
“zonas de indiferencia” alrededor de un punto dado. Por ejemplo, si consideramos
el punto x! en la Figura 1.2, se puede encontrar un € > 0 y una vecindad B.(x?')
que contenga tinicamente puntos indiferentes a x!, lo cual violaria el axioma de
no satisfaccion local, pues siempre debe existir un punto estrictamente preferido
a x! en cualquier vecindad elegida. Las preferencias mostradas en la Figura 1.3

satisfacen este axioma, asi como los axiomas 1.1 al 1.3.
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X2

> (x°)

< (x?)

Figura 1.2: Preferencias hipotéticas que satisfacen los axiomas 1.1 1.2 y 1.3.

X2

> (x°)

< (x9)

Figura 1.3: Preferencias hipotéticas que satisfacen los axiomas 1.1, 1.2, 1.3 y 1.4.

Ahora para el siguiente axioma ocuparemos la definicién 1.11

1
’

Axioma 1.5 (Monotonicidad estricta). Para cualesquiera x°, x! € R7, si x! > x
entonces x° 7~ x!, mientras que si x° > x!, entonces x° = x!.

El Axioma 1.5 establece que si un vector contiene al menos la misma cantidad
de cada bien que otro, entonces el primero es al menos tan bueno como el segundo.
Ademés, si contiene estrictamente méas de cada bien, sera estrictamente preferido.
Este axioma tiene implicaciones importantes en la estructura de los conjuntos de
indiferencia y conjuntos relacionados. En particular, garantiza que los conjuntos
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de indiferencia en Ri no presenten segmentos con pendiente positiva ni se curven
hacia arriba. También establece que los conjuntos de bienes preferidos se ubican
“por encima” de los conjuntos de indiferencia, mientras que los conjuntos de bienes
“peores” se encuentran “por debajo”.

Para ilustrar este resultado, considérese el caso de un punto x°. Bajo el axioma
1.5, ningtin punto ubicado al noreste o suroeste de x° puede pertenecer al mis-
mo conjunto de indiferencia. Un punto x! situado al noreste de x° contiene mas
de ambos bienes y, por lo tanto, es estrictamente preferido. De manera similar,
cualquier punto x? en el suroeste de x° tiene menos de ambos bienes y debe ser
estrictamente peor. Como consecuencia, x° debe ser estrictamente preferido a x>
y a todos los puntos en el cuadrante suroeste, lo que implica que ninguno de ellos
puede pertenecer al mismo conjunto de indiferencia que x°. Asi, los puntos al
noreste del conjunto de indiferencia pertenecen al conjunto = (x°).

X2

Xt

X0

Figura 1.4: Preferencias hipotéticas que satisfacen los axiomas 1.1, 1.2, 1.3 y 1.4.

Un conjunto de preferencias que satisface los Axiomas 1.1, 1.2, 1.3 y 1.5 se
representa en la Figura 1.5.

Las preferencias mostradas en dicha figura son las méas cercanas, hasta ahora, a
aquellas que probablemente resulten familiares en teoria econémica. No obstante,
ain presentan una diferencia fundamental: la presencia de una regiéon no convexa
en la parte noroeste del conjunto de indiferencia ~ (x°).

En la mayoria de los modelos estandar, este tipo de irregularidad se descarta
explicitamente. Para esto se introducen dos tltimos axiomas sobre las preferencias
del consumidor.

Axioma 1.6 (Convexidad). Si x' = x°, entonces tx' + (1 — t)x° = x" para todo
t e [0,1].
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X2

< (x9)

Figura 1.5: Preferencias hipotéticas que satisfacen los axiomas 1.1, 1.2, 1.3, 14 y

1.5 pero tiene regiones no-convexas.

Axioma 1.7 (Convexidad estricta). Si x' # x° y x' = x°, entonces tx' + (1 —
t)x% = x" para todo t € (0,1).

Esta convexidad es similar a la convexidad usual usada en optimizacién en
R, pero ahora con la relacion de preferencia 7. Es importante notar que tanto
el Axioma 1.6 como el Axioma 1.7, en conjunto con los Axiomas 1.1, 1.2, 1.3
y 1.5, eliminan la posibilidad de segmentos concavos respecto al origen dentro
de los conjuntos de indiferencia, como los observados en la regién noroeste de la
Figura 1.5. Para entender esto, tomemos dos puntos distintos en un conjunto de
indiferencia. Como los puntos x! y x? son indiferentes respecto a x°, se cumple que
x! = x2. Las combinaciones convexas de estos dos puntos, como x!, perteneceran
al conjunto < (x%), lo que contradice los requisitos de los Axiomas 1.6 y 1.7.

Desde el punto de vista del desarrollo teoérico del consumidor, el Axioma 1.6
puede imponerse sin pérdida de generalidad, ya que su contenido predictivo es
equivalente a la versiéon sin él. Sin embargo, la version mas fuerte, el Axioma 1.7,
aunque no es completamente equivalente, simplifica notablemente el anéalisis.

Para comprender de manera intuitiva las implicaciones de la convexidad en
las preferencias del consumidor, consideremos las preferencias ilustradas en la
Figura 1.5. Supongamos que x! ~ x2. El punto x! representa un vector con una
proporcion relativamente alta del bien x,, en comparacion con x2, que a su vez
contiene una proporcion relativamente alta del bien x;. Aunque cada una de estas
canastas tiene una distribuciéon sesgada hacia uno de los bienes, el consumidor
es indiferente entre ellas. Ahora bien, cualquier combinacién convexa de x' y x2,
como x', serd un vector que presenta una combinacion mas “balanceada”’ de los
bienes x; y X2 en comparacion con las opciones mas extremas representadas por
x! y x2.

18



Conceptos preliminares 1.5. RELACIONES DE PREFERENCIA Y FUNCIONES DE UTILIDAD

X2

X1

Figura 1.6: Preferencias hipotéticas que satisfacen los axiomas 1.1, 1.2, 1.3, 1.5 y
1.6 0 1.7.

Nota 1.1. Los Axiomas 1.6 y 1.7 expresan que el consumidor prefiere combina-
ciones equilibradas de bienes en lugar de combinaciones extremas o despropori-
sionadas.

El Axioma 1.6 asegura que una canasta balanceada es al menos tan buena como
dos opciones entre las que es indiferente. E1 Axioma 1.7 va mas all&, exigiendo
que esa canasta sea estrictamente mejor.

Esto se relaciona con la forma curva de las curvas de indiferencia y con la tasa
marginal de sustitucion (1.23), que mide cuanta cantidad del bien z, esté
dispuesto a intercambiar el consumidor por mas de x1, sin perder satisfaccion.

Ambos axiomas reflejan la idea de que, conforme se obtiene mas de un bien, se
esté dispuesto a sacrificar cada vez menos del otro. Esto se conoce como el prin-
cipio de tasa marginal de sustitucién decreciente, ilustrado en la Figura
1.6.

Hasta ahora hemos dedicado un esfuerzo significativo a analizar distintos axio-
mas que describen las preferencias del consumidor, algunas pudieran demostrarse,
pero no lo haremos, con el objetivo de comprender sus implicaciones tanto in-
dividuales como colectivas en la estructura y representacion de las preferencias.
Podemos resumir esta discusion de la siguiente manera:

= Los axiomas de completitud y transitividad aseguran que el consumidor
puede realizar comparaciones consistentes entre diferentes alternativas.

= El axioma de continuidad garantiza la existencia de conjuntos “al menos tan
buenos como” y “no mejores que” con propiedades topoldgicamente conve-
nientes, desempenando un rol primordialmente matematico.

= Los demés axiomas caracterizan las preferencias del consumidor sobre los
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objetos de su eleccion. Por lo que se requiere que sus gustos tiendan a la no
satisfaccion y algtin sesgo a favor del equilibrio del consumo.

1.5.1. La funciéon de utilidad

En la teoria moderna, la funcién de utilidad es una herramienta para resumir la
informacion de la relacion de preferencia del consumidor. La relacion de preferencia
y sus conjuntos asociados son ttiles, pero cuando se requieren emplear métodos
de célculo es més facil usar la funciéon de utilidad.

Definiciéon 1.26 (Funciéon de utilidad que representa la relacion de preferencia
7). Una funcion real u : R, — R es llamada funcion de utilidad que representa

la relacion de preferencia 7 si, para todo Xo,x1 € R}, se cumple que:

U(Xo) > U(X1> — Xo r>\: Xq.

En otras palabras una funcién de utilidad representa la relacion de preferencia
del consumidor si asigna ntimeros mas grandes a las combinaciones de consumo
preferidas, permitiendonos elegir una (esto lo aplicaremos en el capitulo final).

El estudio de las condiciones que debe satisfacer una relacion de preferencia
para ser representada por una funcion de utilidad continua ha sido un tema de gran
interés en la teoria econémica. Este problema es fundamental, ya que la posibilidad
de trabajar con una funciéon de utilidad en lugar de la relacion de preferencia
misma simplifica considerablemente el analisis en numerosos problemas de teoria
del consumidor.

Desde un punto de vista matematico, el problema consiste en establecer la
existencia de una funciéon de utilidad continua que represente una relaciéon de
preferencia. Cabe aclarar que durante este texto se asumirédn condiciones extras
como monotonicidad en las preferencias.

Teorema 1.1. Existencia de una Funcion Real que representa la relacion
de preferencia
St la relacion binaria 77, es completa, transitiva, continua y estrictamente mo-
notona, entonces existe una funcion continua de valores reales u : R} — R que
representa a 2.

Vale observar que este resultado es un teorema de existencia. Matematicamen-
te establece que, bajo las condiciones mencionadas, al menos una funciéon continua
de valores reales que represente la relacion de preferencia debe existir. Puede ha-
ber, més de una funciéon de este tipo. Sin embargo, el teorema no indica cuéntas
pueden existir ni de qué forma deben tomar. Por lo tanto, si podemos construir al
menos una funcién que sea continua y represente las preferencias dadas, habremos
probado el teorema. Esta es la estrategia que se debe seguir en la demostracion.
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Sin embargo como nuestro enfoque es llegar a un contexto de decisiones bajo incer-
tidumbre no abordaremos esta demostracion y este teorema solo serd expositivo
en esta tesis, pudiéndose consultar la prueba en (|11]).

Definicion 1.27 (Utilidad marginal). Sea u : R} — R una funcion de utilidad
continuamente diferenciable que representa las preferencias del consumidor. La
utilidad marginal del bien i en el paquete de consumo x = (x1,...,x,) € R}
se define como la deriwvada parcial de u con respecto a la cantidad consumida del
bien i, esto es:

Ou(x)

8%
Esta magnitud indica el cambio en el niwel de utilidad del consumidor ante un
incremento infinitesimal en la cantidad del bien i, manteniendo constante el con-
sumo de los demds bienes. Bajo el supuesto de preferencias estrictamente mond-
tonas, esta deriwada es estrictamente positiva para cast todos los paquetes X.

Nota 1.2. Una funcién de utilidad representa las preferencias del consumidor
asignando nimeros a cada paquete de consumo(1.18). Sin embargo, lo tnico que
importa es tipo que la relacion (1.1) nos proporcione niimeros para reflejar cual es
més grande. Por eso, si una funciéon u representa correctamente las preferencias,
cualquier transformaciéon que mantenga el mismo orden, como u?® o u+ 5, también
lo hara.

Esto significa que la funcion de utilidad no es tnica: sélo tiene sentido en térmi-
nos numéricos. Esta propiedad se conoce como invarianza bajo transformaciones
monotonas positivas.

Teorema 1.2. Invarianza de la Funcion de Utilidad ante Transforma-
ciones Monotonas Positivas

Sea 7 una relacion de preferencia en R} y supongamos que u(x) es una fun-
cion de utilidad que la representa. Entonces, v(x) también representa 7~ si y solo
si v(x) = f(u(x)) para todo x, donde f : R — R es estrictamente creciente y
continua en el conjunto de valores que toma u.

Al igual que el teorema 1.1 y 1.3 no pondremos una demostraciéon para este
teorema solo lo usaremos de manera expositiva.

Teorema 1.3. Propiedades de las Preferencias y las Funciones de Uti-
lidad Sea 7 representada por u : R, — R. Entonces:

1. u(x) es estrictamente creciente si y solo si 7, es estrictamente mondtona.
2. u(x) es cuasiconcava si y solo si 7, es convera.

3. u(x) es estrictamente cuasiconcava si y solo si 77 es estrictamente conveza.
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Estos resultados establecen la conexién entre la estructura matematica de la
funciéon de utilidad y las propiedades de la relacion de preferencia que represen-
ta. En particular, la monotonia estricta de u(x) implica que una mejor cesta de
bienes siempre es preferida, la cuasiconcavidad 1.9 refleja la convexidad(1.1) de
las preferencias, y la estricta cuasiconcavidad(1.10) implica una convexidad mas
fuerte en la relacion de preferencia.

1.6. Diferenciabilidad y la Tasa Marginal de Sus-
titucion

Mas adelante, vamos a querer analizar problemas utilizando herramientas del
calculo. Hasta ahora, nos hemos enfocado en la continuidad de la funcion de uti-
lidad y en las propiedades de la relacion de preferencia que la garantizan. La
diferenciabilidad, por supuesto, es una condiciéon mas exigente que la continuidad.
Intuitivamente, la continuidad asegura que no haya cambios bruscos en las pre-
ferencias, pero no excluye la posibilidad de “picos” o comportamientos continuos
pero irregulares. La diferenciabilidad, en cambio, elimina tales irregularidades y
garantiza que las curvas de indiferencia sean tanto suaves como continuas.

Por lo tanto, la diferenciabilidad de la funcién de utilidad requiere una restric-
cién mas fuerte sobre las preferencias que la mera continuidad. Al igual que en el
caso del axioma de continuidad, lo que se necesita una condiciéon matematica ade-
cuada. El desarrollo de esta condicion sobre la funciéon pudiera parecer impuesta,
pero desde el punto econémico pedirle esta condicién se sustenta en las adecua-
ciones para modelar el consumo o preferencias del consumidor. Esta explicacién
la expone Debreu en 1972 [8]. Para nuestros propositos en esta tesis, asumiremos
que la representacion de la utilidad es diferenciable siempre que sea necesario.

Dado que el anélisis de funciones diferenciables introduce un vocabulario espe-
cifico, es util familiarizarse con él. La derivada parcial de u(x) con respecto a z; se
denomina utilidad marginal(1.27) del bien i. En el caso de dos bienes, definimos la
tasa marginal de sustitucion(1.23) del bien 2 por el bien 1 como el valor absoluto
de la pendiente de la curva de indiferencia. Podemos obtener una expresion de
esta tasa en términos de las utilidades marginales de los bienes.

Para verlo, consideremos un paquete de consumo(1.18) x* = (21, z3). Como
la curva de indiferencia(1.22) que pasa por x! es una funcion en el plano (z1, z3),

podemos escribirla como x5 = f(z1)°. En consecuencia, al variar z, el paquete

La curva de indiferencia que pasa por un paquete x! = (x1,x1) representa todas las com-

binaciones de bienes que otorgan el mismo nivel de utilidad que x'. Si la funcién de utilidad
u(xy,r2) es continua y diferenciable, entonces, en una vecindad cercana a x!, podemos describir
esa curva como una funcion del tipo xo = f(z1). Esto significa que, al variar x;, existe un tinico
valor de x5 que mantiene constante la utilidad, permitiendo trazar la curva como una grafica en
el plano (1, z2).
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(w1, 22) = (x1, f(21)) traza la curva de indiferencia que pasa por x!. Por lo tanto,
para todo x1:

u(zy, f(x1)) = constante. (1.2)

La tasa marginal de sustitucion del bien 2 por el bien 1 (1.23) en el paquete
x! = (z1,z}), denotada por M RS)2(z}, x}), se define como el valor absoluto de la

pendiente de la curva de indiferencia en (z}, z3).

MRSyz(1,25) = | f'(21)] = —f(1). (1.3)

Esto dado que f < 0°. Ahora bien, como u(z1, f(z1)) es una funcién constante
en x1, su derivada con respecto a x; debe ser cero. Es decir,

ou(xy, o) N ou(xy, o)

6.7)1 8]32

La tasa marginal de sustitucion del bien 2 por el bien 1 en el paquete x
denotada M RS5(x!), se obtiene a partir de las ecuaciones 1.3 y 1.4:

1
)

Ju(x!)

MRS)y(x') = 5ok (1.5)

Oxo

De manera similar, si consideramos méas de dos bienes, definimos la tasa mar-
ginal de sustitucion del bien j por el bien i como el cociente de sus utilidades
marginales:

Ou(x)

MRS;;(x) = aifi) . (1.6)

Ox;

Cuando las utilidades marginales son estrictamente positivas, la M RS;;(x)
también lo es, lo que nos indica la cantidad del bien j que puede intercambiarse
por una unidad del bien ¢ sin alterar la utilidad del consumidor.

6Como las preferencias del consumidor son estrictamente monoétonas, si se aumenta la canti-
dad del bien x7, para mantener el mismo nivel de utilidad se debe reducir la cantidad del bien
Zo. Por eso, la curva de indiferencia desciende: al aumentar x;, xo disminuye. Esto implica que la
pendiente f'(x1) es negativa, es decir, f'(x1) < 0, ya que la derivada de una funcion decreciente
siempre es menor que cero.
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Capitulo 2

Teoria del consumidor

Kanu 7ia Savi sa’a nuu inu na na’tvi.
(Que Dios dé buena y abundante cosecha de milpa)

Region mixteca alta

Hasta ahora, hemos analizado como estructurar y representar las preferencias,
pero estas son solo uno de los cuatro elementos fundamentales en la teoria de la
eleccion del consumidor.

En un nivel abstracto, el consumidor tiene un conjunto de consumo X = R,
que contiene todas las alternativas de consumo concebibles. Sus inclinaciones y
actitudes hacia estas alternativas se describen mediante la relacion de preferencia
definida en R?. Las circunstancias del consumidor limitan las alternativas que
puede alcanzar, y estas se agrupan en un conjunto factible B C R”. Finalmente,
suponemos que el consumidor esta motivado a elegir la alternativa factible mas
preferida segiin su relacion de preferencia. Formalmente, el consumidor busca:

x* € B tal que x* 77 x para todo x € B. (2.1)

2.1. El problema del consumidor

Para avanzar en el anélisis, hacemos los siguientes supuestos, que se manten-
dran a menos que se requiera lo contrario.

Supuesto 2.1. Preferencias del consumidor
La relacion de preferencia - del consumidor es completa, transitiva, continua,
estrictamente monoétona y estrictamente convexa en R. Por lo tanto, segin los
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Teoremas 1.1 y 1.3 , puede ser representada por una funciéon de utilidad u con va-

lores reales, que es continua, estrictamente creciente y estrictamente cuasiconcava
n

en R7}.

En el caso de dos bienes R%r este tipo de preferencias puede representarse
mediante un mapa de indiferencia cuyas curvas de nivel no se interceptan, estric-
tamente convexas alejadas del origen y que crecen en direcciéon noreste, como se
muestra en la Figura 2.1.

Figura 2.1: Mapa de indiferencia para las preferencias que satisfacen 2.1

Ahora analizaremos las circunstancias del consumidor y estructuraremos el
conjunto factible. Nos enfocamos en un consumidor individual que opera dentro
de una economia de mercado 1.16, definida como un sistema en el que las tran-
sacciones entre agentes se realizan a través de mercados. Se asume que existe un
mercado para cada bien, y que cada bien ¢ tiene un precio p; > 0. Asimismo, se
supone que el consumidor es un agente insignificante en todos los mercados, lo
que significa que su demanda es tan pequena en comparacion con el tamano del
mercado que no afecta los precios de mercado. Formalmente, se toma el vector de
precios de mercado p > 0 fijo desde el punto de vista del consumidor.

El consumidor cuenta con un ingreso monetario fijo y > 0. Dado que al com-
prar x; unidades del bien ¢ a un precio p; por unidad requiere un gasto de p;x;
dolares, pesos o otra cantidad como el numéraire(1.15), la restriccion de que el
gasto no supere el ingreso se expresa como » ., p;r; < y, o de manera vectorial,
p - x < y. Estas condiciones son el entorno del consumidor que definen la estruc-
tura del conjunto factible B, llamado el conjunto presupuestario, definido de

la siguiente manera:
B={x|xeR} p-x<y} (2.2)
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En el caso particular de dos bienes Ri, B incluye todos los conjuntos que se
encuentran dentro o sobre los limites de la regién sombreada en la Fig 2.2.

X2 B
— P1X1+ Paxa =Y

Y
Zo e

X1

Figura 2.2: Conjunto presupuestario B = {x | x € R}, p-x < y}.

Vamos a escribir este problema ahora con términos de funciones que resulten
familiares en un contexto matematico.
Bajo el supuesto 2.1, las preferencias del consumidor pueden ser representadas por
una funcion de utilidad u(x) estrictamente creciente y estrictamente cuasiconca-
va(1.9) definida sobre el conjunto del consumidor R”. Dado que el gasto total no
debe exceder el ingreso (siendo esta una restriccion), el problema del consumidor
planteado en (2.1) puede reformularse como el problema de maximizacion de la
funcién de utilidad sujeto a la restriccion presupuestaria, dando paso a un proble-
ma de optimizacion. Formalmente, el problema de maximizacién de utilidad del
consumidor se expresa como:

max u(X)
veRy (2.3)
sa. p-x<uy.

Notese que si x* es solucion de este problema, entonces u(x*) > u(x) para
todo x € B, lo que implica que x* - x para todo x € B. Esto confirma que las

soluciones de (2.3) son, de hecho, soluciones de (2.1) debido a la definicion 1.26.
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Ademaés, el reciproco también es cierto.

Para el caso de dos bienes x € R? tenemos la figura(2.2) de ejemplo del
conjunto presupuestario B = {x | x € R%,p - x < y}. donde también se muestra
la restricciéon presupuestaria.

Dado el anterior problema de maximizacion del consumidor este tiene una
estructura matemaética bien definida. Bajo los supuestos de preferencias, la funcién
de utilidad u(x) es continua y de valores reales. El conjunto presupuestario B 2.2
es no vacio, pues contiene 0 € R}, recordando que y es mayor o igual que cero
por ser los ingresos, B es cerrado, acotado y, por lo tanto, compacto en R". Por
el teorema de Weierstrass (|2],[5]), existe un méaximo de u(x) sobre B.

Maés atin, como B es convexo y la funciéon objetivo es estrictamente cuasicon-
vexa(1.8), el Maximizador de u(x) sobre B es tnico. Dado que las preferencias
son estrictamente mondtonas, la solucion x* satisfara la restriccion presupuestaria
con igualdad, ubicandose en la frontera del conjunto presupuesto. Por lo tanto,
cuando y > 0 y dado que x* > 0, pero x* # 0, se sigue que z; > 0 para al menos
un bien 4.

Un ejemplo tipico de esta solucion en el caso de dos bienes se muestra en la
Fig. 2.3.

X2 —D1X1+ P2X2 =Y

X1

Figura 2.3: Solucién al problema de maximizacion de la utilidad del consumidor.

Funciones de demanda marshalliana
El vector soluciéon x* del problema de maximizacion del consumidor depende
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de los parametros p (precios) e y (ingreso). Dado que es tnico para valores dados
de p e y, podemos ver la soluciéon como una funcién del conjunto de precios e
ingreso al conjunto de cantidades demandadas, X = R’.. De este modo, se suele
expresar como

i =z;(p,y), i=1,...,n,

0, en notacién vectorial,
*
x* =x(p,y).

Estas soluciones se conocen como funciones de demanda ordinaria o funciones de
demanda marshalliana. Si mantenemos fijo el ingreso y los precios de los demas
bienes, el grafico de la relacion entre la cantidad demandada de x; y su propio
precio p; es la curva de demanda estandar del bien .

En la Fig. 2.4 superior, el consumidor enfrenta los precios p{ y p9 y tiene un
ingreso y°. Las cantidades z1(pY, p3, ¥°) v 22(p?, p3, ¥°) maximizan la utilidad bajo
esas condiciones. En la Fig.2.4 inferior, si graficamos el precio p! contra la cantidad
demandada del bien 1 a dicho precio (manteniendo fijo el precio p) y el ingreso
"), obtenemos un punto en la curva de demanda marshalliana del bien 1.

X;
: — pixtpl=y°
S=2e. L == plxi+pi=y°
-
-
e
~—
-
~
oy
x(pg. 3 Y - 101,5%7*3-._”_ x1 (pl.pg. ¥
x(pL. pi. vt \;; - 1(p1. R
6, S~
6 ==
—~—_
~—
~—
-
P1 x(pl, pZ. 7 x1(pL. pl. T X1
!
Pl
x1(pf.p3.¥%) x1(pi.p3.¥%)

Figura 2.4: El problema del consumidor y el comportamiento de la demanda del

consumidor.
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2.2. Analisis de la curva de demanda y condiciones
de Karush-Kuhn-Tucker (KKT)

A continuacién veremos las condiciones que generalizan el método de los mul-
tiplicadores de Lagrange de problemas de optimizacién con restricciones de des-
igualdad conocidas como condiciones de Karush-Kuhn-Tucker (KKT), esto pues
aunque originalmente el crédito debe incluir a William Karush [12], quien las for-
mul6 en su tesis de 1939, estas condiciones se hicieron ampliamente conocidas a
través del trabajo posterior de Harold W. Kuhn y Albert W. Tucker|[13] en 1951,
razoén por la cual se les llama comtunmente “condiciones Kuhn-Tucker” en muchos
textos clasicos, especialmente en economia y optimizaciéon, para el interés de es-
te texto las llamaremos condiciones de Karush-Kuhn-Tucker (KKT) por nuestro
enfoque matematico. Pero mencionando esto pues es una buena observaciéon en
la relacion que tiene el campo de economia con el de matematicas, sin dejar de
senalar que este es el objetivo de esta tesis de lo cual se pretende dejar testimonio.

A un nivel de ingreso y° fijo y con el precio p) del bien 2, si el consumidor
enfrenta un precio p} < p{ del bien 1, las cantidades z1(p},p3,v°) v z2(p1, p3, 3°)
resuelven el problema del consumidor y maximizan la utilidad. Graficando p}
contra la cantidad demandada del bien 1 a ese precio, se obtiene otro punto en
la curva de demanda marshalliana del bien 1. Considerando todos los valores
posibles de p;, se traza la curva de demanda completa del bien 1. Diferentes
niveles de ingreso y precios del bien 2 alteraran la posicion y forma de esta curva,
determinada por las propiedades de las preferencias del consumidor.

Si u(x) es diferenciable, podemos usar métodos de calculo para analizar el
comportamiento de la demanda. Tengamos en mente el problema de maximizacion
del consumidor(2.3).

Reescribiendo la restriccion como p-x —y < 0 y formando el lagrangiano 1.14,
obtenemos:

L(x,\) =u(x)—Ap-x—1y].

Asumiendo que la solucién x* es estrictamente positiva, podemos aplicar las
condiciones KKT para caracterizarla. Si x* > 0 resuelve el problema 2.3, entonces,
de acuerdo con el Teorema del apendice A.7, existe un A* > 0 tal que el par (x*, \*)
satisface las condiciones de Karush-Kuhn-Tucker (KKT):

oL  Ou(x*) ,
= — \'p; = =1,... 24
axi axz )\ p’L 07 ? 9 7” ( )
p-x —y<0 (2.5)
Ap-x"—y]=0 (2.6)
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Ahora, debido a la monotonicidad estricta, la condiciéon 2.5 se cumple bajo la
igualdad [5], de modo que la ecuaciéon 2.6 o ecuaciéon de holgura complementaria
se vuelve redundante. Por lo tanto, estas condiciones se reducen a:

0L  Ou(x¥) .
i
: (2.7)
oL  Ou(x)
— —_ )\* —
oz, oz, Pn=0
p-x'—y=0 (2.8)

2.3. Solucién al problema de maximizacién

Para el problema de maximizaciéon dado por 2.3, existen dos posibilidades:

» Vu(x*) = 0, aunque este caso es poco probable bajo la suposicion de estricta
monotonia.

» Vu(x*) # 0, lo cual asumiremos en adelante.

Bajo estricta monotonia, se tiene que alé(;*) > 0 para algin i = 1,...,n. Dado
que p; > 0 para todo 7, de la condiciéon 2.4 se deduce que el multiplicador de
Lagrange sera estrictamente positivo en la solucién:

(% x*
A= (") > 0.
pi
En consecuencia, para todo j:
ou(x*
( ) = )\*pj > O,

a.Tj

lo que implica que la utilidad marginal es proporcional al precio de cada bien en
el 6ptimo.

Relaciéon entre bienes. Para dos bienes cualesquiera j y k, podemos combinar
las condiciones y concluir que:

Au(x*)
o b (2.9)
Au(x*) ’ ’
Dy, Pk
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Esto indica que, en el 6ptimo, la tasa marginal de sustitucion (MRS) entre dos
bienes es igual a la relacion de los precios de dichos bienes.

Caso de dos bienes. En el caso de dos bienes, las condiciones 2.7 exigen que
la pendiente de la curva de indiferencia que pasa por x* sea igual a la pendiente
de la restricciéon presupuestaria, y que x* esté sobre la linea presupuestaria, y no
dentro de ella. Esto se muestra en las Figuras 2.3 y 2.4 superior.

Condiciones de optimalidad global. En general, las condiciones 2.7 son ne-
cesarias unicamente para un 6ptimo local. Sin embargo, en el caso particular de
este problema, estas condiciones de primer orden son también suficientes para
garantizar un 6ptimo global. Esto es importante senalar formalmente como se
enuncia en el siguiente teorema.

Teorema 2.1 (Suficiencia de las Condiciones de Primer Orden del Consumidor).
Sea u continua y cuasiconcava en R, sea (p,y) > 0. Siu es diferenciable en x*
y (x*, A*) > 0 resuelve 2.7, entonces X* es solucion del problema de mazimizacion
del consumidor a los precios p y nivel de ingreso y.

1

Demostraciéon: Usaremos el escolio 2.1: Para todo x,x* > 0, dado que u es

cuasicoéncava, se cumple que
Vu(x) - (x* —x) >0 siempre que u(x') >wu(x) y wu es diferenciable en x.
Ahora, supongamos que Vu(x*) existe y (x*, \*) > 0 resuelve 2.7. Entonces,
Vu(x*) = \*p, (2.10)
p-x"=uy. (2.11)
Si x* no maximiza la utilidad, debe existir algiin x° > 0 tal que

u(x°) > u(x*),
p-x’<y.

Debido a que u es continua y y > 0, las desigualdades previas implican que

u(tx®) > u(x*) (2.12)
p-tx? <y, (2.13)

para algin ¢ € [0, 1] lo suficientemente cercano a uno. Sea x! = tx°, entonces se
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tiene
Vu(x*)(x' —x*) = (\*p) - (x! —x*)
=\N(p-x' —p-x’) (2.14)
<Xy —v)
= 0.

donde la primera igualdad se sigue de 2.10 y la segunda desigualdad de 2.11 y
2.13. Sin embargo, dado que por 2.12 u(x!') > u(x*), 2.14 contradice el resultado
establecido al inicio de la demostracion. O

Con este resultado de suficiencia, basta encontrar una solucion (z*, \*) > 0
para 2.7. Notese que 2.7 es un sistema de n + 1 ecuaciones con n + 1 incégni-
tas desconocidas z7,...,x), \*. Estas ecuaciones pueden usarse tipicamente para
resolver las funciones de demanda z;(p,y), ¢ = 1,...,n, como se muestra en el
siguiente ejemplo.

Escolio 2.1. Sea u : R" — R wuna funcion cuasiconcava y diferenciable en x.
Si u(y) > u(x), entonces se cumple:

Vu(x) - (y —x) > 0.
Demostraciéon: Consideremos la funcion ¢(t) = u((1 —t)x+1ty), que describe el

valor de utilidad a lo largo de la combinacion convexa entre X y y, con t € [0, 1]
haciendo esta demostraciéon por pasos.

1. Como u es cuasiconcava(1.9), y dado que u(y) > u(x), se tiene:
o(t) =u((1 —t)x +ty) > u(x) paratodot e [0,1].
Por tanto, ¢(t) alcanza un minimo (local) en ¢ = 0.

2. Como u es diferenciable en x, entonces la funciéon compuesta

¢(t) = u((1 = t)x + ty)

es diferenciable respecto a t. Podemos expresar esta funcién como ¢(t) =
u(z(t)), donde z(t) = (1 — t)x + ty describe el segmento de recta entre x y

y.

Aplicando la regla de la cadena para funciones de varias varibles:
¢'(t) = Vu(z(t)) - 2(1).
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Evaluando en t = 0, obtenemos:
¢'(0) = Vu(2(0)) - 2(0) = Vu(x) - (y - x).
Esto se debe a que:
z0)=(1-0)x+0y=x, y z(t)=—x+y=y—x

Asi, el valor de la derivada ¢/(0) representa el cambio instantaneo en la uti-
lidad u cuando nos movemos desde x hacia y, y se calcula como el producto
punto entre el gradiente Vu(x) y el vector de direccion y — x.

3. Como t = 0 es un minimo local de ¢(t), se cumple ¢'(0) > 0!, por lo tanto:

Vu(x) - (y —x) > 0.

Esto completa el resultado O

Ejemplo 2.1. Funciéon de utilidad CES(Constant Elasticity of Substitu-
tion)

La funcién u(z1, z2) = (2f 4+ 2£)"?, donde 0 < p < 1, es conocida como una
funcion de utilidad CES. Esta funcién de utilidad representa preferencias estric-
tamente monotonas y estrictamente convexas.

Nota 2.1. La funcién CES representa preferencias estrictamente monétonas
porque sus derivadas parciales respecto a cada bien son estrictamente positivas
en el dominio ]R%r +. Sin perdida de generalidad, calculemos la derivada parcial de
u(zy, 29) = (2 + 25)'/? respecto a z;:
ou 1

1 4 —
9, ;(ITJFIS)” - py

1

Dado que p < 1, 21 > 0, x5 > 0, y p # 0, se concluye que esta expresion es
estrictamente positiva. Por tanto, un incremento en z; siempre eleva la utilidad,
lo que implica que el bien es deseado. Lo mismo se cumple para la derivada con
respecto a xo, por simetria.

Asi, la funcion satisface el criterio de monotonia estricta en R? | .

También representa preferencias estrictamente convexas, porque para
0 < p < 1, la funcién es estrictamente cuasiconcava. Esto asegura que toda
combinacion convexa de dos canastas indiferentes es estrictamente preferida. Este
resultado es ampliamente conocido en Microeconomia(1.17) y documentado en
textos como [11] u [14].

1Si una funcion diferenciable alcanza un minimo local en un punto interior de su dominio,
entonces su derivada en ese punto es cero o positiva.
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El problema del consumidor consiste en encontrar un conjunto de consumo no
negativo que resuelva
max (24 + 24)"/"
T2 (2.15)
s.a. p1x1 +pers —y < 0.

Para resolver este problema, primero se forma el Lagrangiano asociado:
L(x1,2,A) = (2] + xg)l/p — A(p1z1 + par2 — ) -

Dado que las preferencias son monétonas, la restricciéon presupuestaria se manten-
dréa con igualdad en la solucion. Suponiendo una solucién interior, las condiciones
de Kuhn-Tucker coinciden con las condiciones de primer orden ordinarias del La-
grangiano, y las siguientes ecuaciones deben cumplirse en los valores solucion x1, xs

v A

L (@) =0, (2.16)
1
oL —
— - (28 + 28) VP b=l Ap, = 0, (2.17)
2
oL
o)~ + P22 —y = 0. (2.18)

Reordenando las ecuaciones 2.16 y 2.17, dividiendo la primera por la segunda
y reordenando, podemos reducir las tres ecuaciones con tres incognitas a solo dos
ecuaciones en las dos incognitas de interés, 1 y wo:

n 1/(p—1)
D2
Y = P11 + Paia. (2.20)

Primero, sustituimos 2.19 en 2.20 para obtener una ecuacién solo en términos
de x,:

1/(p—1)
Y = p112 (%) + poy = g |p 0T 4 p/ 0TI | p O, (2.21)
2

Resolviendo 2.21 para x5, obtenemos:

1/(p—1)

Y2 Yy
Ty = — —. (2.22)
prl?/(p 1) _|_p12)/(p 1)

Para x, sustituimos 2.22 en 2.19:
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1/(p—1
pl/(p )y

T/(pfl) + pg/(pfl)

zy = (2.23)

p

Las ecuaciones 2.22 y 2.23, que son las soluciones al problema del consumidor
2.15, corresponden a las funciones de demanda marshallianas del consumidor. Si
definimos el parametro r = p/(p — 1), podemos simplificar estas expresiones:

Py Yy
1 (P,Y) = 57—, 2.24
1 ) P+ Do ( )
Py 'y
2
Ta(P,Y) = = —. 2.25
(P, y) P (2.25)

Estas soluciones dependen tnicamente de los parametros py, ps v y. Cambios
en los precios y el ingreso, a través de 2.24 y 2.25, generaran diferentes cantidades
demandadas de cada bien. Por ejemplo, en la Figura 2.5, con precios p;, ps €
ingreso 7, las soluciones al problema del consumidor seran las cantidades Z; y
To. El par (p1,x1(p1, P2, y)) serda un punto en una de las curvas de demanda del
consumidor para el bien x;.

2.4. Propiedades de la funcion de demanda z(p, y)

La funciéon de demanda z(p,y), obtenida del problema de maximizacion del
consumidor, satisface ciertas propiedades importantes. Hemos realizado suficien-
tes supuestos para garantizar, mediante el Teorema A.8 (teorema del méaximo),
que z(p, y) es continua en R’ . Sin embargo, generalmente requeriremos algo mas:
deseamos considerar las pendientes de las curvas de demanda y, por tanto, nece-
sitamos que x(p,y) sea diferenciable.
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X2

B 1y/py

—p1/p2

p1~iypi +pY) X

L

u=v(p,y)

PE=171(p; + 53) x

Figura 2.5: Demanda del consumidor cuando hay preferencias representadas por
una funciéon de utilidad CES.

A partir de este punto, asumiremos que z(p,y) es diferenciable siempre que
sea necesario para nuestros analisis. Aunque no probaremos este resultado, va-
le observar la nota 2.2, ya que es importante senalar que esta diferenciabilidad
implica ciertas condiciones adicionales sobre la funcién.

Nota 2.2. En particular, asumimos que z(p,y) es diferenciable porque este su-
puesto permite estudiar como responden las cantidades demandadas a pequenos
cambios en los precios y el ingreso, a través del uso de derivadas parciales. La di-
ferenciabilidad es una propiedad técnica ttil que facilita el analisis de propiedades
como la elasticidad precio de la demanda, la convexidad de las curvas de deman-
da y los efectos de sustitucion e ingreso. Ademas, bajo ciertos supuestos regulares
sobre la funcion de utilidad (como continuidad, diferenciabilidad y condiciones
de segundo orden), puede demostrarse que la soluciéon 6ptima varia suavemen-
te con los parametros del problema, lo que justifica este supuesto en contextos
econdmicos bien comportados.

37






Capitulo 3

La funciéon de utilidad von Neumann-

Morgenstern

Tty kant kuu nuu.
(Camino largo hacia nuestro pueblo)

Region mizteca baja

3.1. Incertidumbre

Hasta ahora, hemos asumido que los agentes encargados de la toma de deci-
siones actian en un mundo de certeza absoluta. El consumidor conoce los precios
de todos los bienes y sabe que cualquier combinaciéon de consumo factible pue-
de obtenerse con certeza. Sin embargo, en el mundo real estas condiciones no se
tienen. Muchas decisiones econémicas tienden a tomarse bajo incertidumbre. Por
ejemplo, al asegurar un automovil, el consumidor debe considerar el precio futuro
de la gasolina, los gastos en reparaciones, mantenimientos, pago de tenencias y el
valor de reventa del automévil varios anos después; ninguno de estos factores se
conoce con certeza en el momento de tomar la decisiéon. Decisiones como esta im-
plican incertidumbre sobre el resultado de la elecciéon realizada. Aunque un agente
que toma decisiones puede conocer las probabilidades de diferentes resultados po-
sibles, el resultado final de la decisiéon no puede saberse hasta que ocurra.

Antes de pasar al problema de modelar la incertidumbre, es bueno observar que
en todo el capitulo dos no se definié formalmente un
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Definiciéon 3.1 (Agente racional). Un agente racional es un individuo que toma
decisiones siquiendo un comportamiento sistemdtico. De acuerdo con la teoria de
la eleccion racional, un agente racional:

1. Tiene objetivos bien definidos (como mazximizar su utilidad, beneficio o bien-
estar).

2. FElige entre alternativas disponibles comparando sus costos y beneficios, dados
sus recursos limitados (como tiempo, ingreso o informacion).

3. Toma decisiones de manera consistente, con base en la mejor informacion
disponible, buscando siempre maximizar su ganancia neta o MINIMIZar Sus
pérdidas.

Este concepto es central en la teoria econémica, pues permite predecir el com-
portamiento de consumidores, empresas y otros agentes bajo distintas restricciones
y escenarios. En particular, supone que los individuos responden a incentivos, y
que sus elecciones reflejan un calculo racional de ventajas relativas entre opciones.
Pero vale observar que en muchas ocasiones los individuos no toman las decisiones
de manera logica y consistente sino que toman decisiones de manera impulsiva.

Nota 3.1. Ejemplo: Supongamos que un consumidor entra a una tienda con $100
disponibles. Este agente racional:

» Sabe qué productos prefiere y en qué orden (por ejemplo, prefiere unas
manzanas a unas naranjas o una combinaciéon de ambos y si esta eleccion es
indiferente a otra combinacion).

» Compara precios y sabe que no puede gastar més de $100, esto es una
restriccion.

= Elige la combinacion de productos que le proporciona mayor satisfaccion sin
exceder su presupuesto.

Este comportamiento refleja una toma de decisiones logica y consistente,
que es precisamente lo que caracteriza a un agente racional en economia.

En un principio, la incertidumbre puede parecer algo complicado de entender
o resolver. Sin embargo, la teorfa econémica ha encontrado formas ttiles de estu-
diarla. Una de las ideas méas importantes para analizar decisiones cuando no se
sabe con certeza qué pasara fue desarrollada por von Neumann y Morgenstern en
1944, esto también marca una uniéon de areas ya que un investigador era matema-
tico y otro por su parte era economista y su enfoque en conjunto pudo modelar
un problema de la vida real al sentido matematico para darle una solucién con
las herramientas que se tienen. Su propuesta ayuda a entender cémo las personas
pueden tomar decisiones cuando enfrentan distintos posibles resultados|16].
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Definiciéon 3.2 (Incertidumbre). En teoria econdmica, incertidumbre se refiere
a una situacion en la que los resultados futuros de las decisiones de un agente no
son conocidos con certeza, sino que estdn asociados a distintas probabilidades. Es
decir, el agente enfrenta un conjunto de posibles estados del mundo, cada uno con
una probabilidad asignada, pero desconoce de antemano cudl ocurrird realmente.

Esta nocion permite modelar decisiones bajo riesgo, en donde las preferencias
del agente se representan a través de funciones de utilidad esperada.

Para la Probabilidad en el drea Matemdtica([10]) incertidumbre se refiera
a no saber con certeza el resultado de un experimento aleatorio, asignando a cada
evento posible de un espacio muestral un valor numérico.

3.2. Preferencias

Anteriormente en esta tesis, se asumio que el consumidor tenia una relaciéon
de preferencia definida sobre algin conjunto de consumo R%. Para incorporar la
incertidumbre, necesitamos cambiar ligeramente nuestra perspectiva. Mantendre-
mos la nocién relacién de preferencia, pero, en lugar de conjuntos de consumo,
asumiremos que el individuo tiene una relacién de preferencia definida sobre juegos
de azar.

Necesitamos ver las siguientes definiciones y notaciones.

Denotamos por G al conjunto de todos los juegos de azar. Si g € GG es un juego
cualquiera, entonces puede escribirse como

g:(plogl7"'7pkogk)a

donde g¢i,...,gx € G también son juegos de azar (simples o compuestos), los
coeficientes py, ..., px son no negativos y suman 1, es decir, Zle p; = 1. En otras
palabras, g representa un sorteo que con probabilidad p; conduce a jugar el juego
gi, el cual puede ser compuesto.

Para formalizar esto, sea A = {a1, ..., a,} un conjunto finito de resultados. Los
a; pueden ser conjuntos de consumo, cantidades de dinero (positivas o negativas).
Lo importante es que los a; no tengan incertidumbre en si mismos. Por otro lado,
utilizaremos el conjunto A como base para crear juegos de azar.

Por ejemplo, sea A = {1,—1}, donde 1 representa el resultado de “ganar un
dolar” y —1 el resultado de “perder un doélar”. Supongamos que se ha realizado
la siguiente apuesta con un amigo: si el lanzamiento de una moneda justa resulta
en cara, ¢l te paga un dolar; si resulta en cruz, ti le pagas un doélar. Desde tu
perspectiva, este juego de azar tendra como resultado uno de los dos resultados
en A: ganar un dolar (1) o perder un dolar (—1), y cada uno ocurre con una
probabilidad de %, dado que la moneda es justa.

De manera méas general, un juego de azar simple asigna una probabilidad p; a
cada uno de los resultados a; en A. Por supuesto, dado que los p; son probabili-
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dades, deben ser no negativos, y la suma de los p; debe ser igual a uno, ya que el
juego debe resultar en algin resultado en A. Denotamos este juego de azar simple
como (py © ay,...,pn © ay). Definimos el conjunto de juegos de azar simples Gg
como sigue:

Definicién 3.3 (Apuestas Simples). Sea A = {ay,aq,...,a,} el conjunto de re-
sultados posibles. El conjunto de apuestas simples Gg, definido sobre A, se expresa
como:

GSE{(I)loala---apnoan) |pi ZO, szzl}
i=1

Cuando alguno de los p; es igual a cero, es habitual omitir estos componentes para
simplificar la notacion. Por ejemplo, la apuesta (co ay,00ag,...,00a,_1,(1 —
a) o ay,) puede escribirse como (aoay, (1 —a)oay,). Es importante notar que Gg
contiene a A, ya que para cada i, la apuesta (1oa;), que produce a; con probabilidad
uno, pertenece a Gg. Para simplificar ain mds, denotaremos a; en lugar de (1oa;)
cuando el resultado a; sea garantizado con certeza.

Definiciéon 3.4 (Apuesta compuesta). Una apuesta compuesta es un juego de
azar en el que los premios no son directamente resultados finales, sino otros juegos
de azar. Es decir, si g € G es una apuesta compuesta, entonces puede expresarse
como

g:(plogla---apkogk)a

donde cada g; € G es a su vez un juego (posiblemente compuesto), y p; > 0 con
Zle p; = 1. En este contexto, g representa un sorteo que, con probabilidad p;,
lleva a jugar el juego g;.

Volvamos al ejemplo del lanzamiento de una moneda, donde el conjunto de
resultados es A = {1, —1}. En este caso, el agente se enfrenta a un juego de azar
simple de la forma (% ol, % o —1), es decir, una loteria que paga 1 con probabilidad
% y paga —1 con probabilidad % No todos los juegos de azar son simples: por
ejemplo, en algunas loterias nacionales los premios pueden consistir en boletos
para participar en futuras loterfas. Este tipo de situaciones corresponde a juegos
de azar compuestos, los cuales, por simplicidad, no serdn considerados en este
trabajo, solo para las demostraciones.

En este contexto, los objetos de elecciéon del agente son los juegos de azar.
Siguiendo el enfoque adoptado en la teoria del consumidor, supondremos que el
agente tiene una relacion de preferencias 7~ definida sobre G, que describe su
forma de comparar y elegir entre distintos juegos. Como antes, denotamos por
~ la relaciéon de indiferencia inducida por 77, y por > la relacion de preferencia
estricta.

A continuacion, presentaremos los axiomas fundamentales conocidos como
axiomas de preferencia bajo incertidumbre. Los primeros axiomas seran

muy similares a los del capitulo dos.
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Axioma 3.1. Completitud. Para cualquier par de apuestas g y ¢’ en G, se
cumple que g Z ¢ 0 ¢ - g.

Axioma 3.2. Transitividad. Para cualquier tres apuestas g, ¢’ v ¢” en G, si
929 y9g Z4g" entonces g 7 g".

Axioma 3.3. Continuidad. Para cualquier apuesta g en GG, existe una probabi-
lidad « € [0, 1] tal que g ~ (a0 aq, (1 — ) o ay).

Axioma 3.4. Monotonicidad. Para todas las probabilidades «, 8 € [0, 1], se
cumple que

(voay, (1 —a)oa,) zZ (Boay,(1—pP)oa,) siysolosi a>f.

Axioma 3.5. Sustitucion. Si g = (p1ogi,...,progr) yh = (p1ohi,...,prohy)
son apuestas en G, y g; ~ h; para todo ¢, entonces g ~ h.

Para definir el siguiente axioma necesitamos una definicion antes, nos apoya-
remos con las definiciones que ya llevamos en este capitulo.

Definiciéon 3.5 (Apuesta simple inducida). Dado un juego de azar g € G, la
apuesta simple inducida por g es una loteria de la forma:

(pl °dai,...,Pn© an)v

donde cada a; € A es un resultado final, y cada p; es la probabilidad efectiva
de que el resultado a; ocurra al jugar g, considerando todas las etapas posibles
en caso de que g sea un juego compuesto. Esta apuesta simple tiene la misma
distribucion de probabilidades sobre los resultados finales que g, y segin el axioma
3.6, es indiferente a g, es decir, g ~ (p1 0 ay,...,Dn 0 ay).

Axioma 3.6. Reduccién a Apuestas Simples. Para cualquier apuesta g € G,
si (p1oay,...,pnoay) es la apuesta simple inducida por g, entonces g ~ (p; o
A1y ...,Pp O ay).

Nota 3.2. En el contexto de la teoria de utilidad bajo incertidumbre, es impor-
tante distinguir entre los distintos niveles de objetos involucrados en los juegos de
azar:

= Los a; representan resultados finales o desenlaces bésicos, como obtener
una cantidad fija de dinero (por ejemplo, a; = $100). Son los elementos del
conjunto de resultados A.

= Los g; son juegos de azar, es decir, loterias que pueden ser simples o
compuestas. En un juego compuesto, jugar g puede llevar, con cierta proba-
bilidad, a jugar uno de estos g; como sub-juego.
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= Los w; denotan cantidades monetarias que el agente recibe si ocurre el
resultado a;. Se trata de variables cuantitativas asociadas a los desenlaces.

Por ejemplo, en una apuesta compuesta g = (p; © g1,...,Pr © gx), Ccon g; =
(ovjoay, (1 —a;)oay), primero se selecciona con probabilidad p; uno de los juegos
gi, ¥ luego este juego produce un desenlace especifico a;, el cual a su vez genera
una cantidad monetaria w;.

Un matematico riguroso podria haber notado que el axioma 3.1 no se ocupa
para la demostracion del Teorema 3.1. Esto se debe a que este axioma es con-
secuencia del resto de axiomas, vale observar el escolio 3.1. Consecuentemente,
podriamos haber procedido sin mencionar explicitamente la completitud. Sin em-
bargo, asumir transitividad sin completitud generaria confusion. Para evitar ese
tipo de discusion, optamos por el enfoque presentado.

Escolio 3.1. Supdngase que = es una relacion binaria sobre apuestas en G que
satisface los Aziomas 3.2 (Transitividad), 3.3 (Continuidad) y 3.4 (Monotonia).
Entonces - también satisface el Azioma 3.1(Completitud)" .

Demostracion: Sea g,¢" € G dos juegos de azar arbitrarios. Por el Axioma 3.3
(Continuidad), existen probabilidades «, § € [0, 1] tales que:

g~ (aoa,(l1—a)oa,) v ¢ ~(Boay,(l1—75)oay,). (3.1)

Por tanto, para comparar g y ¢’, basta comparar las loterias (aoay, (1—a)oa,,)

y (Boay, (1 —p)oay,).

Por el axioma 3.4 (Monotonia), se cumple por un lado asumiendo o > f:
(voay,(l—a)oa,) Z (Boay,(1—pF)oa,) siysolosi a>p.

De aqui que (a0 ar, (1 — a) 0 a,) % (B ar, (1 — ) 0 ay)
Por 3.1 y transitividad (axioma 3.2) se sigue que g =~ ¢
De manera similar, asumiendo 5 > «, por el axioma 3.4

(Boay,(1=p)oa,) = (aoay, (1 —a)oa,) siysolosi (> a.

De aqui que (8o ay, (1 — ) 0a,) = (a0 ar, (1 — a) o ay)
Por 3.1 y transitividad (axioma 3.2) se sigue que ¢’ 2~ g
Por lo tanto

g g obien ¢ =g.

Esto demuestra que 7~ es completa. m

!Note que este axioma nos puede parecer familiar al orden en los nimeros reales o como su
nombre lo indica a la completitud en los niimeros reales.
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Definicién 3.6 (Nivel de riqueza). En el contexto de la teoria de utilidad bajo
incertidumbre, el nivel de riqueza w; representa la cantidad de recursos mo-
netarios que un agente economico tendrd si ocurre el estado del mundo i, donde
i€ {1,2,...,n}. Estos niveles de riqueza estan asociados a los distintos resultados
posibles de una loteria o decision incierta.

Por su parte, wg denota el nivel de riqueza inicial o actual del agente antes de
que ocurra la resolucion de la incertidumbre, es decir, antes de que se sepa cudl
estado del mundo se realizard.

Note ahora que podemos tomar la siguiente definicién para una loteria donde
no se toma ningun riesgo, es decir que no existe una funciéon que altere el nivel de
riqueza w;.

Definicion 3.7 (Valor esperado de un juego de azar simple). El valor esperado
de un juego de azar simple g, o valor esperado monetario (VEM), que otorga w;
con probabilidad p;, estd dado por:

E(9) = ) puws.
=1

3.3. Utilidad von Neumann-Morgenstern

Una vez que hemos establecido los axiomas que deben cumplir las preferencias
sobre juegos de azar, nos preguntamos si es posible representarlas mediante una
funcion de utilidad, como se hizo en el caso de elecciones bajo certeza en el capitulo
dos. La respuesta es que si, y no deberia sorprendernos. Lo cual tiene sentido ya
que si una relaciéon de preferencia cumple ciertas las condiciones mencionadas
antes como completitud, transitividad y continuidad es posible representarla con
una funcion real y continua.

Sin embargo, en el contexto de decisiones bajo incertidumbre, hemos asumido
axiomas adicionales. Esto nos permite obtener una funcién de utilidad que no
solo sea continua, sino también linealen las probabilidades. Es decir, su valor
dependera de los desenlaces posibles y de las probabilidades con que ocurren, de
forma que cada juego de azar se evalia mediante una media ponderada de las
utilidades de sus resultados.

Formalmente, si u : G — R representa las preferencias del agente sobre el
conjunto de juegos de azar G, entonces u(g) es el valor de utilidad asignado al juego
g. En particular, para cada desenlace seguro a;, consideramos el juego degenerado
(1 oa;), y denotamos su utilidad como u(a;).

Estamos ahora preparados para describir la propiedad de linealidad mencio-
nada anteriormente.

Definicion 3.8 (Propiedad de utilidad esperada). Una funcion de utilidad u :
G — R tiene la propiedad de utilidad esperada si, para cada apuesta g € G, se
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cumple:
u(g) = sz‘u(az’)>
i=1
donde (p1oay,...,p,oay,) es la apuesta simple inducida por g, y u(a;) representa

la utilidad del resultado a;.

Decir que una funcién u cumple con la propiedad de utilidad esperada
significa que el valor que asigna a un juego de azar es el promedio ponderado
de las utilidades de sus posibles desenlaces. Cada utilidad se multiplica por la
probabilidad con la que ocurre su desenlace correspondiente. En otras palabras, si
un juego puede dar como resultado el desenlace a; con probabilidad p;, entonces
la utilidad esperada de ese juego es la suma de cada wu(a;) ponderada por p;, es
decir, por su probabilidad efectiva.

Si u tiene la propiedad de utilidad esperada y gs = (p1 0 ai,...,pn ©a,) €s un
juego de azar simple, entonces, se cumple que:

w(p1oay, . .., Proay,) = Zpiu(ai), para todo vector de probabilidad (p1, ..., pn)-
i=1

Con todo lo anterior, la funciéon v queda completamente determinada en todo G
por los valores que asume sobre el conjunto finito de desenlaces A.

Si las preferencias de un individuo son representadas por una funcién de uti-
lidad que posee la propiedad de utilidad esperada(3.8), y si esta persona siempre
elige la alternativa més preferida en A, entonces ese individuo elegird un juego de
azar sobre otro si, y solo si, la utilidad esperada del primero supera a la del segun-
do. Por lo tanto, dicho individuo es un Maximizador de utilidad esperada.

Una funcién con la propiedad de utilidad esperada resulta muy util, ya que
nos permite calcular facilmente la utilidad de cualquier juego de azar sumando
las utilidades de los posibles desenlaces, cada una ponderada por su probabilidad.
Sin embargo, esta propiedad es mas exigente que la que pedimos en situaciones
sin incertidumbre. Por eso, cuando una funcién cumple con esta propiedad, la
llamamos funcién de utilidad de von Neumann-Morgenstern (VNM).

Lema 1 (Unicidad de la probabilidad de indiferencia). Sea g € G un juego de
azar. Si existen «, § € [0, 1] tales que

g~ (acan,(l-a)oay) y g~ (Boay,(1-p)oan),

entonces se tiene necesariamente que o« = . Es decir, la probabilidad de indife-
rencia de g es Unica.

Demostraciéon: Supongamos, por contradiccion, que existen dos probabilidades
distintas « # 3 tales que:

g~ (aoan,(I-a)oa,) y g~ (Boar, (1—p)oa).
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Sin pérdida de generalidad, supongamos que o > (. Entonces, por la transi-
tividad del axioma 3.2, tenemos:

(voay, (Il —a)oay,)~ (Boay,(1—75)oay).

Ahora, aplicando el axioma 3.4 de monotonicidad, que establece que:

(aoay,(1—a)oa,) = (Boay,(1—pB)oa,) sia>p.

Esto contradice la suposicion de que ambos juegos son indiferentes. Por tanto,
no puede haber dos valores distintos a # 3 que cumplan:

gr~(aca,(I-a)oan) y g~ (Boay,(1—p)oay).

Concluimos entonces que a = f3, es decir, la probabilidad de indiferencia es

lnica, como se queria demostrar.
0

A continuacion, presentamos un teorema fundamental en la teoria de elecciéon
bajo incertidumbre.

Teorema 3.1. Existencia de una Funcion de Utilidad VNM en G

Sea una relacion de preferencias 7 sobre juegos de azar en G que satisfaga los
aviomas 3.1 a 3.6. Entonces, existe una funcion de utilidad v : G — R que
representa =~ en G, y dicha funcion posee la propiedad de utilidad esperada.

Demostracion: Para esta demostracion la haremos de manera constructiva. Sea
un juego de azar arbitrario g de G. Definimos u(g) como el numero que satisface:

g~ (u(g) o ar, (1 —u(g)) o an).

Por el Axioma 3.3, dicho niimero debe existir, y se demuestra en el lema 1 que, por
el Axioma 3.4, este nimero es tnico. Esto define una funciéon real u en G.(Note
que, por definicion, u(g) € [0, 1] para todo g?).

Resta probar que u representa =, vy que posee la propiedad de utilidad espe-
rada(3.8). Comenzaremos con la primera de estas propiedades.

Sean ¢,¢ € G juegos de azar arbitrarios. Afirmamos que las siguientes equi-
valencias son ciertas:

929 (3.2)

si y solo si

(u(g) 0 a1, (1 —u(g)) o an) Z (u(g’) o ar, (1 = u(g')) o an) (3.3)

2u(g) € [0,1] para todo g € G, ya que representa la probabilidad asignada al mejor resultado
ay en una loterfa binaria del tipo (a0 aq, (1 — «) o ay,) con la cual el individuo es indiferente
frente al juego g. Dado que « es una probabilidad, debe pertenecer al intervalo [0, 1].
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si y solo si
u(g) > u(g) (3.4)

En efecto, note que ( 3.2) <= ( 3.3) debido a la transitividad de 7z, y dado

que g ~ (u(g) o ar, (1 —u(g)) o an) y g" ~ (u(g') o a1, (1 —u(g')) © a), ambas por
la definicion de u. Ademas, (3.3 ) <= (3.4 sigue directamente de la monotonia
(Axioma 3.4).

Para completar la demostracién, debemos probar que u posee la propiedad
de utilidad esperada. Sea g € G un juego de azar arbitrario, y sea g; = (p; o
ai,...,pn o a,) € Gg el juego de azar simple asociado. Debemos mostrar que:

u(g) = ZW(M

Dado que por 3.6 se tiene que g ~ gs, y dado que u representa 7, debe cumplirse
que u(g) = u(gs). Por lo tanto, es suficiente demostrar que:

u(gs) = 3 piu(a:) (3.5)

Para cada i = 1,...,n, por definicion, u(a;) satisface:
a; ~ (u(a;) oay, (1 —u(a;)) o ay). (3.6)
Sea ¢; el juego de azar simple en el lado derecho de 3.6. Es decir, ¢; = (u(a;) o

ai, (1 —u(a;)) o a,) para todo ¢ = 1,...,n. En consecuencia, ¢; ~ a; para todo i,
por lo que, aplicando el axioma de sustituciéon 3.5:

d=moq,....pnog") ~(proa,...,pnoa,) = gs (3.7)

Queremos encontrar el juego de azar simple que resulta de ¢’. Como cada ¢; solo
puede dar como resultado a; o a,, entonces ¢’ también terminara en uno de esos
dos. La probabilidad de que ocurra a; es la siguiente: para cada ¢, se necesita que
ocurra ¢; (lo cual pasa con probabilidad p;) y que dentro de ese ¢;, se obtenga a,
lo que ocurre con probabilidad w(a;). Asi, en total, la probabilidad de que ocurra
ay es p;u(a;) para cada i, y sumando sobre todos los i, obtenemos la probabilidad

total: .
Zpiu(ai).
i=1

De manera similar, la probabilidad efectiva de que a,, ocurraes 1— """ | p;u(a;).
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Por lo tanto, ¢’ es equivalente al juego de azar simple:

g. = (Zpiu(ai) oap, <1 — me(aﬁ) o an) .

Por el axioma de reducciéon 3.6, debe cumplirse que ¢ ~ ¢.. Sin embargo, la
transitividad de ~, junto con la ecuacion (3.7), implica que:

gs ~ (Z piu(a;) o ay, (1 — me(aﬁ) o an> . (3.8)
i=1 i=1
Sin embargo, por definicion y el lema 1, u(gs) es el tnico ntimero que satisface:

gs ~ (u(gs) O aq, (1 - u(gs)) © an)' (39>

Por lo tanto, de (3.8) y (3.9, concluimos que:

u(gs) = ZpZ-U(ai),

como se deseaba probar. O

La conclusion del Teorema 3.1 es la siguiente: si las preferencias de un individuo
sobre juegos de azar satisfacen los Axiomas 3.1 a 3.6, entonces existen ntmeros de
utilidad que pueden ser asignados a los resultados en A de forma que el individuo
prefiera un juego sobre otro si y solo si el primero tiene una utilidad esperada
mayor que el segundo.

El Teorema 3.1 no solo nos dice que existe una funciéon de utilidad con la
propiedad de utilidad esperada (3.8), sino que también explica como construirla
en la practica.

Para encontrar la utilidad de un resultado a;, basta con preguntarle al agente
econdémico qué probabilidad del mejor resultado lo haria indiferente entre una
apuesta del tipo (a0 ay, (1 — a) oa,) y recibir a; con certeza.

Si hacemos esta misma pregunta para cada resultado en A, entonces ya pode-
mos calcular la utilidad de cualquier juego g € G como el valor esperado de esas
utilidades. Siempre que las preferencias del agente cumplan con los axiomas 3.1 al
3.6, el teorema asegura que esa funcion representa correctamente sus preferencias.

Ejemplo 3.1 (Construccion de una funcion de utilidad VNM). Supongamos que
A = {$10, %4, —$2}, donde cada valor representa miles de dolares. Es razonable
asumir que el mejor resultado es $10 y el peor es —$2.

Para construir la funciéon de utilidad VNM utilizada en la demostracion del
Teorema 3.1, primero debemos determinar las probabilidades de indiferencia aso-
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ciadas a cada uno de los tres resultados. Esto se logra componiendo apuestas que
ofrecen $10 y —$2 con probabilidades desconocidas que suman 1. Luego, se le
pregunta al individuo: ;Qué probabilidad para el mejor resultado te haria indi-
ferente entre la apuesta compuesta y el resultado a; con certeza? Las respuestas
obtenidas seran los valores de utilidad asignados a cada resultado. Supongamos
que encontramos lo siguiente:

$10 ~ (1 0$10,0 0 —$2), por lo que u($10) = 1. (3.10)
$4 ~ (0.6 0 $10,0.4 0 —$2), por lo que u($4) =0.6 (3.11)
—$2~ (00%10,10-%2), porlo que u(—%2)=0. (3.12)

Nota 3.3. La utilidad asignada al resultado intermedio $4, es decir u($4) = 0.6,
se determina con base en una pregunta clave al individuo: jQué probabilidad de
obtener el mejor resultado ($10) te haria indiferente entre una apuesta entre $10
y -32, y recibir $4 con certeza?

Si la persona responde que se siente indiferente cuando la probabilidad de
obtener $10 es 0.6 (y de -$2 es 0.4), entonces se establece, por construccion de la
funcion de utilidad de von Neumann-Morgenstern, que:

$4 ~ (0.6 0 $10,0.4 0 —$2),

y por lo tanto:
u($4) = 0.6.

Este valor refleja la disposicion del individuo a aceptar riesgo: cuanto mas alto
sea u($4), mayor sera su aversion al riesgo. Un valor de utilidad cercano a 1 para
$4 indica que el individuo prefiere la seguridad de ese monto frente a una apuesta
riesgosa, mientras que un valor bajo sugiere mayor disposiciéon a aceptar riesgo. La
funcién de utilidad VNM se construye a partir de estas indiferencias observadas
o declaradas, por lo que estos valores no se derivan matematicamente, sino que
se asignan empiricamente o mediante juicio informado del comportamiento del
agente.

Es importante destacar que, bajo este mapeo, la utilidad del mejor resultado
siempre serd 1 y la del peor resultado siempre serd 0. Sin embargo, la utilidad
asignada a resultados intermedios, como $4 en este caso, dependera de la actitud
del individuo hacia el riesgo.

Una vez obtenidos los valores de utilidad para cada resultado, tenemos toda
la informacién necesaria para clasificar todas las apuestas que los involucren. Por
ejemplo, consideremos las siguientes apuestas:

g1 = (.20%4,.809510) (3.13)
g2 = (.070—%2,.03 0 $4,.9 0 $10) (3.14)
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Este enfoque permite modelar y analizar las decisiones bajo incertidumbre, in-
tegrando conceptos de la teoria de la utilidad esperada de von Neumann-Morgenstern.
Asumiendo que las preferencias del individuo sobre las apuestas satisfacen los
axiomas 3.1 a 3.6, podemos recurrir al Teorema 3.1. Este teorema nos indica
que solo necesitamos calcular la utilidad esperada de cada apuesta, utilizando los
valores de utilidad generados en (3.10) a ( 3.12), para determinar cuél es preferida.

Al hacer estos calculos, obtenemos:

u(g1) = 0.2u($4) + 0.8u($10)
— 0.2(0.6) + 0.8(1) = 0.92

u(go) = 0.07u(—$2) + 0.03u($4) 4 0.9u($10)
= 0.07(0) + 0.03(0.6) + 0.9(1) = 0.918

Dado que g¢; tiene una mayor utilidad esperada, debe ser la apuesta preferida.
De manera similar, utilizando solo los valores de utilidad generados en (3.10)
a (3.12), podemos clasificar cualquier cantidad infinita de apuestas que podrian
construirse a partir de los tres resultados en A.

Analizando sobre la informacién que hemos descubierto en este ejemplo. Al
comparar $4 con certeza y la apuesta mejor—peor en (3.11), notamos que la apuesta
g ofrecida tiene un valor esperado de E(g) = 0.6($10) + 0.4(—$2) = $5.2. Este
valor supera el $4 que obtendria con certeza, pero el individuo es indiferente
entre ambas opciones. Dado que asumimos que sus preferencias son monotonas,
podemos concluir que preferiria estrictamente $4 con certeza a cualquier apuesta
mejor—peor que ofrezca el mejor resultado con una probabilidad menor a 0.6. Esto
incluye apuestas con probabilidades iguales de 0.5 para $10 y -$2, a pesar de que
dicha apuesta y $4 con certeza tienen el mismo valor esperado de $4. Esto sugiere
que el individuo prefiere evitar el riesgo.

Esta tendencia también se refleja en su clasificacion de g; y go en (3.13) y
(3.14).

Aqui, se prefiere g; a go, a pesar de que el valor esperado(3.7) de g;.

E(g1) = 0.2(4) + 0.8(10) = $8.80

es menor que el de gs.
E(g2) = 0.07(—2) + 0.03(4) + 0.9(10) = $8.98

En este caso, gy se evita porque incluye un riesgo significativo del peor resulta-
do. Mas adelante, mencionaremos la aversion al riesgo y su medicién, pero este
ejemplo ayuda a ilustrar como una funcién de utilidad VNM resume aspectos im-
portantes sobre la disposiciéon de un individuo a asumir riesgos. Y este ejemplo
muestra el caso en que las decisiones entre apuestas difieren segtin las condiciones
de incertidumbre o certeza.
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3.3.1. Relaciéon entre la funcién de utilidad VNM vy la uti-

lidad bajo certeza

Veremos la relacion entre la funcion de utilidad VNM con la funciéon de utilidad
ordinaria bajo certeza. En el caso estandar, si un individuo es indiferente entre
dos canastas de bienes, ambas reciben el mismo ntmero de utilidad, mientras que
si una canasta es preferida sobre otra, su ntmero de utilidad debe ser mayor.
Esto también es cierto para la funciéon de utilidad VNM wu(g), aunque debemos
sustituir “canasta de bienes” por “apuesta’, al decir sustituir nos referimos a la
interpretacion de los términos que ahora manejaremos.

Sin embargo, en la teoria del consumidor, los ntimeros de utilidad tienen solo
un significado ordinal. Cualquier transformaciéon monétona de una representacion
de utilidad da lugar a otra representacion vélida. Por otro lado, los nimeros de
utilidad asociados con una representacion VNM de preferencias sobre apuestas
tienen un contenido que va més alla de la ordinalidad.

Para ilustrar esto, supongamos que A = {a,b,c}, donde a = b >~ ¢, y que las
preferencias satisfacen 3.1 a 3.6. Por 3.3 y 3.4, existe un « € (0,1) tal que:

b~ (aoa,(l—a)oc).

Este resultado nos permite entender céomo la funcion de utilidad VNM no solo
ordena las preferencias, sino que también captura la actitud del individuo hacia
el riesgo, lo que es fundamental para el anélisis de decisiones bajo incertidumbre.

Note que el niimero de probabilidad « estda determinado por las preferencias
del individuo o agente que toma las decisiones. Este ntimero tiene un significa-
do intrinseco y no puede ser modificado (duplicado, sumado a una constante o
transformado de cualquier manera) sin alterar las preferencias que representa.

Supongamos que u es una representacion de utilidad VNM de las preferencias
>~. Entonces, la relacion de indiferencia mencionada anteriormente implica que:

u(b) = u(aoa, (1l —a)oc)
= au(a) + (1 — a)u(c),

donde la segunda igualdad se deriva de la propiedad de utilidad esperada de
u. Esta igualdad puede reorganizarse para obtener:

ula) = u(b) _ u(b) = u(c)
11—« Q
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Por lo tanto, los cocientes de las diferencias entre los nimeros de utilidad estan
unicamente determinados por a. Dado que « esté determinado de manera tnica
por las preferencias del agente que toma decisiones, este cociente de diferencias
de utilidad también estéa determinado de manera tnica.

Se concluye que el cociente de diferencias de utilidad tiene un significado inhe-
rente con respecto a las preferencias del individuo y debe tomar el mismo valor
para cualquier representacion de utilidad VNM de . Por lo tanto, las representa-
ciones de utilidad VNM proporcionan informaciéon que va més alla de lo ordinal,
ya que, de lo contrario, mediante transformaciones mondtonas adecuadas, estos
cocientes podrian asumir muchos valores diferentes.

Claramente, una transformacion estrictamente creciente de una representacion
de utilidad VNM no necesariamente dara lugar a otra representacion de utilidad
VNM. (Por supuesto, sigue siendo una representacion de utilidad, pero no nece-
sariamente conserva la propiedad de utilidad esperada). Esto plantea la siguiente
pregunta: ;cudl es la clase de representaciones de utilidad VNM para un orden
de preferencia dado?. Con base en las consideraciones anteriores, estas represen-
taciones deben preservar los cocientes de diferencias de utilidad. Como muestra el
siguiente resultado, esta propiedad proporciona una caracterizaciéon completa.

Teorema 3.2 (Unicidad de funciones de utilidad VNM salvo transformaciones
afines positivas). Supongamos que la funcion de utilidad VNM u(-) representa las
preferencias 7Z. Entonces, la funcion de utilidad VNM v(-) representa las mismas
preferencias st y solo si, para algun escalar o y algun escalar 5 > 0, se cumple
que:

v(g) = a+ pu(g),

para todas las apuestas g.

Este teorema solo lo pondremos de manera expositiva.
Antes de enunciar el Teorema 3.2, mencionamos que la clase de representaciones
de utilidad de von Neumann-Morgenstern (VNM) de una relacion de preferencia
lnica se caracteriza por la constancia de los cocientes entre las diferencias de
utilidad.

El Teorema 3.2 dice que las funciones de utilidad esperada (VNM) no son tni-
cas: se pueden transformar multiplicando por un ntimero positivo y/o sumando
una constante, y ain asi seguir representando las mismas preferencias y mante-
niendo la propiedad de utilidad esperada.

Sin embargo, esto no significa que el valor numérico de la utilidad tenga un
significado absoluto. Solo podemos decir si un juego es preferido a otro, pero no
podemos medir cuanta méas utilidad da, ni comparar utilidades entre personas.
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3.4. Aversion al riesgo

En el Ejemplo 3.1 se argument6 que la funcion de utilidad de von Neumann-
Morgenstern (VNM) construida es afectada por cierta aversion al riesgo. Ahora
estamos en condiciones de definir y describir formalmente la aversion al riesgo con
base en la teorfa desarrollada hasta ahora.

Consideramos juegos de azar cuyos resultados son niveles de riqueza w; >
0, con probabilidades p; que suman 1. Aunque el conjunto de resultados A = R*
es infinito, supondremos que cada juego tiene s6lo un nimero finito de resultados
con probabilidad estrictamente positiva.

Ademas, se asume que la funciéon de utilidad VINM u(w) del agente es
diferenciable y estrictamente creciente, es decir, u/(w) > 0 para todo w €
R*. Esto refleja que niveles més altos de riqueza son siempre preferibles.

Bajo estas condiciones, podemos estudiar la actitud del agente frente al
riesgo comparando el valor esperado de un juego con la utilidad esperada que le
asigna. La definicién 3.7 nos permite calcular dicho valor esperado para analizar
estas decisiones, dando paso a dos definiciones.

Definicion 3.9 (Utilidad esperada de un juego de azar (VNM)). Sea g = (p; o
Wi, ..., Pn © Wy) un juego de azar simple, donde cada w; representa un nivel de
riqueza y cada p; € [0,1] es la probabilidad asociada a ese resultado, con’y ;| p; =
1. Siu(-) es una funcion de utilidad de von Neumann-Morgenstern que representa
las preferencias del individuo sobre G, entonces la utilidad esperada del juego
de azar g estd dada por:

ulg) = ZP@U(W) (3.15)

Esta expresion corresponde al valor esperado de la funcion de utilidad u aplicada
a los posibles niveles de riqueza del juego. Se asume que el individuo elige entre
Juegos de azar maximizando esta utilidad esperada.

Definiciéon 3.10 (Utilidad VNM del valor esperado de un juego). Sea g = (py o
Wy, ..., Py O Wy) un juego de azar simple con valor esperado E(g) = > I | piw;.
Entonces, la utilidad de recibir con certeza el valor esperado del juego g

estd dada por:
u(E(g)) = u (me) (3.16)

Esta expresion representa la utilidad que tendria el individuo si, en lugar de en-
frentar la incertidumbre del juego, recibiera con certeza la riqueza promedio que
dicho juego ofrece. Comparar esta cantidad con la utilidad esperada del juego (3.9)
permite estudiar la actitud del individuo frente al riesgo.

Si las preferencias del agente satisfacen los Axiomas 3.1 a 3.6, entonces siempre
elegird el juego con mayor utilidad esperada. En este contexto, si una persona
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prefiere recibir con certeza el valor esperado de un juego en lugar de asumir el
riesgo, decimos que es aversa al riesgo.

Sin embargo, también es posible que un individuo sea neutral o incluso aman-
te del riesgo sin violar los axiomas anteriores. Estas diferencias se reflejan en la
forma de su funciéon de utilidad.

Como se explicod tras la Definicion 3.8, una funcion de utilidad VNM queda
completamente determinada por los valores que asigna a cada resultado posible.
Por ello, es suficiente analizar la funcién en juegos de azar simples Gg para en-
tender cémo una persona percibe y reacciona ante el riesgo.

Esta idea nos lleva a clasificar formalmente las distintas actitudes frente al
riesgo.

Definicion 3.11 (Aversion, Neutralidad y Preferencia por el Riesgo). Sea u(-) la
funcion de utilidad de von Neumann-Morgenstern (VNM) de un individuo para
Juegos de azar sobre niveles no negativos de riqueza. Dado un juego de azar simple
g= (prowy,...,ppowy,), se dice que el individuo es:

1. Adverso al riesgo en g si u(E(g)) > u(g).
2. Neutral al riesgo en g si u(E(g)) = u(g).
3. Preferente del riesgo en g si u(E(g)) < u(g).

St el individuo ezhibe una de estas actitudes para todo juego de azar simple no
degenerado g 3, se dice simplemente que es adverso al riesgo, neutral al riesgo o
preferente al riesgo ( sobre G para enfatizarlo).

Las actitudes de: adverso, neutral o preferente al riesgo, equivalen matemaética-
mente a las propiedades de la funciéon de utilidad: coéncava, lineal y estricatamente
convexa, respectivamente.

Para ilustrar la aversion al riesgo, consideremos un juego de azar simple con
dos posibles resultados:

g= (powy, (1—p)ows).

Supongamos que el individuo debe elegir entre recibir con certeza el valor esperado
del juego, E(g) = pw;+(1—p)ws, o participar en el juego mismo. Evaluamos ambas
opciones:

u(g) = pu(wy) + (1 — p)u(ws)
u(E(g)) = u(pwy + (1 — p)ws).

En la Figura 3.1, se ha representado graficamente una funcién de utilidad estric-
tamente concava en la riqueza. La linea entre los puntos R = (wy,u(wy)) y S =

3Un juego de azar simple es no degenerado si asigna una probabilidad estrictamente positiva
a al menos dos niveles de riqueza distintos.
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(wa, u(ws)) representa sus combinaciones convexas, con el punto 7' = pR+(1—p)S.
Como se observa en la gréfica, la concavidad de u(w) implica que u(E(g)) > u(g),
lo que confirma la aversion al riesgo del individuo.

u(w)

u(E(g))

©

Wy CE E(g) v, w

Figura 3.1: Aversion al riesgo y estricta concavidad de una funcion de utilidad
VNM

El individuo prefiere recibir E(g) con certeza en lugar de enfrentar la apuesta
g. Sin embargo, existe un nivel de riqueza que haria al individuo indiferente entre
aceptar dicha cantidad con certeza o enfrentar la apuesta g. A este nivel de riqueza
se le denomina equivalente cierto de la apuesta ¢g. En esencia, una persona adversa
al riesgo esta dispuesta a pagar una cantidad positiva de riqueza para evitar la
incertidumbre inherente a la apuesta. Esta disposicion a pagar para evitar el riesgo
se mide mediante la prima de riesgo.

Tanto el equivalente cierto como la prima de riesgo se ilustran en la Figura
3.1.

Definicion 3.12 (Equivalencia de certeza y Prima de Riesgo). El equivalente
cierto de una apuesta simple g sobre niveles de riqueza es la cantidad de riqueza
CE ofrecida con certeza tal que u(g) = u(CE).
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La prima de riesgo es la cantidad de riqueza P tal que u(g) = u(E(g) — P).
Claramente, se cumple que P =E(g) — CE.

Ejemplo 3.2. Supongamos que la funcion de utilidad del individuo estéa dada por
u(w) = In(w). Dado que esta funcion es estrictamente concava en la riqueza, el
individuo es adverso al riesgo.

Consideremos una apuesta g con probabilidades 50-50 de ganar o perder una
cantidad de riqueza h, de modo que si la riqueza inicial del individuo es wy, la
apuesta se expresa como:

7= (3ot 5otw-1).

note que E(g) = wo.
El equivalente cierto de g debe satisfacer:

1 1
In(CE) = 5 In(wy + h) + 5 In(wg — h) =1In ( wi — h2) :

Por lo tanto, se obtiene que:

CE = /w3 — h? < E(g),
P =wy—\/wi — h?> 0.

En muchos casos, no solo nos interesa saber si un individuo es adverso al riesgo,
sino también en cudnto adverso es, es decir medir el riesgo. Idealmente, deseamos
una medida que nos permita comparar el grado de aversion al riesgo entre distintos
individuos y analizar como varia esta aversion en funcion del nivel de riqueza de
un mismo individuo.

Dado que la aversion al riesgo y la concavidad de la funcion de utilidad VNM
en términos de riqueza son equivalentes, una medida natural de la aversion al
riesgo es la segunda derivada de la funcion de utilidad, u”(w), la cual cuantifica
la curvatura de la funcién. En principio, podriamos pensar que cuanto mayor sea
el valor absoluto de esta derivada, mayor sera el grado de aversion al riesgo.

La segunda derivada de la funcién de utilidad proporciona informaciéon sobre
la actitud del individuo hacia el riesgo. Sin embargo, su magnitud por si sola
no es una medida adecuada de la aversion al riesgo. El Teorema 3.2 establece
que las funciones de utilidad VNM son tnicas bajo transformaciones afines, lo
que implica que cualquier segunda derivada puede modificarse arbitrariamente
mediante la multiplicacién de u(-) por una constante positiva apropiada.

Tomando en cuenta este problema, Arrow [1] y Pratt [18] propusieron la si-
guiente medida de aversion absoluta al riesgo.
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Definicién 3.13 (Medida de Aversion Absoluta al Riesgo de Arrow-Pratt). La
medida de aversion absoluta al riesqgo de Arrow-Pratt estd dada por:

El signo de esta medida proporciona inmediatamente informacién sobre la
actitud del individuo frente al riesgo:

» Si Ry(w) > 0, el individuo es adverso al riesgo.
» Si R,(w) =0, el individuo es neutral al riesgo.
» Si R,(w) < 0, el individuo es preferente al riesgo.

Ademés, esta medida es invariante ante transformaciones afines de la funcion
de utilidad.Para demostrar la relevancia de la medida de Arrow-Pratt, se puede
establecer que los consumidores con mayores valores de R,(w) son efectivamente
més adversos al riesgo. Para ilustrar esta idea, supongamos que existen dos con-
sumidores, 1 y 2, con funciones de utilidad VNM u(w) y v(w), respectivamente.
La riqueza w puede tomar cualquier valor no negativo.

Suponemos que, para todo nivel de riqueza w, la medida de aversién absoluta al
riesgo de Arrow-Pratt del consumidor 1 es mayor que la del consumidor 2:

R(w) = — > —1; = R2(w), Vuw > 0.

donde asumimos que u'(w) y v'(w) son estrictamente positivas.
Para simplificar, suponemos que v(w) toma todos los valores en [0, 00). Defi-
nimos la funciéon auxiliar A : [0, 00) — R como:

h(z) = u(v™(x)), Yz >0 (3.17)

Dado que u y v son dos veces diferenciables, la funcién h hereda esta propiedad y
satisface:

oy 707 @)
") = @)~
L0 (@) [0 @) o0 ()

< 0.

"
MO W@ [ T@) T i)
La primera desigualdad se debe a que u' y v’ son estrictamente positivas, mientras
que la segunda sigue de la condicion inicial sobre R} (w) y R2(w). Por lo tanto, h
es estrictamente creciente y estrictamente concava.

Ahora consideremos una apuesta g = (p; o wy,...,p, © w,) sobre distintos
niveles de riqueza. Podemos usar la funcion h (3.17) y el hecho de que es concava
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para demostrar que esta apuesta es menor para el consumidor 1 que para el
consumidor 2.

Sea w; el monto que hace indiferente entre la apuesta y recibir dicho monto
con certeza para el consumidor i:

sz'u(wi) = u(1y),

me(wi) = v(s).

Queremos demostrar que w; < ws. Sustituyendo x = wv(w) en la funcion h y
aplicando las ecuaciones anteriores, obtenemos:

u(iy) = Z pih(v(w;)) < h Z piv(w;) | = h(v(iy)) = u(y).

La desigualdad proviene de la desigualdad de Jensen A.3 |9, p. 25|, ya que h
es estrictamente concava. Dado que u es estrictamente creciente, se sigue que
UA)l < wg.

Por lo tanto para cualquier apuesta es menor para el consumidor 1 que para el
consumidor 2. Esto implica que, si ambos consumidores tienen la misma riqueza
inicial, el consumidor 2 aceptara cualquier apuesta que el consumidor 1 acepte,
pero no necesariamente al revés. Es decir, el consumidor 1 esta menos dispuesto
a aceptar apuestas en comparacion con el consumidor 2.

Ademas, hemos demostrado que si la medida de Arrow-Pratt satisface la re-
lacion R!(w) > R%(w) para todo w, entonces la funcion de utilidad u(w) es una
transformacion concava de v(w) en el sentido de que:

uw(w) = h(v(w)), VYw >0,

donde h es una funcién estrictamente concava. Esto refuerza la idea de que el
consumidor 1 es més adverso al riesgo que el consumidor 2.

La medida de aversion absoluta al riesgo R,(w) es una medida local, por lo
que no necesariamente se mantiene constante en todos los niveles de riqueza. En
general, se espera que las actitudes hacia el riesgo varien con la riqueza de manera
coherente. Arrow propuso una clasificaciéon de funciones de utilidad VNM basada
en la forma en que R,(w) cambia con la riqueza. Especificamente, se dice que
una funciéon de utilidad exhibe aversion absoluta al riesgo constante, decreciente
o creciente sobre un cierto dominio de riqueza si R,(w) permanece constante,
disminuye o aumenta a medida que la riqueza aumenta, respectivamente.

Entre estas clasificaciones, la aversion absoluta al riesgo decreciente (Decrea-
sing Absolute Risk Aversion, DARA) es una restriccion generalmente razonable
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de imponer. Si la aversion absoluta al riesgo fuera constante, un individuo no
mostraria mayor disposicion a aceptar pequenas apuestas a medida que su rique-
za aumenta. Por otro lado, si la aversién absoluta al riesgo fuera creciente, se
presentaria un comportamiento poco intuitivo: a mayor riqueza, mayor aversion
a aceptar una misma apuesta. En contraste, la condicion DARA impone la res-
triccion méas plausible de que un individuo con mayor riqueza sea menos adverso
a tomar pequenos riesgos.

Ejemplo 3.3. Considérese a un inversionista que debe decidir cudnto de su ri-
queza inicial w asignar a un activo riesgoso. Dicho activo puede generar tasas de
retorno r; positivas o negativas con probabilidades p;, donde ¢ = 1,...,n. Si 3
representa la cantidad de riqueza invertida en el activo riesgoso, la riqueza final
en el estado ¢ estard dada por:

(w—=0)+1+7r)8=w+ pr;.

El problema del inversionista consiste en elegir § para maximizar la utilidad es-
perada de su riqueza, lo cual se puede formular como el siguiente problema de
optimizacién en una variable:

max ;piu(w + Br;) (318)

s.aa. 0< 8 <w.

Primero, se analiza en qué condiciones un inversionista adverso al riesgo deci-
dirfa no invertir en el activo riesgoso. En tal caso, se obtendria una solucién en la
frontera, es decir, 5* = 0, lo que implica que la derivada de la funcién objetivo en
[£* debe ser no positiva. Derivando la utilidad esperada respecto de § y evaluando
en 3* = 0, se obtiene:

Zpiu'(w + B r)r; = u'(w) me <0.
i=1 =1

La sumatoria del lado derecho es el retorno esperado del activo riesgoso. Como
u'(w) > 0, se concluye que un inversionista adverso al riesgo evitard completa-
mente el activo riesgoso si y solo si su retorno esperado es no positivo. Alternati-
vamente, si el activo riesgoso tiene un retorno esperado estrictamente positivo, el
inversionista siempre preferird invertir parte de su riqueza en él.

Supongamos ahora que el activo riesgoso tiene un retorno esperado positivo, de
modo que se descarta la posibilidad de g* = 0. Ademas, asumimos que la solucién
6ptima es interior, es decir, f* < w. Las condiciones de primer y segundo orden
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para un méaximo interior de la funcién objetivo son:

Zpiu’(w + B ri)r; =0 (3.19)
=1
> pa(w+ B < 0 (3.20)
=1

donde la segunda condicion es estricta debido a la aversion al riesgo del inver-
sionista.
A continuacion, se analiza como varia la cantidad de riqueza invertida en el activo
riesgoso conforme la riqueza inicial w aumenta. La observaciéon empirica sugiere
que, en general, a mayor riqueza, el inversionista destina una cantidad absoluta
mayor de su riqueza a activos riesgosos, lo que sugiere que estos activos se com-
portan como bienes normales. Se demostrard que esto es cierto bajo la hipotesis
de Decreasing Absolute Risk Aversion (DARA).
Tratando a * como una funciéon de w, diferenciando la ecuacién de primer orden
(3.20) respecto a w, se obtiene:

— Zpiu”(w + ﬁ*n)ri
dp* —
di = = (3.21)
Zpiu”(w + B ry)r?
i=1

La aversion al riesgo asegura que el denominador en (3.21) es negativo, por lo
que los activos riesgosos seran normales si el numerador también es negativo. En
textos como [14] y [11] se tiene que DARA es suficiente para garantizar esto.

Se usa la definicion de la medida de aversion absoluta al riesgo R,(w + £*1;):
—u"(w+ Br)r; = Ro(w + Br)ri (w+ Bry), i=1,...,n (3.22)
Bajo la hipotesis DARA, se cumple que R,(w) > R,(w + £*r;) cuando r; > 0

y R.(w) < Ry(w + f*r;) cuando r; < 0. Multiplicando ambos lados de estas
desigualdades por r;, se obtiene en ambos casos:

R (w)r; > Ry(w + B'rry, i=1,...,n (3.23)
Sustituyendo R,(w) en la ecuacion (3.22) y usando la ecuacion (3.23), se obtiene:
—u"(w+ B*r))r; < Ry(w)ra (w + Bry), i=1,...,n.
Tomando valores esperados en ambos lados, se obtiene:
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— Zpiu"(w + [*r;)ri < Ry (w) sz-riu’(w +8'r;) =0 (3.24)
i=1 :

i=1

donde la ultima igualdad se sigue de (3.19).

Se concluye entonces que, cuando el comportamiento del individuo exhibe
DARA, la expresion obtenida en (3.21) es positiva, lo que implica que la cantidad
de riqueza invertida en el activo riesgoso aumenta conforme la riqueza inicial se
incrementa.

Para terminar este capitulo debemos notar que toda la teoria desarrollada en
los capitulos es sobre una economia ideal y no consideramos variaciones en los
precios ni tampoco como afecta la situacion global al mercado.

Nota 3.4. En el contexto de la teoria econémica, los mercados bursatiles repre-
sentan un entorno ideal para aplicar y evaluar el comportamiento de un agente
racional(3.1). Segin esta teoria, los individuos toman decisiones para maximizar
su utilidad esperada bajo condiciones de incertidumbre.

En los mercados financieros, los agentes eligen entre diversas alternativas de
inversion como acciones, bonos, derivados que implican distintos niveles de riesgo y
retorno. Desde este enfoque, cada alternativa se modela como un juego de azar, lo
que permite aplicar la teoria de utilidad esperada de Von Neumann-Morgenstern.

La racionalidad econémica implica que los agentes evaliian las decisiones segtin
sus preferencias y actitud frente al riesgo. Sin embargo, la evidencia empirica
muestra que los agentes no siempre se comportan racionalmente. Estos fenémenos
han motivado el desarrollo de la economia del comportamiento, que extiende
el modelo tradicional del agente racional para capturar desviaciones observadas
en los mercados reales.
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Capitulo 4

Algunas aplicaciones de la utilidad

de von Neumann-Morgenster

Ituvi-Shaa.
(Nuevo Amanecer)

Region mizteca baja

Para este capitulo se construye una aplicaciéon acorde al titulo de la tesis y
damos una breve descripcion de como se extiende la teoria del consumidor a
contextos de incertidumbre, donde la probabilidad juega un papel importante en la
utilidad ya que nos ayuda a comprender la ocurrencia de un evento y su influencia
en la toma de decisiones donde se busca maximizar la utilidad esperada.

4.1. Evaluacién de productos financieros bajo in-

certidumbre: una aplicacién de utilidad espe-
rada con datos de la CONDUSEF

El objetivo de esta seccion es aplicar de forma sencilla la teoria de utilidad
esperada de von Neumann-Morgenstern (VNM) para modelar la eleccion racional
de un consumidor entre distintas alternativas de productos financieros ofrecidos
por instituciones registradas ante la CONDUSEF. La comparacion se realiza bajo
condiciones de riesgo, utilizando funciones de utilidad especificas que capturan la
aversion al riesgo.
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4.1. EVALUACION DE PRODUCTOS FINANCIEROS BAJO INCERTIDUMBRE: UNA APLICACION DE UTILIDAD
Algunas aplicaciones de la utilidad de von Neumann-Morgenster ESPERADA CON DATOS DE LA CONDUSEF

4.1.1. Selecciéon del producto financiero

Después de una revision de los datos publicos ofrecidos por la Comision Nacio-
nal para la Proteccion y Defensa de los Usuarios de Servicios Financieros (CON-
DUSEF), se eligieron seguros de automdvil de cobertura amplia, debido a
su alta disponibilidad de datos comparativos, su impacto directo sobre el bienestar
financiero de los usuarios, y su relevancia practica como decision de consumo bajo
incertidumbre.

4.1.2. Obtencion de datos

La CONDUSEF publica peridédicamente evaluaciones de aseguradoras con base
en el nimero de reclamaciones por cada millon de riesgos asegurados, asi como
el porcentaje de resoluciones favorables al usuario. Estos datos se encuentran
disponibles en la herramienta “Bur6é de Entidades Financieras”, en el sitio web
oficial de la CONDUSEF obtenidos en su pagina oficial [4] y [7]. Vale observar
la siguiente definiciéon para la tabla de datos recopilados de CONDUSEF para la
cuarta columnas de la tabla.

Definiciéon 4.1 (Prima estimada). La prima estimada en un sequro de auto es
el precio que el asequrado paga a la asequradora para recibir la cobertura de la
poliza. Es decir, es la cantidad de dinero que pagas para que la asequradora te
cubra los danos o gastos en caso de accidente, robo u otros eventos contemplados
en tu poliza.

Con esto en mente para la prima estimada de este ejercicio usaremos de base
un auto compacto 2022 ya que para la columna 4 se consultaron los precios en
simuladores en linea ofrecidos por las aseguradoras correspondientes seleccionando
el codigo postal de Oaxaca (68000), obteniendo asi el precio anual de cobertura
amplia. ! A continuacion incluimos las referencias de estos simuladores de precios.

Aseguradora 1:[15]
Aseguradora 2:[20]
Aseguradora 3:[19]

Para esta aplicacion se utilizaron los siguientes datos correspondientes al ano
2023:

'Para efectos ilustrativos y sin pérdida de generalidad, se han asumido primas promedio
anuales basadas en simulaciones aproximadas de mercado con vehiculos estdndar en la region
de Oaxaca, esto también debido a las diferentes versiones del auto compacto. Estos valores se
mantienen constantes para facilitar la comparacion.
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Aseguradora Reclamaciones / % Resoluciones Prima estimada

millén a favor
1 1146 24 % $7,500
2 909 10% $6,800
3 866 40% $6,200

Tabla 4.1: Datos de aseguradoras disponibles en CONDUSEF (2023).

4.2. Modelo de incertidumbre

Para cada uno de los productos financieros anteriores (seguros), representamos
el posible resultado de contratar el producto como una loteria:

g=(p1oai,proas)
Donde:

= a; representa el resultado favorable para el usuario: recibir la indemnizaciéon
en caso de siniestro (por ejemplo,$300,000 - prima estimada(4.1).)?

= a, representa el resultado desfavorable: no recibir indemnizacion, incurriendo
en una pérdida total por dafios ( asumida en $0).

= p; es la probabilidad de resoluciéon favorable (éxito), estimada mediante el
porcentaje de resoluciones a favor del cliente.

= py = 1 — py es la probabilidad de no recibir compensacion.

g1 = (0.24 0 $300000, 0.76 o $0) (4.1)
g2 = (0.10 0 $300000, 0.9 o $0) (4.2)
g3 = (0.40 0 $300000, 0.60 o $0) (4.3)

Observese que para nuestro ejemplo el nivel de riqueza asegurado wg de $3000,000
lo tomamos con base en que el valor del auto esta dentro del tope que cubren las
asegurados para el informe del 18 de enero de 2024 consultado en [6].

2Note que esta indemnizaciéon la tomamos con base en el valor comercial asegurado que
cubren los seguros segin la CONDUSEF para enero de 2024, esto pues no en su sitio no tenian
informacién para 2023.

3Vale observar que el simbolo = se esta usando aqui de esta manera pues este no es el
resultado total favorable o desfavorable de la apuesta, falta restar la prima estimada(4.1) y falta
aplicar la funcién de utilidad VNM.
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Funcion de utilidad

Para capturar la actitud del consumidor frente al riesgo, utilizamos una fun-
cion de utilidad VNM con aversion al riesgo, definida sobre la riqueza final del
individuo:

u(w) = vw

Vale observar que a diferencia del ejemplo (3.1) aqui estamos dando esta fun-
cion exponiendo que el consumidor es adverso al riesgo. Dado que el consumidor
cuenta con una riqueza inicial wy = $300,000 este valor con base al precio de
agencia del auto tomado, que por las versiones puede variar (ademas de que la
version “austera” superaba esta cantidad), pero nosotros por estas razones toma-
remos su valor inferior en ciento de miles de pesos mexicanos.

Nota 4.1. Note que la funcién u(w) = /w la pudimos haber tomado como
u(w) = \/% la cual garantiza que u(0) = 0 y «(3000,000) = 1 esto si queremos
modelar una apuesta del tipo mejor-peor, pero no es nuestro caso ya que las
probabilidades estan dadas por el porcentaje de resoluciones a favor de la tabla
4.1, con base a esto contruimos las apuestas mejor-peor, pero vale observar que el
teorema 3.2 garantiza unicidad de la funcion VNM salvo transformaciones afines
ademas que el axioma 3.6 da la seguridad de poder reducir esta apuesta a alguna
apuesta simple con las condiciones sobre la utilidad que hablamos en el teorema

3.1 ya que aqui se utilizo u(g) € [0, 1] pero al final se trabajo sobre u(gs).

La utilidad esperada al contratar un seguro de auto se modela como una fun-
cion de utilidad de von Neumann-Morgenstern:

u(g) = ;piu(ai) (4.4)

= p1 - u(wg — prima) + ps - u(0)

Note que para a; la modelamos como a; = wy — prima, para as la modelamos
como 0 pues para nuestras funciones no tienen dominio en los niimeros negativos,
pues es el nivel de riqueza que tiene un individuo, esto es la cantidad asegurada
menos la cantidad que paga por contar con el seguro que es la prima.

Cada aseguradora puede ser evaluada con esta férmula.

Para la aseguradora 1 (p; = 0.24, prima = $7,500):

u(gy) = 0.24 - /300,000 — 7,500 + 0.76 - v/0
=129.8

Para la aseguradora 2 (p; = 0.10, prima = $6,800):
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u(gz) = 0.10 - /300,000 — 6,800 + 0.90 - V0

(4.6)
= 54.148
Para la aseguradora 3 (p; = 0.40, prima = $6,200):
u(gs) = 0.40 - /300,000 — 6,200 + 0.60 - v/0 o

= 216.81

Los valores resultantes permiten comparar las opciones disponibles desde la pers-
pectiva de un consumidor racional con aversion al riesgo, eligiendo la aseguradora
3.

Analicemos la informacion obtenida hasta aqui, con base en el ejemplo 3.1, nece-
sitamos también calcular el valor esperado(3.7).

Para la aseguradora 1 (p; = 0.24, prima = $7,500):
E(g1) = 0.24(300,000 — 7,500) + 0.76(0) = 70200.

Para la aseguradora 2 (p; = 0.10, prima = $6,800):
E(gs) = 0.10(300,000 — 6,800) + 0.90(0) = 29320.

Para la aseguradora 3 (p; = 0.40, prima = $6,200):
E(g3) = 0.4(300,000 — 6,200) + 0.6(0) = 117520.

Ahora con base en la definicién 3.10, conviene evaluar este resultado en la

funcion de untilidad VNM /w.

Para la aseguradora 1:
u(B(g1)) = u (Z piwi> — u(70200) = v/70200 = 264.95
i=1
Para la aseguradora 2:

u(E(ge)) =u (Z piwi> = u(29320) = v/29320 = 171.23
=1
Para la aseguradora 3:
u(E(gs)) = u (Z piwi> = u(117520) = V117520 = 342.81
=1

Aqui a diferencia del ejemplo 3.1 tenemos que g3 se prefiere pues su valor
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Aseguradora  Utilidad esperada u(g;) Utilidad del valor
esperado u(E(g;))

129.80 264.95

54.148 171.23

216.81 342.81

Tabla 4.2: Comparacién entre utilidad esperada y utilidad del valor esperado con
funcion u(w) = w.

esperado del juego(3.7) es mayor al de go y g1, ademés que en este caso coincidio
que la utilidad del valor esperado del juego(3.10), sea también mayor para gs
que para g v g1. Esto implica que el agente encargado de tomar decisiones tiene
una actitud positiva a tomar el riesgo de elegir el juego g3, es decir escogera la
aseguradora 3.

A diferencia del ejemplo 3.1, donde el individuo evita apuestas con mayor valor
esperado debido a su aversion al riesgo, en este caso se prefiere g3 (la aseguradora
3) tanto por su valor esperado como por la utilidad que genera bajo una funcién
VNM. Esto indica que, en el contexto especifico del seguro automotriz evaluado,
la alternativa con mayor exposicion al riesgo es también la que ofrece mayor be-
neficio esperado y mayor satisfaccion esperada para un consumidor racional.
Este resultado sugiere que el consumidor percibe que los posibles beneficios de
contratar con la aseguradora 3 compensan el riesgo involucrado. La coincidencia
entre el valor esperado y la utilidad esperada indica que, en este caso, el consu-
midor no evita el riesgo, sino que lo acepta como parte de una decisiéon racional.
Esto muestra como la teoria de utilidad VNM permite entender mejor como se
toman decisiones financieras bajo incertidumbre.

Note que en caso contrario modelando un consumidor preferente del riesgo
debemos tomar la funcion convexa u(w) = w?.

Funcion de utilidad

Para capturar la actitud del consumidor frente al riesgo, ahora utilizamos una
funcion de utilidad VNM con preferencia al riesgo, definida sobre la riqueza
final del individuo:

u(w) = w?

A diferencia del caso anterior, esta funcién representa a un consumidor que
prefiere tomar riesgos, ya que su utilidad crece mas que proporcionalmente con la
riqueza. Conservamos la misma riqueza inicial wy = $300,000.

Nota 4.2. La funciéon u(w) = w? también cumple las condiciones necesarias para

68



Algunas aplicaciones de la utilidad de von Neumann-Morgenster 4.2. MODELO DE INCERTIDUMBRE

ser una funciéon de utilidad VNM, y su elecciéon refleja actitudes distintas frente
al riesgo. De acuerdo con el teorema 3.2, cualquier otra funcién que represente las
mismas preferencias debe ser una transformacion afin positiva de esta.

La utilidad esperada al contratar un seguro de auto se modela como una fun-
cion de utilidad de von Neumann-Morgenstern:

u(g) = sz‘u(az’)

(4.8)
= p1 - u(wo — prima) + ps - u(0)
Para la aseguradora 1 (p; = 0.24, prima = $7,500):
u(gy) = 0.24 - (300,000 — 7,500)% 4+ 0.76 - 0 (49)
= 20,533,500,000 '
Para la aseguradora 2 (p; = 0.10, prima = $6,800):
u(g2) = 0.10 - (300,000 — 6,800)* 4 0.90 - 0
(92) ( ) (4.10)
= §8,596,624,000
Para la aseguradora 3 (p; = 0.40, prima = $6,200):
u = 0.40 - (300,000 — 6,200)* + 0.60 - 0
(93) ( ) (4.11)

= 34,527,376,000

Ahora evaluamos el valor esperado en la funcién de utilidad:

Para la aseguradora 1:
u(E(g1)) = (70,200) = 4,928,040,000
Para la aseguradora 2:
u(E(g2)) = (29,320)* = 859,662,400
Para la aseguradora 3:
u(E(g3)) = (117,520)* = 13,810,950,400
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Aseguradora  Utilidad esperada u(g;) Utilidad del valor
esperado u(E(g;))

1 20,533,500,000 4,928,040,000
2 8,596,624,000 859,662,400
3 34,527,376,000 13,810,950,400

Tabla 4.3: Comparacion entre utilidad esperada y utilidad del valor esperado con

funcion u(w) = w?.

Nota 4.3. En resumen, al comparar los dos escenarios uno con un consumidor
adverso al riesgo utilizando u(w) = y/w y otro con un consumidor preferente
del riesgo utilizando u(w) = w? se observa una diferencia clave en las decisiones.
El agente adverso al riesgo valora mas la seguridad que el beneficio potencial, por
lo que podria evitar opciones con alta variabilidad en los resultados, incluso si
su valor esperado es alto. En cambio, el agente preferente del riesgo se inclina
por alternativas con mayor exposicion al riesgo si estas prometen una utilidad
esperada mas elevada. Esta comparacion ilustra como la forma funcional de la
utilidad captura distintas actitudes frente al riesgo y permite modelar decisiones
financieras personalizadas bajo incertidumbre.

4.3. Aplicaciéon de la Medida de Aversiéon Absoluta
al Riesgo de Arrow-Pratt

En esta seccion aplicamos la medida propuesta por Arrow y Pratt para eva-
luar el grado de aversion al riesgo de un consumidor, con base en la funcién de
utilidad usada en nuestro modelo anterior. Esto nos permite entender mejor como
la actitud hacia el riesgo puede influir en la decision de contratar un seguro.

Es bueno observar, aunque pueda ser redundante, que u(E(g3)) = 342.81 >
216.81 = u(gs) , esto por la definicién 3.11 tenemos que la funcién de utilidad
u(w) = \/w es adversa al riesgo, aunque esto ya lo sabiamos pues asi la elegimos.

4.3.1. Medida de Aversion Absoluta al Riesgo

La medida de aversion absoluta al riesgo de Arrow-Pratt se define(3.13) como:
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Esta formula nos dice cuanto cambia la utilidad marginal cuando aumenta la
riqueza. Si esta medida es mayor a cero, el consumidor es adverso al riesgo.

Para nuestra funcion de utilidad usada anteriormente u(w) = y/w, derivamos
lo siguiente:

1 1
u'(w) = ma u(w) = T Awd?
Luego:
1

Esto muestra que el consumidor es adverso al riesgo, pues es el primer caso de
la definicion (3.13) y que, conforme aumenta su riqueza, se vuelve méas tolerante al
riesgo. Este comportamiento se conoce como DARA (Decreasing Absolute Risk
Aversion).

4.3.2. Calculo del Equivalente Cierto y Prima de Riesgo

Otra forma de ver la aversion al riesgo es a través del equivalente cierto (CE)?,
que se define como la cantidad de dinero segura que da la misma utilidad que
una apuesta riesgosa(3.12) . Para una funcion u(w), el equivalente cierto de una
loteria g se obtiene resolviendo:

u(CE) = u(g).

Por ejemplo, para la aseguradora 3 calculamos:

u(gs) = 216.81 = u(CE)=21681 = CFE = (216.81)* = 47,008.

Esto debido a que la inversa de u(w) = y/w es v (w) = w?
La prima de riesgo se calcula como la diferencia entre el valor esperado y el
equivalente cierto:

Prima de riesgo = E(g3) — CFE = 117,520 — 47,008 = 70,512

Este valor nos dice cuanto estaria dispuesto a pagar el consumidor para evitar
el riesgo. En este caso, aunque la aseguradora 3 tiene buen valor esperado, el con-
sumidor estarfa dispuesto a aceptar una cantidad mucho menor si fuera segura,

4El equivalente cierto (CE) es la cantidad de dinero que el consumidor considera igual, en
términos de utilidad, a una apuesta con resultado incierto. Es decir, aunque la apuesta podria dar
maés dinero en promedio, el consumidor preferiria recibir el CE con seguridad. Esto refleja cuéanto
valora la certeza frente al riesgo. Cuanto menor sea el CE comparado con el valor esperado, mayor
es la aversion al riesgo del individuo.
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lo que confirma su aversion al riesgo. La medida de Arrow-Pratt y el calculo del
equivalente cierto nos permiten analizar con mas detalle el comportamiento del
consumidor ante el riesgo. En particular, muestran que incluso cuando un produc-
to como el de la aseguradora 3 tiene buen desempeno esperado, un consumidor
muy adverso podria no estar dispuesto a tomar el riesgo completo. De aqui la im-
portancia de considerar el perfil del consumidor al momento de evaluar productos
financieros.
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Conclusiones

“If people do not believe that mathematics is simple, it is
only because they do not realize how complicated life is.”
[Si las personas no creen que las matemaéticas son simples,
es solo porque no se dan cuenta de lo complicada que es la
vida.]

John von Neumann (discurso en Yale, 1954)

El presente trabajo ofrece una exposicion clara y rigurosa de la teoria del

consumidor, asi como de los axiomas fundamentales que permiten su formaliza-
cion matematica. Se recurre a herramientas analiticas adquiridas a lo largo de la
formacion de licenciatura, adoptando un enfoque econémico que posibilita cierta
flexibilizacién de las condiciones matematicas tradicionales, al fundamentarlas en
el comportamiento empirico de los consumidores.
En el capitulo final se presentan las conclusiones derivadas del analisis desarrolla-
do a lo largo de esta tesis, en el cual se aplico la teoria de la utilidad esperada de
Von Neumann-Morgenstern a decisiones financieras reales, utilizando datos publi-
cados por la CONDUSEF relativos a seguros de automovil.

Se mostré como la estructura de preferencias del consumidor, asi como su acti-
tud frente al riesgo influyen de manera determinante en la eleccién de un producto
financiero. Se mostré una aplicacion del tema desarrollado, usando datos del in-
forme de seguros de automoviles 2023, publicado en la pagina de la CONDUSEF.
Una de las principales conclusiones es que el comportamiento del consumidor ante
el riesgo influye directamente en su eleccion. Al modelar su utilidad mediante una
funcion concava como u(w) = /w, observamos que la opcion mas arriesgada (la
aseguradora 3) fue también la preferida, debido a que ofrecia una mayor utilidad
esperada.

En contraste con el caso anterior, al utilizar la funcién de utilidad convexa u(w) =
w?, que representa a un consumidor preferente del riesgo, observamos que la ase-
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guradora 3 sigue siendo la opcion preferida, pero ahora con una diferencia atin mas
marcada en términos de utilidad esperada. Ademés, la utilidad del valor esperado
resulta menor que la utilidad esperada del juego, lo que indica que este tipo de
consumidor valora positivamente la incertidumbre.

En este caso, el agente estaria dispuesto a rechazar un pago cierto equivalente al
valor esperado si con ello puede asegurar mejores polizas de seguro con posibles
ganancias mayores, incluso si hay riesgo de perderlo todo.

Sin embargo, regresando al consumidor adverso al riesgo, al calcular el equivalente
cierto(CE) y la prima de riesgo(P), notamos que el consumidor estaria dispuesto
a aceptar mucho menos que el valor esperado a cambio de certeza, lo que refleja
su aversion al riesgo.

La aplicacion de la medida de aversion absoluta al riesgo de Arrow-Pratt per-
miti6 cuantificar este comportamiento. El resultado confirmé que el consumidor
es adverso al riesgo y que, conforme aumenta su riqueza, su disposicién a asu-
mir riesgos también se incrementa, lo cuél confirma (DARA) desarrollada en los
primeros capitulos.

Finalmente, esta aplicacion muestra como las herramientas de la teoria de
utilidad permiten ir més alla del analisis puramente monetario, integrando las
preferencias individuales frente al riesgo y brindando un marco sélido para eva-
luar productos financieros.
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Apéndice A

Continuidad, desigualdades y teore-

mas de optimizacion

En esta parte del apéndice se definen conceptos y enuncian teoremas concer-
nientes a la caracterizacion de funciones necesarios para completar el texto y su
relaciéon con la teoria econémica.

Teorema A.1 (Todo Conjunto Abierto es una Union de Bolas Abiertas). Sea S
un conjunto abierto. Para cadax € S, existe ex > 0 tal que B, (x) C S. Entonces,

S=JB..(x.

XES

Demostracion: Los conceptos clave ya han sido discutidos, por lo que podemos
demostrar esto de manera directa.

Sea S C R™ un conjunto abierto. Para cada x € S, existe e, > 0 tal que
B. (x) C S, ya que S es abierto. Debemos probar que x € S implica x €
Uxeg Bex (%) v, reciprocamente, que x € (J, ¢ Be, (x) implica x € S.

Si x € S, entonces, por la definicion de bola abierta, x € B, (x). Como
esta bola abierta estd incluida en una unién que la contiene, se sigue que x €
Uxeg Bex (%), completando la primera parte de la prueba.

Para la otra direccion, si x € (J g B:,(x), entonces x € B (s) para algin
s € S. Como cada bola abierta elegida esta completamente contenida en S, se
tiene que x € S.

Esto completa la demostracion. O

Teorema A.2 (Continuidad e Imagenes Inversas). Sea D C R™. Las siguientes
condiciones son equivalentes:
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1. f: D — R" es continua.
2. Para todo conjunto abierto S C R", la preimagen f~1(S) es abierta en D.

Demostraciéon: (1) = (2). Supongamos que f es continua y sea S C R” un
conjunto abierto. Sea x € f71(9), lo cual implica que f(x) € S. Como S es
abierto, existe ¢ > 0 tal que B.(f(x)) C S. Por la continuidad de f, existe 6 > 0
tal que:

f(Bs(x) N D) € B.(f(x)) € S.

Por lo tanto, Bs(x) N D C f~1(S). Como esto ocurre para todo x € f~1(9),
concluimos que f~!(S) es abierto en D.

(2) = (1). Supongamos ahora que para todo conjunto abierto S C R", la pre-
imagen f~1(9) es abierta en D. Para probar que f es continua en x € D, tomemos
e > 0. Entonces, B.(f(x)) es abierto, por lo que su preimagen f~'(B.(f(x))) es
abierta en D y contiene a x. Por tanto, existe 6 > 0 tal que:

Bs(x)ND C f7(B.(f(x))).

Esto implica que:
f(Bs(x) N D) C B.(f(x)),

y por tanto f es continua en x. Como x fue arbitrario, f es continua en todo
D. O

El siguiente lema y teorema la usamos en el capitulo 3 y lo extrajimos de [9].

Lema 2. Un subconjunto C' de un espacio vectorial E es convexo si y solo si, para
todo x1,...,x, € C'y p1,...,p, nimeros positivos tales que p; +---+p, =1, se
cumple que

pP1T1 + -+ prx, € Cl

Demostraciéon: La condiciéon es ciertamente suficiente. Demostraremos la nece-
sidad por inducciéon sobre n. El resultado es trivialmente cierto para n = 1, y es
cierto para n = 2, ya que esto reduce a la definicion de conjunto convexo.

Supongamos que el resultado es cierto para n — 1, y consideremos x1,...,x, €
C'ypi,...,pn > 0 tales que p; + - -+ + p, = 1. Definimos

_ DPn—1 T+ Pn T,

- Pn—1 +pn Pn—1 +pn

Por la convexidad de C, se tiene que y € C'. Usando la hipotesis inductiva, obte-
nemos que

PiTy A+ pay = P1Ty A+ Poa®hog + (Pao1 +0a)y € C,
lo cual completa la demostracion. O
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Teorema A.3 (Desigualdad de Jensen). Sea f una funcion convera sobre un
congunto convexo C, y sean p1, ..., p, numeros positivos tales que p1+---+p, = 1.
Entonces,

frws + -+ pawn) < prf(@) + -+ pof(2n).

Si ademds [ es estrictamente conveza, entonces la igualdad se cumple si y solo si
Ty = =@,

Demostracion: El primer enunciado se deduce directamente aplicando el lema
2 al conjunto U f. Supongamos ahora que f es estrictamente convexa, y que los

puntos 1, . .., T, no son todos iguales. Sin pérdida de generalidad (re-etiquetando
si es necesario), podemos suponer que ,_1 # .
Definimos
Pn—1 DPn
- Tn—1 + T,
Pn-1 + Pn Pn—1 + Pn

Entonces, por la estricta convexidad de f,

Prn-1 Pn
fly) < mf(%-ﬁ + mf(%)

Por lo tanto,

fpzr+ -+ pazn) = f(m1z1 + - + PaoZn—o + (Pa1 +Dn)Y)
<pif(@) + -+ pp2f(Xn-2) + (a1 + pa) f ()
< plf(xl) + - +pnf(xn)>

lo que demuestra que la desigualdad es estricta cuando x4, ..., z, no son todos
iguales. O

En esta parte del apéndice se definen conceptos y enuncian (sin demostracion)
teoremas concernientes a la teoria de optimizaciéon necesarios para completar el
texto.

Teorema A.4 (Teorema de Young). Sea f(x) una funcidn dos veces continua-
mente diferenciable. Entonces, para todo i y j, se cumple que:

’fx) _ Pf(x)
8.%1‘(9.1'3‘ N 31’]8351

(A1)

Los siguientes teoremas se puede consultar su demostracion en [11] de donde nos
basamos en gran parte para el capitulo de Teoria del consumidor.

Teorema A.5 (Pendiente, curvatura y concavidad en varias variables). Sea D un
subconjunto convexo de R™ con interior no vacio y sea f dos veces continuamente
diferenciable en D. Las siguientes afirmaciones son equivalentes:
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1. f es concava.

2. La matriz Hessiana H(x) es semidefinida negativa para todo x en el interior

de D.

3. Para todo x° € D, se cumple:

fx) <)+ VY- (x-x%, vxeDb.

Ademds, si H(x) es definida negativa para todo x € D, entonces f es estric-
tamente concava.

Teorema A.6 (Concavidad, convexidad y derivadas parciales segundas propias).
Sea f: D — R una funcion dos veces diferenciable.

1. Si f es concava, entonces fi;(x) < 0 para todo x en el interior de D, i =
1,...,n.

2. Si [ es convezxa, entonces f;(x) > 0 para todo x en el interior de D, i =
1,...,n.

Teorema A.7 (Condiciones de Kuhn-Tucker para maximos con restricciones de
desigualdad). Sean f(x) y ¢/(x), con j = 1,...,m, funciones reales continuas
definidas sobre un dominio D C R™. Supongamos que X* es un punto interior de
D y que x* mazimiza f(X) sujeto a las restricciones g7 (x) <0, conj=1,....,m, y
ademds que tanto f como cada g’ son continuamente diferenciables en un conjunto
abierto que contiene a x*.

Si los vectores gradiente Vg’ (x*) correspondientes a las restricciones activas
en xX* son linealmente independientes, entonces existe un unico vector A* € R" tal
que el par (x*, X*) satisface las condiciones de Kuhn-Tucker:

OL(X",A") _ 0f(x") = ,.00(x) _

j=1
N >0, ¢)<0, NgEx)=0, j=1,....,m.

Definicién A.1 (Continuidad en las restricciones). Se dice que se satisface la
continuidad en las restricciones si cada funcion ¢/ : R® x A — R es continua
y, para todo par (x°,a%) € R™ x A que satisface las m restricciones g'(x,a) <
0,...,9™(x,a) <0, y para toda sucesion a¥ en A que converge a a°, existe una
sucesion x* € R™ que converge a x° tal que cada par (x*,a%) satisface las restric-

ciones para todo k.*

!Esta definicién es equivalente a las nociones de semicontinuidad superior e inferior en la
teoria de correspondencias.
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Para los siguientes teoremas se ocupara resolver el siguiente problema:

max f(x,a)
x€R™ 4 (AQ)
sujeto a ¢’(x,a) <0, j=1,...,m.

Teorema A.8 (Teorema del maximo). Sean D como en el glosario y A compacto,
que f: D — R es continua y que se satisface la continuidad en las restricciones.
Entonces se tiene:

1. Existe solucion para la ecuacion (A.2) para todo a € A, y por lo tanto, la
funcion valor V(a) estd definida en todo A.

2. La funcion valor V : A — R es continua.

3. Sea (x*,a*) una sucesion en R™ x A tal que (x*,a*) — (x*,a*) e R" x A, y
supdngase que para todo k, x* es solucion de (A.2) cuando a = a*. Entonces
x* es solucion de (A.2) cuando a = a*.

4. Sipara cada a € A la solucion de (A.2) es unica y estd dada por una funcion
x(a), entonces x : A — R" es continua.

79






Bibliografia

1]

2|

13l

4]

5]

(6]

17l

8]
9]

K.J. Arrow. “The Theory of Risk Aversion”. En: Essays in the Theory of
Risk Bearing. Ed. por K. J. Arrow. Chicago: Markham, 1970, pags. 90-109.

M.S. Bazaraa, J.J. Jarvis y H.D. Sherali. Linear Programming and Network
Flows. 4* edicion. Hoboken, New Jersey: John Wiley & Sons, 2010.

M.S. Bazaraa, H.D. Sherali y C. M. Shetty. Nonlinear Programming: Theory
and Algorithms. 3* edicion. Hoboken, NJ: John Wiley & Sons, 2006.

Bur6 Comercial. Sitio oficial del Buro de Entidades Comerciales. Consultado
el 12 de junio de 2025. 2023. URL: https://www.buro.gob.mx (visitado
12-06-2025).

E.K.P. Chong y S.H. Zak. An Introduction to Optimization. 4* edicién. Ho-
boken, New Jersey: John Wiley & Sons, 2013.

CONDUSEF. ;Quién es quién en los sequros de auto. Enero-junio 2024.
Consultado el 12 de junio de 2025. 2024. URL: https://www. condusef .
gob.mx/documentos/rcd/quien_es_quien/qq-seguro-auto-ene- jun-
24 .pdf (visitado 12-06-2025).

CONDUSEF. Reporte de asequradoras - Cuentas Claras (junio 2023). Con-
sultado el 12 de junio de 2025. 2023. URL: https://www. condusef . gob.
mx/documentos/rcd/cuentas_claras/cc-ASEGURADORAS-redes- junio-
auto-23.pdf (visitado 12-06-2025).

G. Debreu. “Smooth Preferences”. En: Econometrica 40 (1972), pags. 603-615.

D.J.H. Garling. Inequalities: A Journey into Linear Analysis. Cambridge:
Cambridge University Press, 2007.

81


https://www.buro.gob.mx
https://www.condusef.gob.mx/documentos/rcd/quien_es_quien/qq-seguro-auto-ene-jun-24.pdf
https://www.condusef.gob.mx/documentos/rcd/quien_es_quien/qq-seguro-auto-ene-jun-24.pdf
https://www.condusef.gob.mx/documentos/rcd/quien_es_quien/qq-seguro-auto-ene-jun-24.pdf
https://www.condusef.gob.mx/documentos/rcd/cuentas_claras/cc-ASEGURADORAS-redes-junio-auto-23.pdf
https://www.condusef.gob.mx/documentos/rcd/cuentas_claras/cc-ASEGURADORAS-redes-junio-auto-23.pdf
https://www.condusef.gob.mx/documentos/rcd/cuentas_claras/cc-ASEGURADORAS-redes-junio-auto-23.pdf

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

R.V. Hogg vy A.T. Craig. Introduction to Mathematical Statistics. 8 edicion.
Boston: Pearson, 2019.

G.A. Jehle y P.J. Reny. Advanced Microeconomic Theory. 3* edicion. New
York: Pearson, 2011.

W. Karush. “Minima of Functions of Several Variables with Inequalities
as Side Constraints”. Tesis doct. Chicago, IL: Department of Mathematics,
University of Chicago, 1939. URL: http://pi.lib.uchicago.edu/1001/
cat/bib/4111654.

H.W. Kuhn y A. W. Tucker. “Nonlinear Programming”. En: Proceedings
of the Second Berkeley Symposium on Mathematical Statistics and Probabi-
lity. Ed. por J. Neyman. Berkeley, CA: University of California Press, 1951,
pags. 481-492.

A. Mas-Colell, M.D. Whinston y J.R. Green. Microeconomic Theory. 1*
edicion. New York: Oxford University Press, 1995.

MAPFRE México. Sitio oficial de MAPFRE México — Cotizador en li-
nea. Consultado el 12 de junio de 2025. 2025. URL: https ://mapfre.
rastreator.mx (visitado 12-06-2025).

J. von Neumann y O. Morgenstern. Theory of Games and Economic Beha-

vior. 3* edicion. Princeton, NJ: Princeton University Press, 1953.

M. Parkin y E. Loria. Microeconomia. Version para Latinoamérica. 9* edi-

cion. México: Pearson Educacion, 2010.

J.W. Pratt. “Risk Aversion in the Small and in the Large”. En: Econometrica
32 (1964), pags. 122-136.

Afirme Seguros. Cotizacion de Seguro de Auto | Afirme. Consultado el 12
de junio de 2025. 2025. URL: https://afirmesegurosautos.mx/ (visitado
12-06-2025).

GNP Seguros. Cotizador de sequro de auto | GNP Mérico. Consultado el 12
de junio de 2025. 2025. URL: https://www.gnp.com.mx/content/gnp-
pp/mx/es/cotizador-auto/datos-vehiculo.html (visitado 12-06-2025).

82


http://pi.lib.uchicago.edu/1001/cat/bib/4111654
http://pi.lib.uchicago.edu/1001/cat/bib/4111654
https://mapfre.rastreator.mx
https://mapfre.rastreator.mx
https://afirmesegurosautos.mx/
https://www.gnp.com.mx/content/gnp-pp/mx/es/cotizador-auto/datos-vehiculo.html
https://www.gnp.com.mx/content/gnp-pp/mx/es/cotizador-auto/datos-vehiculo.html

	Prefacio
	Glosario de términos
	Introducción
	Conceptos preliminares 
	Notaciones matemáticas
	Nociones económicas
	Conceptos microeconómicos básicos
	Canastas de consumo y relación de preferencias. Propiedades.
	Relaciones de preferencia y funciones de utilidad
	La función de utilidad

	Diferenciabilidad y la Tasa Marginal de Sustitución

	Teoría del consumidor
	El problema del consumidor
	Análisis de la curva de demanda y condiciones de Karush-Kuhn-Tucker (KKT)
	Solución al problema de maximización
	Propiedades de la función de demanda x(p, y)

	La función de utilidad von Neumann-Morgenstern
	Incertidumbre 
	Preferencias
	Utilidad von Neumann-Morgenstern
	Relación entre la función de utilidad VNM y la utilidad bajo certeza

	Aversión al riesgo

	Algunas aplicaciones de la utilidad de von Neumann-Morgenster
	Evaluación de productos financieros bajo incertidumbre: una aplicación de utilidad esperada con datos de la CONDUSEF
	Selección del producto financiero
	Obtención de datos

	Modelo de incertidumbre
	Aplicación de la Medida de Aversión Absoluta al Riesgo de Arrow-Pratt
	Medida de Aversión Absoluta al Riesgo
	Cálculo del Equivalente Cierto y Prima de Riesgo


	Conclusiones
	Continuidad, desigualdades y teoremas de optimización
	Bibliografía

