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Prefacio

Naa kavi tu’un savi.
(Leamos en lengua mixteca)

Región mixteca

El análisis de las decisiones humanas ha sido durante mucho tiempo un puente
entre la economía y la matemática. En particular, la teoría de la utilidad espe-
rada ha ofrecido una base formal para comprender cómo los individuos toman
decisiones cuando enfrentan riesgo o incertidumbre. Este marco teórico, desarro-
llado inicialmente por John von Neumann y Oskar Morgenstern a mediados del
siglo XX, proporcionó los primeros fundamentos axiomáticos para representar ma-
temáticamente las preferencias de los agentes económicos ante apuestas.

El interés por este tipo de modelos surge de una necesidad práctica: poder
predecir, comparar y justificar decisiones racionales. En contextos como el consu-
mo, la inversión, los seguros o cualquier elección bajo incertidumbre, contar con
una función de utilidad permite cuantificar las preferencias individuales y hacer
comparaciones entre distintas alternativas de manera sistemática.

Esta tesis comienza desarrollando la teoría bajo condiciones de certeza, además
de mostrar términos que pudieran ser nuevos para un matemático, pero son usuales
en teoría microeconómica, luego presentamos los axiomas básicos que garantizan la
existencia de una función de utilidad, la cual permite representar las preferencias
del consumidor cuando no hay riesgo. A partir de ello, se introduce el contexto
de incertidumbre, donde se trabaja con loterías simples (o juegos de azar), y se
presentan los axiomas adicionales que justifican la existencia de una función de
utilidad de von Neumann-Morgenstern.

También se examinan las condiciones bajo las cuales dicha función es única,
salvo transformaciones positivas afines; es decir, cualquier otra función que repre-
sente las mismas preferencias debe estar relacionada con la original mediante una
transformación del tipo u′(x) = au(x) + b, con a > 0.

En la ultima parte de la tesis se presentan aplicaciones empíricas usando datos
públicos de productos financieros ofrecidos por aseguradoras, mostrando cómo
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estas ideas teóricas permiten entender mejor las decisiones del consumidor ante
diferentes niveles de riesgo. Finalmente, se analiza el papel de la aversión al riesgo
y se aplican herramientas como la medida de Arrow-Pratt y el equivalente cierto
para ilustrar cómo las preferencias reveladas pueden ayudar a evaluar distintas
alternativas desde una perspectiva cuantitativa.

La unión entre teoría económica y formalización matemática permite no solo
describir comportamientos, sino también diseñar decisiones más informadas y ra-
cionales, aunque no llegamos a esto buscamos exponer de manera clara teoremas,
dando en ocasiones solo su enunciado con el fin de llegar a una aplicación concreta.
Este trabajo pretende ser una contribución sencilla y didáctica al entendimiento
de esta relación.
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Glosario de términos

Rn
+ : Es el conjunto de vectores en Rn con todos sus componentes no nega-

tivos. Es decir, x ∈ Rn tal que xi ≥ 0 para todo i = 1, . . . , n.

Rn
++: Es el conjunto de vectores en Rn con todos sus componentes estricta-

mente positivos, es decir, x ∈ Rn tal que xi > 0 para todo i = 1, . . . , n.

≫ : Se utiliza para representar una relación de preferencia fuerte o una
desigualdad estricta en vectores. En el contexto de preferencias estricta-
mente monótonas, si x ≫ y, significa que x es estrictamente preferido a y, es
decir, cada componente de x es estrictamente mayor que la correspondiente
en y:

x ≫ y ⇔ xi > yi ∀i.

En términos de función de utilidad, una preferencia es estrictamente monó-
tona si x ≫ y, implica que:

u(x) > u(y).

Esto significa que una mayor cantidad de cada bien siempre genera una ma-
yor utilidad.

D: Conjunto dominio del problema de optimización. Es el conjunto de todos
los pares admisibles (x, a) ∈ Rn×A para los cuales la función objetivo f(x, a)
está definida. El conjunto A ⊆ Rm representa el conjunto de parámetros del
problema. En el contexto del Teorema del máximo, se asume que f : D →
R es continua sobre D, y que las restricciones están definidas de manera
que generan conjuntos factibles S(a) no vacíos y compactos. Por tanto, D
contiene la información sobre las decisiones y parámetros para los cuales el
problema tiene sentido matemático.
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Introducción

La utilidad de von Neumann-Morgenstern es fundamental en la teoría de decisio-
nes, las finanzas y la economía, donde se utiliza para modelar la toma de decisiones
bajo incertidumbre, especialmente en situaciones de riesgo en las que los indivi-
duos buscan maximizar su utilidad esperada en lugar de solo su ganancia o retorno
esperado.
La teoría de elección bajo incertidumbre se aplica en diferentes contextos econó-
micos. En el área de las matemáticas, la teoría de optimización y teoría de la
utilidad esperada se utilizan para resolver problemas complejos en estos campos.

La utilidad de von Neumann-Morgenstern es una forma de representar las
preferencias de un agente económico frente a situaciones de riesgo, es decir, cuando
los resultados de una decisión no son seguros y están sujetos a probabilidades.
Este concepto es parte de la teoría de utilidad esperada desarrollada por John
von Neumann y Oskar Morgenstern, la cuál proporciona una base matemática
para la toma de decisiones bajo incertidumbre.[11]

La importancia de este estudio radica en su capacidad para explicar el com-
portamiento financiero mediante un enfoque cuantitativo y riguroso, esto ha sido
fundamental no solo en el desarrollo de la teoría de carteras y la administración de
riesgos, sino también en la comprensión de fenómenos como la aversión al riesgo
y las preferencias de inversión.

A pesar de su relevancia, el uso de modelos de utilidad esperada en el sector
de inversiones aún presenta un amplio margen para investigaciones y aplicaciones
prácticas. Profundizar en estos modelos y adaptarlos a los contextos actuales de
volatilidad financiera y alta competencia representa un avance significativo tanto
para el análisis económico como para la matemática aplicada.
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Capítulo 1

Conceptos preliminares

Kanu ko ini.
(Que muy grande sea su corazón)

Alusión mixteca

En este capítulo daremos los conceptos necesarios para la lectura de la teoría
económica y la forma de escribir demostraciones de teoremas matemáticos, los
cuales son fundamentales en las estructuras de la teoría moderna del consumidor.

1.1. Notaciones matemáticas

Presentaremos algunas definiciones concernientes para el capítulo dos y cuatro
extraídas de [5], con algunas adaptaciones para usarlas en este texto.

Definición 1.1 (Conjunto convexo). Sea Θ ⊆ Rn. Decimos que Θ es un conjunto
convexo si para cualesquiera puntos u,v ∈ Θ y para todo α ∈ [0, 1], se cumple que
la combinación convexa:

w = αu+ (1− α)v

también pertenece a Θ. Es decir,

αu+ (1− α)v ∈ Θ.

Ahora expondremos las definiciones para funciones con base en [3, Cap. 3, p.
98] para su uso en los primeros teoremas del capítulo uno.

Definición 1.2 (Función estrictamente creciente). Sea f : D ⊆ R → R una fun-
ción definida en un subconjunto D de los reales. Decimos que f es estrictamente
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Conceptos preliminares 1.1. NOTACIONES MATEMÁTICAS

creciente si para cualesquiera dos puntos x1, x2 ∈ D, con x1 < x2, se cumple que

f(x1) < f(x2).

Es decir, la función aumenta estrictamente su valor a medida que la variable
independiente crece. Esta propiedad garantiza que no hay intervalos constantes ni
decrecientes: todo incremento en la variable implica un incremento en la imagen.

Definición 1.3 (Función convexa). Sea f : S → R, donde S ⊆ Rn es un conjunto
convexo no vacío. La función f se dice convexa en S si para cualesquiera x1,x2 ∈
S y para todo λ ∈ [0, 1], se cumple:

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).

Definición 1.4 (Función estrictamente convexa). Sea f : S → R, donde S ⊆ Rn

es un conjunto convexo no vacío. La función f se dice estrictamente convexa
en S si para todo par distinto x1 ̸= x2 ∈ S y para todo λ ∈ (0, 1), se cumple:

f(λx1 + (1− λ)x2) < λf(x1) + (1− λ)f(x2).

Definición 1.5 (Función cóncava). Sea f : S → R, donde S ⊆ Rn es un conjunto
convexo no vacío. La función f se dice cóncava en S si −f es convexa en S; es
decir, si para todo x1,x2 ∈ S y λ ∈ [0, 1], se cumple:

f(λx1 + (1− λ)x2) ≥ λf(x1) + (1− λ)f(x2).

Definición 1.6 (Función estrictamente cóncava). Sea f : S → R, donde S ⊆ Rn

es un conjunto convexo no vacío. La función f se dice estrictamente cóncava
en S si −f es estrictamente convexa en S; es decir, si para todo par distinto
x1 ̸= x2 ∈ S y λ ∈ (0, 1), se cumple:

f(λx1 + (1− λ)x2) > λf(x1) + (1− λ)f(x2).

Definición 1.7 (Función cuasiconvexa). Sea f : S ⊆ Rn → R una función defini-
da en un conjunto convexo S. Se dice que f es cuasiconvexa si para cualesquiera
x1,x2 ∈ S y todo λ ∈ [0, 1], se cumple:

f(λx1 + (1− λ)x2) ≤ máx{f(x1), f(x2)}.

Definición 1.8 (Función estrictamente cuasiconvexa). Sea f : S ⊆ Rn → R
una función definida en un conjunto convexo S. Se dice que f es estrictamente
cuasiconvexa si para cualesquiera x1,x2 ∈ S con x1 ̸= x2, y todo λ ∈ (0, 1), se
cumple:

f(λx1 + (1− λ)x2) < máx{f(x1), f(x2)}.
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Conceptos preliminares 1.1. NOTACIONES MATEMÁTICAS

Definición 1.9 (Función cuasicóncava). Sea f : S ⊆ Rn → R una función defini-
da en un conjunto convexo S. Se dice que f es cuasicóncava si para cualesquiera
x1,x2 ∈ S y todo λ ∈ [0, 1], se cumple:

f(λx1 + (1− λ)x2) ≥ mı́n{f(x1), f(x2)}.

Definición 1.10 (Función estrictamente cuasicóncava). Sea f : S ⊆ Rn → R
una función definida en un conjunto convexo S. Se dice que f es estrictamente
cuasicóncava si para cualesquiera x1,x2 ∈ S con x1 ̸= x2, y todo λ ∈ (0, 1), se
cumple:

f(λx1 + (1− λ)x2) > mı́n{f(x1), f(x2)}.

Cabe observar que aunque el término “cuasicóncava” pudiera sugerir que la
función debe definirse sobre un conjunto cóncavo, en realidad se requiere que el
dominio sea un conjunto convexo. Esto se debe a que la propiedad de cuasi-
concavidad involucra combinaciones convexas de dos puntos x1 y x2. Para que
dichas combinaciones intermedias del tipo λx1+(1−λ)x2, con λ ∈ [0, 1], también
pertenezcan al dominio, es necesario que dicho dominio sea convexo.

En otras palabras, la cuasiconcavidad de una función es una propiedad sobre el
comportamiento de sus valores en los segmentos de línea entre dos puntos dados,
lo cual sólo puede evaluarse si el conjunto sobre el cual está definida incluye esos
segmentos. Por esta razón, tanto en análisis matemático como en teoría micro-
económica, las funciones cuasicóncavas y cuasiconvexas se definen sobre conjuntos
convexos.

Definición 1.11 (Desigualdad componente a componente). Sean x,y ∈ Rn. De-
cimos que:

1. x ≥ y si y solo si xi ≥ yi para todo i = 1, . . . , n,

2. x > y si y solo si xi ≥ yi para todo i = 1, . . . , n y además xj > yj para al
menos un j,

3. x ≫ y si y solo si xi > yi estrictamente para todo i = 1, . . . , n.

Estas desigualdades se interpretan componente a componente y son amplia-
mente utilizadas en economía para expresar relaciones de dominancia entre vec-
tores de consumo. Note que para inciso 3 hay una relación entre las notaciones
matemáticas y económicas que es un punto a tratar en la metodología y propósito
de este texto.
Observación: La diferencia entre los incisos 2 y 3 radica en el grado de desigual-
dad:

En x > y, se permite que algunas componentes sean iguales, siempre que al
menos una sea estrictamente mayor.
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Conceptos preliminares 1.1. NOTACIONES MATEMÁTICAS

En x ≫ y, todas las componentes de x deben ser estrictamente mayores que
las correspondientes en y, sin excepciones.

Esta distinción es importante en teoría de preferencias, pues x ≫ y implica una
dominancia clara, mientras que x > y representa una preferencia parcial.

A continuación pondremos definiciones importantes para su uso en este texto.
Han sido extraídas de [5, p. 65]

Definición 1.12 (Gradiente). Sea f : Rn → R una función diferenciable. El
gradiente de f en el punto x ∈ Rn, denotado por ∇f(x), es el vector columna que
contiene las derivadas parciales de f con respecto a cada variable. Esto es,

∇f(x) =


∂f
∂x1

(x)

∂f
∂x2

(x)
...

∂f
∂xn

(x)

 .

Este vector representa la dirección de máxima tasa de cambio de la función f en
x.

Definición 1.13 (Matriz Hessiana). Sea f : Rn → R una función dos veces
diferenciable. La matriz Hessiana de f en el punto x, denotada por H(x), es la
matriz cuadrada de n × n que contiene las segundas derivadas parciales de f , de
la siguiente manera:

H(x) =


∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2∂xn

...
... . . . ...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2

n

 .

Esta matriz es simétrica si las segundas derivadas parciales mixtas(es decir, que
conmutan el orden de las derivadas) son continuas en un entorno(vecindad) de x1

esto ultimo por el teorema A.4.

Definición 1.14 (Lagrangiano). Sea f : Rn → R una función objetivo y h :
Rn → Rm un conjunto de funciones de restricción de igualdad. El Lagrangiano
asociado al problema de optimización con restricciones de igualdad se define como

L(x,λ) = f(x) + λ⊤h(x),

1Con base el teorema de Schwarz (o Young)A.4, la igualdad de las derivadas mixtas está
garantizada bajo continuidad.
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donde λ ∈ Rm es el vector de multiplicadores de Lagrange. La condición de La-
grange para que x∗ sea un minimizador local consiste en que el gradiente de L con
respecto a todas sus variables sea nulo, es decir,

∇L(x∗,λ∗) = 0⊤.

1.2. Nociones económicas

Definición 1.15 (Numéraire). En teoría económica, el numéraire [14] es una
unidad de cuenta normalizada utilizada para expresar los valores relativos de bie-
nes y servicios.

En otras palabras el numéraire es una unidad de valor sin unidades de dinero,
sino con unidades de valor que permitan una comparación estática, lo cual permite
un análisis gráfico claro en planos precio-calidad.

Definición 1.16 (Economía de mercado). Una economía de mercado o eco-
nomía de libre mercado es un sistema económico en el cual las decisiones sobre
producción, consumo y asignación de recursos se coordinan a través de los pre-
cios que surgen en mercados libres. En este tipo de economía, los individuos y las
empresas interactúan voluntariamente en los mercados para intercambiar bienes
y servicios, guiados por incentivos de beneficio y los precios relativos.

El mecanismo de precios actúa como incentivo para productores y consumido-
res, reflejando la escasez y las preferencias. El papel del gobierno se limita ge-
neralmente a establecer y hacer cumplir las reglas del intercambio, proteger los
derechos de propiedad y corregir ciertas fallas de mercado cuando estas surgen.

Este sistema contrasta con las economías planificadas, donde la asignación de
recursos se determina mediante decisiones centralizadas. Con base en [17] plan-
teamos la anterior definición centrándonos en la idea de economía como el querer
más de lo que se tiene así como en la tensión entre el interés personal y el interés
público, enfocándonos en preferencias para el interés de este texto.

También con base en [17] asumiremos el concepto de microeconomía siguiente.

Definición 1.17 (Microeconomía). La microeconomía es el estudio de las eleccio-
nes que realizan los individuos y las empresas, la manera en que dichas elecciones
interactúan en los mercados y la influencia que los gobiernos ejercen sobre ellas.
Este campo de la economía se centra en el análisis de cómo los agentes económi-
cos responden a los incentivos, cómo se determinan los precios en distintos tipos
de mercado, y cómo se asignan los recursos escasos entre diversas actividades
productivas.

Asimismo, la microeconomía examina los efectos de las políticas públicas como
impuestos, subsidios o regulaciones. Tiene que ver sobre las decisiones individuales
y el bienestar social. Su propósito es dar un marco analítico riguroso para entender
el comportamiento económico a nivel individual y la estructura de los mercados.
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Conceptos preliminares 1.3. CONCEPTOS MICROECONÓMICOS BÁSICOS

Definición 1.18 (Paquete de consumo). Un paquete de consumo (también
llamado canasta de bienes) es una combinación específica de cantidades de bienes
que un consumidor puede elegir. Matemáticamente, se representa como un vector
x = (x1, x2, . . . , xn) ∈ Rn

+, donde cada componente xi ≥ 0 indica la cantidad del
bien i que compone dicho paquete.

Desde el punto de vista económico, este vector representa una elección fac-
tible del consumidor, y es el objeto sobre el cual se definen sus preferencias y
niveles de utilidad. Comparando distintos paquetes, el consumidor manifiesta sus
preferencias relativas entre alternativas de consumo.

Desde el punto de vista matemático, el paquete de consumo es un elemento
del conjunto de consumo X ⊆ Rn

+.

1.3. Conceptos microeconómicos básicos

Las preferencias del consumidor se caracterizan mediante un enfoque axiomá-
tico. Este método de modelación establece el menor número posible de supuestos
significativos(axiomas) y distintos para describir la estructura y propiedades de
las preferencias. A partir de estos axiomas, el resto de la teoría se construye lógi-
camente, y se estiman predicciones del comportamiento mediante deducción.

Estos axiomas de elección del consumidor buscan modelar formalmente los
aspectos fundamentales del comportamiento del consumidor. En conjunto, forma-
lizan la idea de que el consumidor es capaz de elegir y que sus decisiones son
consistentes de una manera particular.

El uso de una relación binaria para caracterizar las preferencias es significativo
y merece un breve análisis ya que la teoría depende relativamente poco del consu-
midor que describe. Solo exigimos que los consumidores sean capaces de realizar
comparaciones binarias, es decir, que al examinar dos opciones de consumo pue-
dan decidir cuál de las dos prefieren. Los axiomas que se presentan a continuación
establecen los criterios básicos que dichas comparaciones binarias deben cumplir.

En el enfoque basado en preferencias, los objetivos del agente decisor se re-
sumen en una relación de preferencia, denotada por ≿. Técnicamente, ≿ es una
relación binaria definida sobre el conjunto de alternativas X, permitiendo la com-
paración entre pares de alternativas x, y ∈ X. La notación x ≿ y se interpreta
como “la alternativa x es al menos tan buena como la alternativa y". A partir de
esta relación, se derivan dos relaciones fundamentales:

La relación de preferencia estricta, ≻, definida como:

x ≻ y ⇐⇒ x ≿ y pero no y ≿ x,

que se interpreta como “x es estrictamente preferido a y".
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La relación de indiferencia, ∼, definida como:

x ∼ y ⇐⇒ x ≿ y y y ≿ x (1.1)

que se interpreta como “x es indiferente a y".

Axioma 1.1 (Completitud). Para todo x, y ∈ X, se tiene que x ≿ y o y ≿ x (o
ambas).

Axioma 1.2 (Transitividad). Para todo x, y, z ∈ X, si x ≿ y y y ≿ z, entonces
x ≿ z.

La propiedad de completitud implica que el individuo posee una preferencia bien
definida entre cualquier par de alternativas posibles. Este axioma supone que las
decisiones han sido meditadas y completamente evaluadas, incluso en casos de
alternativas que puedan ser ajenas a la experiencia común.

Por otro lado, la transitividad es fundamental para el concepto de racionalidad,
ya que garantiza que dichas comparaciones binarias deben estar conectadas de
manera coherente. La ausencia de transitividad generaría ciclos de preferencia,
como preferir x a y, y a z, pero también z a x, lo cual resulta incompatible con
una teoría económica coherente.

Definición 1.19 (Relación de preferencia). La relación binaria ≿ en el conjunto
del consumidor X es llamada relación de preferencia si satisface los axiomas 1.1
y 1.2

Definición 1.20 (Relación de preferencia estricta). La relación binaria ≻ en el
conjunto del consumidor X se define por: x ≻ y si y solo si x ≿ y y y ̸≿ x.

La relación ≻ se denomina relación de preferencia estricta inducida por ≿,
o simplemente relación de preferencia estricta cuando ≿ es clara. La expresión
x ≻ y se interpreta como ‘x es estrictamente preferido a y’.

Definición 1.21 (Relación de indiferencia). La relación binaria ∼ en el conjunto
del consumidor X se define por: x ∼ y si y solo si x ≿ y y y ≿ x.

La expresión x ∼ y se interpreta como ‘x es indiferente a y’. Es decir da lo
mismo la elección de cualquier opción.
Dado cualquier par x y y, exactamente una de tres posibilidades mutuamente
excluyentes debe cumplirse: x ≻ y, y ≻ x o x ∼ y

Definición 1.22 (Curva de Indiferencia). Sea u : R2
+ → R una función de utilidad

continua que representa las preferencias de un consumidor. Dado un paquete de
consumo(1.18) x1 = (x1

1, x
1
2), la curva de indiferencia que pasa por x1 se define

como el conjunto:

{(x1, x2) ∈ R2
+ | u(x1, x2) = u(x1

1, x
1
2)}.
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Conceptos preliminares 1.4. CANASTAS DE CONSUMO Y RELACIÓN DE PREFERENCIAS. PROPIEDADES.

Este conjunto representa todas las combinaciones de bienes x1 y x2 que otorgan
al consumidor el mismo nivel de utilidad que el paquete x1. Si la función u es
diferenciable y satisface condiciones regulares2 , esta curva puede representarse
localmente como una función x2 = f(x1).

Definición 1.23 (Tasa Marginal de Sustitución del bien 2 por el bien 1). Sea
x = (x1, x2) ∈ R2

+ un paquete de consumo tal que u : R2
+ → R es una función

de utilidad diferenciable que representa las preferencias del consumidor. La tasa
marginal de sustitución3 del bien 2 por el bien 1 en x se define como:

MRS12(x) =

∣∣∣∣∣
∂u(x)
∂x1

∂u(x)
∂x2

∣∣∣∣∣
Esta tasa representa cuánta cantidad del bien x2 está dispuesto a sacrificar el

consumidor para obtener una unidad adicional de x1, manteniéndose indiferente.
Equivale al valor absoluto de la pendiente de la curva de indiferencia que pasa
por x. Bajo preferencias estrictamente monótonas y convexas, esta tasa es estric-
tamente decreciente a lo largo de una curva de indiferencia, lo cual expresa el
principio de la Tasa Marginal de Sustitución Decreciente.

Lo que se buscamos capturar aquí son aquellas alternativas que son alcanzables
considerando las realidades económicas a las que el consumidor se enfrenta. Sus
elementos son los paquetes de consumo que el individuo puede consumir dadas las
restricciones físicas impuestas por su entorno.

1.4. Canastas de consumo y relación de preferen-

cias. Propiedades.

Para cada vector x del conjunto X sus coordenadas se relacionan con la can-
tidad de bienes asociados al consumidor.

Supuesto 1.1 (Propiedades del conjunto del consumidor, X). Los requisitos mí-
nimos sobre el conjunto de consumo son:

1. X ⊆ Rn
+.

2Las condiciones regulares que permiten representar la curva de indiferencia como una fun-
ción x2 = f(x1) provienen del teorema de la función implícita. Estas requieren que la función de
utilidad u(x1, x2) sea continuamente diferenciable en un entorno del punto considerado, y que
al menos una de las derivadas parciales, como ∂u/∂x2, no se anule en dicho punto. Económica-
mente, esto implica que el consumidor valora ambos bienes.

3Al final de este capítulo se da el desarrollo matemático de esta ecuación con base en su
análisis económico.

12



Conceptos preliminares 1.5. RELACIONES DE PREFERENCIA Y FUNCIONES DE UTILIDAD

2. X es cerrado.

3. X es convexo.

4. 0 ∈ X.

El conjunto factible B se define como el subconjunto del conjunto del consu-
midor X que satisface las restricciones que limitan el acceso del consumidor a los
bienes.
Dichas restricciones pueden derivarse de realidades prácticas, institucionales o
económicas. La forma en que se especifiquen estas restricciones en una situación
particular determinará las propiedades específicas de B. Por el momento, simple-
mente consideramos que B ⊂ X.

1.5. Relaciones de preferencia y funciones de uti-

lidad

Ahora revisaremos cómo ha evolucionado el concepto de “utilidad” en economía
y cómo se relaciona con las preferencias del consumidor.

En la teoría clásica, economistas como Edgeworth y Mill, desde una visión uti-
litarista, pensaban en la utilidad como algo medible y comparable entre personas,
asociado a sensaciones como el placer o el dolor. Con el tiempo, esta idea se fue
mejorando. Fue Debreu en 1959 ([8]) quién formalizó la teoría del consumidor,
reduciéndola a sus ideas esenciales con un enfoque más general y riguroso.

Hoy en día, la utilidad se entiende como una forma de representar las pre-
ferencias del consumidor, que expresan cómo compara diferentes opciones según
sus gustos. La relación de preferencia define cómo elige entre alternativas y si
sus decisiones son consistentes. Para este punto ya podemos definir un conjunto
débilmente convexo en el contexto de estas relaciones, él cual ocuparemos més
adelante.

Definición 1.24 (Conjunto débilmente convexo). Un conjunto C ⊆ Rn
+ se dice

débilmente convexo con respecto a una relación de preferencia ≿, si para cuales-
quiera dos puntos x,y ∈ C, y para todo α ∈ (0, 1), se cumple que4

x ∼ y ⇒ αx+ (1− α)y ≿ x

Esta propiedad implica que el consumidor muestra una débil preferencia por
combinaciones balanceadas, es decir, por distribuciones intermedias entre dos ces-
tas indiferentes.

4Lo que dice exactamente esta implicación es que si x ∼ y, entonces cualquier combinación
convexa estricta entre x y y (como αx + (1 − α)y) es al menos tan buena como x, es decir, se
encuentra en el conjunto de consumo débilmente preferido a x.

13



Conceptos preliminares 1.5. RELACIONES DE PREFERENCIA Y FUNCIONES DE UTILIDAD

Definición 1.25. Conjuntos en X derivados de la relación de preferencia
Sea x0 un punto cualquiera en el conjunto de consumo X. En relación con este
punto, se pueden definir los siguientes subconjuntos de X:

1. ≿ (x0) ≡ {x | x ∈ X,x ≿ x0}, llamado el conjunto de las alternativas “al
menos tan buenas como” x0.

2. ≾ (x0) ≡ {x | x ∈ X,x0 ≿ x}, llamado el conjunto de las alternativas “no
mejores que” x0.

3. ≺ (x0) ≡ {x | x ∈ X,x0 ≻ x}, llamado el conjunto de las alternativas
“peores que” x0.

4. ≻ (x0) ≡ {x | x ∈ X,x ≻ x0}, llamado el conjunto de las alternativas
“mejores a” x0.

5. ∼ (x0) ≡ {x | x ∈ X,x ∼ x0}, llamado el conjunto de las alternativas
“indiferentes a” x0.

Un conjunto de preferencias que satisface los Axiomas 1.1 y 1.2 se ilustra en la
Figura 1.1 para X = R2

+. Cualquier punto dentro del conjunto de consumo, como
x0 = (x0

1, x
0
2), representa un plan de consumo con una cantidad determinada x0

1

del bien 1 y una cantidad x0
2 del bien 2. Bajo el Axioma 1.1, el consumidor es capaz

de comparar x0 con cualquier otro punto en X y decidir si la otra alternativa es
al menos tan buena como x0 o si x0 es al menos tan buena como la otra opción.

Dados los conjuntos definidos en relación con x0, los Axiomas 1.1 y 1.2 ga-
rantizan que el consumidor es capaz de clasificar todos los puntos en X dentro
de una de tres categorías mutuamente excluyentes con respecto a x0: cada otro
punto en el conjunto de consumo es peor que x0, indiferente a x0 o preferido a x0.
En consecuencia, para cualquier vector x0, los conjuntos ≺ (x0), ∼ (x0) y ≻ (x0)
forman una partición del conjunto de consumo.

Las preferencias representadas en la Figura 1.1 pueden parecer poco conven-
cionales. Poseen solo una estructura mínima, pero siguen siendo completamente
consistentes con los primeros dos axiomas. Hasta el momento, no se ha asumido
nada que impida ciertas “irregularidades” en la representación de las preferen-
cias, como zonas de indiferencia “gruesas”, “huecos” o “curvas” dentro del conjunto
de indiferencia ∼ (x0). Estas características solo pueden descartarse imponiendo
condiciones adicionales sobre las preferencias.

A partir de ahora, necesitamos nuevos axiomas sobre las preferencias. Uno
de ellos tiene un impacto mínimo desde el punto de vista del comportamiento y
se enfoca exclusivamente en los aspectos matemáticos de la representación de las
preferencias. Las demás hipótesis se relacionan directamente con la caracterización
de los gustos del consumidor sobre los bienes en el conjunto de consumo.

El primer axioma adicional que se considerará impone una cierta regulari-
dad topológica sobre las preferencias. Su contribución principal será más evidente
posteriormente. A partir de ahora consideraremos X = Rn

+.
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Figura 1.1: Preferencias hipotéticas que satisfacen los axiomas 1.1 y 1.2.

Axioma 1.3 (Continuidad). Para todo x ∈ Rn
+, el conjunto “al menos tan bueno

como” ≿ (x) y el conjunto “no mejor que” ≾ (x) son cerrados en Rn
+.

En matemáticas un conjunto es cerrado si su complemento es abierto. Por lo
tanto, decir que ≿ (x) es cerrado en Rn

+ implica que su complemento ≺ (x) es
abierto en Rn

+. La continuidad garantiza que no se produzcan inversiones repenti-
nas de preferencias.

Axioma 1.4 (No satisfacción local). Para todo x0 ∈ Rn
+ y para todo ε > 0, existe

algún x ∈ Bε(x
0) ∩ Rn

+ tal que x ≻ x0.

Este axioma establece que, dentro de cualquier vecindad de un punto dado
x0, por pequeña que sea, siempre habrá al menos un punto x que el consumidor
prefiera estrictamente a x0. Este axioma tiene un impacto importante en la estruc-
tura de los conjuntos de indiferencia, ya que excluye la posibilidad de que existan
“zonas de indiferencia” alrededor de un punto dado. Por ejemplo, si consideramos
el punto x1 en la Figura 1.2, se puede encontrar un ε > 0 y una vecindad Bε(x

1)
que contenga únicamente puntos indiferentes a x1, lo cual violaría el axioma de
no satisfacción local, pues siempre debe existir un punto estrictamente preferido
a x1 en cualquier vecindad elegida. Las preferencias mostradas en la Figura 1.3
satisfacen este axioma, así como los axiomas 1.1 al 1.3.
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Figura 1.2: Preferencias hipotéticas que satisfacen los axiomas 1.1 1.2 y 1.3.

Figura 1.3: Preferencias hipotéticas que satisfacen los axiomas 1.1, 1.2, 1.3 y 1.4.

Ahora para el siguiente axioma ocuparemos la definición 1.11

Axioma 1.5 (Monotonicidad estricta). Para cualesquiera x0,x1 ∈ Rn
+, si x0 ≥ x1,

entonces x0 ≿ x1, mientras que si x0 ≫ x1, entonces x0 ≻ x1.

El Axioma 1.5 establece que si un vector contiene al menos la misma cantidad
de cada bien que otro, entonces el primero es al menos tan bueno como el segundo.
Además, si contiene estrictamente más de cada bien, será estrictamente preferido.
Este axioma tiene implicaciones importantes en la estructura de los conjuntos de
indiferencia y conjuntos relacionados. En particular, garantiza que los conjuntos
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de indiferencia en R2
+ no presenten segmentos con pendiente positiva ni se curven

hacia arriba. También establece que los conjuntos de bienes preferidos se ubican
“por encima” de los conjuntos de indiferencia, mientras que los conjuntos de bienes
“peores” se encuentran “por debajo”.

Para ilustrar este resultado, considérese el caso de un punto x0. Bajo el axioma
1.5, ningún punto ubicado al noreste o suroeste de x0 puede pertenecer al mis-
mo conjunto de indiferencia. Un punto x1 situado al noreste de x0 contiene más
de ambos bienes y, por lo tanto, es estrictamente preferido. De manera similar,
cualquier punto x2 en el suroeste de x0 tiene menos de ambos bienes y debe ser
estrictamente peor. Como consecuencia, x0 debe ser estrictamente preferido a x2

y a todos los puntos en el cuadrante suroeste, lo que implica que ninguno de ellos
puede pertenecer al mismo conjunto de indiferencia que x0. Así, los puntos al
noreste del conjunto de indiferencia pertenecen al conjunto ≻ (x0).

Figura 1.4: Preferencias hipotéticas que satisfacen los axiomas 1.1, 1.2, 1.3 y 1.4.

Un conjunto de preferencias que satisface los Axiomas 1.1, 1.2, 1.3 y 1.5 se
representa en la Figura 1.5.

Las preferencias mostradas en dicha figura son las más cercanas, hasta ahora, a
aquellas que probablemente resulten familiares en teoría económica. No obstante,
aún presentan una diferencia fundamental: la presencia de una región no convexa
en la parte noroeste del conjunto de indiferencia ∼ (x0).

En la mayoría de los modelos estándar, este tipo de irregularidad se descarta
explícitamente. Para esto se introducen dos últimos axiomas sobre las preferencias
del consumidor.

Axioma 1.6 (Convexidad). Si x1 ≿ x0, entonces tx1 + (1− t)x0 ≿ x0 para todo
t ∈ [0, 1].

17



Conceptos preliminares 1.5. RELACIONES DE PREFERENCIA Y FUNCIONES DE UTILIDAD

Figura 1.5: Preferencias hipotéticas que satisfacen los axiomas 1.1, 1.2, 1.3, 1.4 y
1.5 pero tiene regiones no-convexas.

Axioma 1.7 (Convexidad estricta). Si x1 ̸= x0 y x1 ≿ x0, entonces tx1 + (1 −
t)x0 ≻ x0 para todo t ∈ (0, 1).

Esta convexidad es similar a la convexidad usual usada en optimización en
R, pero ahora con la relación de preferencia ≿. Es importante notar que tanto
el Axioma 1.6 como el Axioma 1.7, en conjunto con los Axiomas 1.1, 1.2, 1.3
y 1.5, eliminan la posibilidad de segmentos cóncavos respecto al origen dentro
de los conjuntos de indiferencia, como los observados en la región noroeste de la
Figura 1.5. Para entender esto, tomemos dos puntos distintos en un conjunto de
indiferencia. Como los puntos x1 y x2 son indiferentes respecto a x0, se cumple que
x1 ≿ x2. Las combinaciones convexas de estos dos puntos, como xt, pertenecerán
al conjunto ≺ (x0), lo que contradice los requisitos de los Axiomas 1.6 y 1.7.

Desde el punto de vista del desarrollo teórico del consumidor, el Axioma 1.6
puede imponerse sin pérdida de generalidad, ya que su contenido predictivo es
equivalente a la versión sin él. Sin embargo, la versión más fuerte, el Axioma 1.7,
aunque no es completamente equivalente, simplifica notablemente el análisis.

Para comprender de manera intuitiva las implicaciones de la convexidad en
las preferencias del consumidor, consideremos las preferencias ilustradas en la
Figura 1.5. Supongamos que x1 ∼ x2. El punto x1 representa un vector con una
proporción relativamente alta del bien x2, en comparación con x2, que a su vez
contiene una proporción relativamente alta del bien x1. Aunque cada una de estas
canastas tiene una distribución sesgada hacia uno de los bienes, el consumidor
es indiferente entre ellas. Ahora bien, cualquier combinación convexa de x1 y x2,
como xt, será un vector que presenta una combinación más “balanceada” de los
bienes x1 y x2 en comparación con las opciones más extremas representadas por
x1 y x2.
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Figura 1.6: Preferencias hipotéticas que satisfacen los axiomas 1.1, 1.2, 1.3, 1.5 y
1.6 o 1.7.

Nota 1.1. Los Axiomas 1.6 y 1.7 expresan que el consumidor prefiere combina-
ciones equilibradas de bienes en lugar de combinaciones extremas o despropori-
sionadas.

El Axioma 1.6 asegura que una canasta balanceada es al menos tan buena como
dos opciones entre las que es indiferente. El Axioma 1.7 va más allá, exigiendo
que esa canasta sea estrictamente mejor.

Esto se relaciona con la forma curva de las curvas de indiferencia y con la tasa
marginal de sustitución (1.23), que mide cuánta cantidad del bien x2 está
dispuesto a intercambiar el consumidor por más de x1, sin perder satisfacción.

Ambos axiomas reflejan la idea de que, conforme se obtiene más de un bien, se
está dispuesto a sacrificar cada vez menos del otro. Esto se conoce como el prin-
cipio de tasa marginal de sustitución decreciente, ilustrado en la Figura
1.6.

Hasta ahora hemos dedicado un esfuerzo significativo a analizar distintos axio-
mas que describen las preferencias del consumidor, algunas pudieran demostrarse,
pero no lo haremos, con el objetivo de comprender sus implicaciones tanto in-
dividuales como colectivas en la estructura y representación de las preferencias.
Podemos resumir esta discusión de la siguiente manera:

Los axiomas de completitud y transitividad aseguran que el consumidor
puede realizar comparaciones consistentes entre diferentes alternativas.

El axioma de continuidad garantiza la existencia de conjuntos “al menos tan
buenos como” y “no mejores que” con propiedades topológicamente conve-
nientes, desempeñando un rol primordialmente matemático.

Los demás axiomas caracterizan las preferencias del consumidor sobre los
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objetos de su elección. Por lo que se requiere que sus gustos tiendan a la no
satisfacción y algún sesgo a favor del equilibrio del consumo.

1.5.1. La función de utilidad

En la teoría moderna, la función de utilidad es una herramienta para resumir la
información de la relación de preferencia del consumidor. La relación de preferencia
y sus conjuntos asociados son útiles, pero cuando se requieren emplear métodos
de cálculo es más fácil usar la función de utilidad.

Definición 1.26 (Función de utilidad que representa la relación de preferencia
≿). Una función real u : Rn

+ → R es llamada función de utilidad que representa
la relación de preferencia ≿ si, para todo x0,x1 ∈ Rn

+, se cumple que:

u(x0) ≥ u(x1) ⇐⇒ x0 ≿ x1.

En otras palabras una función de utilidad representa la relación de preferencia
del consumidor si asigna números más grandes a las combinaciones de consumo
preferidas, permitiendonos elegir una (esto lo aplicaremos en el capítulo final).

El estudio de las condiciones que debe satisfacer una relación de preferencia
para ser representada por una función de utilidad continua ha sido un tema de gran
interés en la teoría económica. Este problema es fundamental, ya que la posibilidad
de trabajar con una función de utilidad en lugar de la relación de preferencia
misma simplifica considerablemente el análisis en numerosos problemas de teoría
del consumidor.

Desde un punto de vista matemático, el problema consiste en establecer la
existencia de una función de utilidad continua que represente una relación de
preferencia. Cabe aclarar que durante este texto se asumirán condiciones extras
como monotonicidad en las preferencias.

Teorema 1.1. Existencia de una Función Real que representa la relación
de preferencia
Si la relación binaria ≿ es completa, transitiva, continua y estrictamente mo-

nótona, entonces existe una función continua de valores reales u : Rn
+ → R que

representa a ≿.

Vale observar que este resultado es un teorema de existencia. Matemáticamen-
te establece que, bajo las condiciones mencionadas, al menos una función continua
de valores reales que represente la relación de preferencia debe existir. Puede ha-
ber, más de una función de este tipo. Sin embargo, el teorema no indica cuántas
pueden existir ni de qué forma deben tomar. Por lo tanto, si podemos construir al
menos una función que sea continua y represente las preferencias dadas, habremos
probado el teorema. Esta es la estrategia que se debe seguir en la demostración.
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Sin embargo como nuestro enfoque es llegar a un contexto de decisiones bajo incer-
tidumbre no abordaremos esta demostración y este teorema solo será expositivo
en esta tesis, pudiéndose consultar la prueba en ([11]).

Definición 1.27 (Utilidad marginal). Sea u : Rn
+ → R una función de utilidad

continuamente diferenciable que representa las preferencias del consumidor. La
utilidad marginal del bien i en el paquete de consumo x = (x1, . . . , xn) ∈ Rn

+

se define como la derivada parcial de u con respecto a la cantidad consumida del
bien i, esto es:

∂u(x)

∂xi

.

Esta magnitud indica el cambio en el nivel de utilidad del consumidor ante un
incremento infinitesimal en la cantidad del bien i, manteniendo constante el con-
sumo de los demás bienes. Bajo el supuesto de preferencias estrictamente monó-
tonas, esta derivada es estrictamente positiva para casi todos los paquetes x.

Nota 1.2. Una función de utilidad representa las preferencias del consumidor
asignando números a cada paquete de consumo(1.18). Sin embargo, lo único que
importa es tipo que la relación (1.1) nos proporcione números para reflejar cual es
más grande. Por eso, si una función u representa correctamente las preferencias,
cualquier transformación que mantenga el mismo orden, como u3 o u+5, también
lo hará.

Esto significa que la función de utilidad no es única: sólo tiene sentido en térmi-
nos numéricos. Esta propiedad se conoce como invarianza bajo transformaciones
monótonas positivas.

Teorema 1.2. Invarianza de la Función de Utilidad ante Transforma-
ciones Monótonas Positivas
Sea ≿ una relación de preferencia en Rn

+ y supongamos que u(x) es una fun-
ción de utilidad que la representa. Entonces, v(x) también representa ≿ si y solo
si v(x) = f(u(x)) para todo x, donde f : R → R es estrictamente creciente y
continua en el conjunto de valores que toma u.

Al igual que el teorema 1.1 y 1.3 no pondremos una demostración para este
teorema solo lo usaremos de manera expositiva.

Teorema 1.3. Propiedades de las Preferencias y las Funciones de Uti-
lidad Sea ≿ representada por u : Rn

+ → R. Entonces:

1. u(x) es estrictamente creciente si y solo si ≿ es estrictamente monótona.

2. u(x) es cuasiconcava si y solo si ≿ es convexa.

3. u(x) es estrictamente cuasiconcava si y solo si ≿ es estrictamente convexa.
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Estos resultados establecen la conexión entre la estructura matemática de la
función de utilidad y las propiedades de la relación de preferencia que represen-
ta. En particular, la monotonía estricta de u(x) implica que una mejor cesta de
bienes siempre es preferida, la cuasiconcavidad 1.9 refleja la convexidad(1.1) de
las preferencias, y la estricta cuasiconcavidad(1.10) implica una convexidad más
fuerte en la relación de preferencia.

1.6. Diferenciabilidad y la Tasa Marginal de Sus-

titución

Más adelante, vamos a querer analizar problemas utilizando herramientas del
cálculo. Hasta ahora, nos hemos enfocado en la continuidad de la función de uti-
lidad y en las propiedades de la relación de preferencia que la garantizan. La
diferenciabilidad, por supuesto, es una condición más exigente que la continuidad.
Intuitivamente, la continuidad asegura que no haya cambios bruscos en las pre-
ferencias, pero no excluye la posibilidad de “picos” o comportamientos continuos
pero irregulares. La diferenciabilidad, en cambio, elimina tales irregularidades y
garantiza que las curvas de indiferencia sean tanto suaves como continuas.

Por lo tanto, la diferenciabilidad de la función de utilidad requiere una restric-
ción más fuerte sobre las preferencias que la mera continuidad. Al igual que en el
caso del axioma de continuidad, lo que se necesita una condición matemática ade-
cuada. El desarrollo de esta condición sobre la función pudiera parecer impuesta,
pero desde el punto económico pedirle esta condición se sustenta en las adecua-
ciones para modelar el consumo o preferencias del consumidor. Esta explicación
la expone Debreu en 1972 [8]. Para nuestros propósitos en esta tesis, asumiremos
que la representación de la utilidad es diferenciable siempre que sea necesario.

Dado que el análisis de funciones diferenciables introduce un vocabulario espe-
cífico, es útil familiarizarse con él. La derivada parcial de u(x) con respecto a xi se
denomina utilidad marginal(1.27) del bien i. En el caso de dos bienes, definimos la
tasa marginal de sustitución(1.23) del bien 2 por el bien 1 como el valor absoluto
de la pendiente de la curva de indiferencia. Podemos obtener una expresión de
esta tasa en términos de las utilidades marginales de los bienes.

Para verlo, consideremos un paquete de consumo(1.18) x1 = (x1
1, x

1
2). Como

la curva de indiferencia(1.22) que pasa por x1 es una función en el plano (x1, x2),
podemos escribirla como x2 = f(x1)

5. En consecuencia, al variar x1, el paquete

5La curva de indiferencia que pasa por un paquete x1 = (x1
1, x

1
2) representa todas las com-

binaciones de bienes que otorgan el mismo nivel de utilidad que x1. Si la función de utilidad
u(x1, x2) es continua y diferenciable, entonces, en una vecindad cercana a x1, podemos describir
esa curva como una función del tipo x2 = f(x1). Esto significa que, al variar x1, existe un único
valor de x2 que mantiene constante la utilidad, permitiendo trazar la curva como una gráfica en
el plano (x1, x2).

22



Conceptos preliminares 1.6. DIFERENCIABILIDAD Y LA TASA MARGINAL DE SUSTITUCIÓN

(x1, x2) = (x1, f(x1)) traza la curva de indiferencia que pasa por x1. Por lo tanto,
para todo x1:

u(x1, f(x1)) = constante. (1.2)

La tasa marginal de sustitución del bien 2 por el bien 1 (1.23) en el paquete
x1 = (x1

1, x
1
2), denotada por MRS12(x

1
1, x

1
2), se define como el valor absoluto de la

pendiente de la curva de indiferencia en (x1
1, x

1
2).

MRS12(x
1
1, x

1
2) ≡ |f ′(x1

1)| = −f ′(x1
1). (1.3)

Esto dado que f ′ < 06. Ahora bien, como u(x1, f(x1)) es una función constante
en x1, su derivada con respecto a x1 debe ser cero. Es decir,

∂u(x1, x2)

∂x1

+
∂u(x1, x2)

∂x2

f ′(x1) = 0. (1.4)

La tasa marginal de sustitución del bien 2 por el bien 1 en el paquete x1,
denotada MRS12(x

1), se obtiene a partir de las ecuaciones 1.3 y 1.4:

MRS12(x
1) =

∂u(x1)
∂x1

∂u(x1)
∂x2

. (1.5)

De manera similar, si consideramos más de dos bienes, definimos la tasa mar-
ginal de sustitución del bien j por el bien i como el cociente de sus utilidades
marginales:

MRSij(x) ≡
∂u(x)
∂xi

∂u(x)
∂xj

. (1.6)

Cuando las utilidades marginales son estrictamente positivas, la MRSij(x)
también lo es, lo que nos indica la cantidad del bien j que puede intercambiarse
por una unidad del bien i sin alterar la utilidad del consumidor.

6Como las preferencias del consumidor son estrictamente monótonas, si se aumenta la canti-
dad del bien x1, para mantener el mismo nivel de utilidad se debe reducir la cantidad del bien
x2. Por eso, la curva de indiferencia desciende: al aumentar x1, x2 disminuye. Esto implica que la
pendiente f ′(x1) es negativa, es decir, f ′(x1) < 0, ya que la derivada de una función decreciente
siempre es menor que cero.
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Capítulo 2

Teoría del consumidor

Kanu ña Savi sa’a nuu iñu ña ña’ivi.
(Que Dios dé buena y abundante cosecha de milpa)

Región mixteca alta

Hasta ahora, hemos analizado cómo estructurar y representar las preferencias,
pero estas son solo uno de los cuatro elementos fundamentales en la teoría de la
elección del consumidor.

En un nivel abstracto, el consumidor tiene un conjunto de consumo X = Rn
+,

que contiene todas las alternativas de consumo concebibles. Sus inclinaciones y
actitudes hacia estas alternativas se describen mediante la relación de preferencia
definida en Rn

+. Las circunstancias del consumidor limitan las alternativas que
puede alcanzar, y estas se agrupan en un conjunto factible B ⊆ Rn

+. Finalmente,
suponemos que el consumidor está motivado a elegir la alternativa factible más
preferida según su relación de preferencia. Formalmente, el consumidor busca:

x∗ ∈ B tal que x∗ ≿ x para todo x ∈ B. (2.1)

2.1. El problema del consumidor

Para avanzar en el análisis, hacemos los siguientes supuestos, que se manten-
drán a menos que se requiera lo contrario.

Supuesto 2.1. Preferencias del consumidor
La relación de preferencia ≿ del consumidor es completa, transitiva, continua,

estrictamente monótona y estrictamente convexa en Rn
+. Por lo tanto, según los
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Teoremas 1.1 y 1.3 , puede ser representada por una función de utilidad u con va-
lores reales, que es continua, estrictamente creciente y estrictamente cuasicóncava
en Rn

+.

En el caso de dos bienes R2
+ este tipo de preferencias puede representarse

mediante un mapa de indiferencia cuyas curvas de nivel no se interceptan, estric-
tamente convexas alejadas del origen y que crecen en dirección noreste, como se
muestra en la Figura 2.1.

Figura 2.1: Mapa de indiferencia para las preferencias que satisfacen 2.1

Ahora analizaremos las circunstancias del consumidor y estructuraremos el
conjunto factible. Nos enfocamos en un consumidor individual que opera dentro
de una economía de mercado 1.16, definida como un sistema en el que las tran-
sacciones entre agentes se realizan a través de mercados. Se asume que existe un
mercado para cada bien, y que cada bien i tiene un precio pi > 0. Asimismo, se
supone que el consumidor es un agente insignificante en todos los mercados, lo
que significa que su demanda es tan pequeña en comparación con el tamaño del
mercado que no afecta los precios de mercado. Formalmente, se toma el vector de
precios de mercado p ≫ 0 fijo desde el punto de vista del consumidor.

El consumidor cuenta con un ingreso monetario fijo y ≥ 0. Dado que al com-
prar xi unidades del bien i a un precio pi por unidad requiere un gasto de pixi

dólares, pesos o otra cantidad como el numéraire(1.15), la restricción de que el
gasto no supere el ingreso se expresa como

∑n
i=1 pixi ≤ y, o de manera vectorial,

p · x ≤ y. Estas condiciones son el entorno del consumidor que definen la estruc-
tura del conjunto factible B, llamado el conjunto presupuestario, definido de
la siguiente manera:

B = {x | x ∈ Rn
+,p · x ≤ y}. (2.2)
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En el caso particular de dos bienes R2
+, B incluye todos los conjuntos que se

encuentran dentro o sobre los límites de la región sombreada en la Fig 2.2.

Figura 2.2: Conjunto presupuestario B = {x | x ∈ R2
+,p · x ≤ y}.

Vamos a escribir este problema ahora con términos de funciones que resulten
familiares en un contexto matemático.
Bajo el supuesto 2.1, las preferencias del consumidor pueden ser representadas por
una función de utilidad u(x) estrictamente creciente y estrictamente cuasicónca-
va(1.9) definida sobre el conjunto del consumidor Rn

+. Dado que el gasto total no
debe exceder el ingreso (siendo esta una restricción), el problema del consumidor
planteado en (2.1) puede reformularse como el problema de maximización de la
función de utilidad sujeto a la restricción presupuestaria, dando paso a un proble-
ma de optimización. Formalmente, el problema de maximización de utilidad del
consumidor se expresa como:

max
x∈Rn

+

u(x)

s.a. p · x ≤ y.
(2.3)

Nótese que si x∗ es solución de este problema, entonces u(x∗) ≥ u(x) para
todo x ∈ B, lo que implica que x∗ ≿ x para todo x ∈ B. Esto confirma que las
soluciones de (2.3) son, de hecho, soluciones de (2.1) debido a la definición 1.26.

27



Teoría del consumidor 2.1. EL PROBLEMA DEL CONSUMIDOR

Además, el recíproco también es cierto.

Para el caso de dos bienes x ∈ R2
+ tenemos la figura(2.2) de ejemplo del

conjunto presupuestario B = {x | x ∈ R2
+,p · x ≤ y}. donde también se muestra

la restricción presupuestaria.
Dado el anterior problema de maximización del consumidor este tiene una

estructura matemática bien definida. Bajo los supuestos de preferencias, la función
de utilidad u(x) es continua y de valores reales. El conjunto presupuestario B 2.2
es no vacío, pues contiene 0 ∈ Rn

+, recordando que y es mayor o igual que cero
por ser los ingresos, B es cerrado, acotado y, por lo tanto, compacto en Rn. Por
el teorema de Weierstrass ([2],[5]), existe un máximo de u(x) sobre B.

Más aún, como B es convexo y la función objetivo es estrictamente cuasicon-
vexa(1.8), el Maximizador de u(x) sobre B es único. Dado que las preferencias
son estrictamente monótonas, la solución x∗ satisfará la restricción presupuestaria
con igualdad, ubicándose en la frontera del conjunto presupuesto. Por lo tanto,
cuando y > 0 y dado que x∗ ≥ 0, pero x∗ ̸= 0, se sigue que x∗

i > 0 para al menos
un bien i.

Un ejemplo típico de esta solución en el caso de dos bienes se muestra en la
Fig. 2.3.

Figura 2.3: Solución al problema de maximización de la utilidad del consumidor.

Funciones de demanda marshalliana
El vector solución x∗ del problema de maximización del consumidor depende
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de los parámetros p (precios) e y (ingreso). Dado que es único para valores dados
de p e y, podemos ver la solución como una función del conjunto de precios e
ingreso al conjunto de cantidades demandadas, X = Rn

+. De este modo, se suele
expresar como

x∗
i = xi(p, y), i = 1, . . . , n,

o, en notación vectorial,
x∗ = x(p, y).

Estas soluciones se conocen como funciones de demanda ordinaria o funciones de
demanda marshalliana. Si mantenemos fijo el ingreso y los precios de los demás
bienes, el gráfico de la relación entre la cantidad demandada de xi y su propio
precio pi es la curva de demanda estándar del bien i.
En la Fig. 2.4 superior, el consumidor enfrenta los precios p01 y p02 y tiene un
ingreso y0. Las cantidades x1(p

0
1, p

0
2, y

0) y x2(p
0
1, p

0
2, y

0) maximizan la utilidad bajo
esas condiciones. En la Fig.2.4 inferior, si graficamos el precio p01 contra la cantidad
demandada del bien 1 a dicho precio (manteniendo fijo el precio p02 y el ingreso
y0), obtenemos un punto en la curva de demanda marshalliana del bien 1.

Figura 2.4: El problema del consumidor y el comportamiento de la demanda del
consumidor.
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2.2. Análisis de la curva de demanda y condiciones

de Karush-Kuhn-Tucker (KKT)

A continuación veremos las condiciones que generalizan el método de los mul-
tiplicadores de Lagrange de problemas de optimización con restricciones de des-
igualdad conocidas como condiciones de Karush-Kuhn-Tucker (KKT), esto pues
aunque originalmente el crédito debe incluir a William Karush [12], quien las for-
muló en su tesis de 1939, estas condiciones se hicieron ampliamente conocidas a
través del trabajo posterior de Harold W. Kuhn y Albert W. Tucker[13] en 1951,
razón por la cual se les llama comúnmente “condiciones Kuhn-Tucker” en muchos
textos clásicos, especialmente en economía y optimización, para el interés de es-
te texto las llamaremos condiciones de Karush-Kuhn-Tucker (KKT) por nuestro
enfoque matemático. Pero mencionando esto pues es una buena observación en
la relación que tiene el campo de economía con el de matemáticas, sin dejar de
señalar que este es el objetivo de esta tesis de lo cual se pretende dejar testimonio.

A un nivel de ingreso y0 fijo y con el precio p02 del bien 2, si el consumidor
enfrenta un precio p11 < p01 del bien 1, las cantidades x1(p

1
1, p

0
2, y

0) y x2(p
1
1, p

0
2, y

0)
resuelven el problema del consumidor y maximizan la utilidad. Graficando p11
contra la cantidad demandada del bien 1 a ese precio, se obtiene otro punto en
la curva de demanda marshalliana del bien 1. Considerando todos los valores
posibles de p1, se traza la curva de demanda completa del bien 1. Diferentes
niveles de ingreso y precios del bien 2 alterarán la posición y forma de esta curva,
determinada por las propiedades de las preferencias del consumidor.

Si u(x) es diferenciable, podemos usar métodos de cálculo para analizar el
comportamiento de la demanda. Tengamos en mente el problema de maximización
del consumidor(2.3).

Reescribiendo la restricción como p ·x−y ≤ 0 y formando el lagrangiano 1.14,
obtenemos:

L(x, λ) = u(x)− λ[p · x− y].

Asumiendo que la solución x∗ es estrictamente positiva, podemos aplicar las
condiciones KKT para caracterizarla. Si x∗ ≫ 0 resuelve el problema 2.3, entonces,
de acuerdo con el Teorema del ápendice A.7, existe un λ∗ ≥ 0 tal que el par (x∗, λ∗)
satisface las condiciones de Karush-Kuhn-Tucker (KKT):

∂L
∂xi

=
∂u(x∗)

∂xi

− λ∗pi = 0, i = 1, . . . , n (2.4)

p · x∗ − y ≤ 0 (2.5)

λ∗ [p · x∗ − y] = 0 (2.6)
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Ahora, debido a la monotonicidad estricta, la condición 2.5 se cumple bajo la
igualdad [5], de modo que la ecuación 2.6 o ecuación de holgura complementaria
se vuelve redundante. Por lo tanto, estas condiciones se reducen a:

∂L
∂x1

=
∂u(x∗)

∂x1

− λ∗p1 = 0

...
∂L
∂xn

=
∂u(x∗)

∂xn

− λ∗pn = 0

(2.7)

p · x∗ − y = 0 (2.8)

2.3. Solución al problema de maximización

Para el problema de maximización dado por 2.3, existen dos posibilidades:

∇u(x∗) = 0, aunque este caso es poco probable bajo la suposición de estricta
monotonía.

∇u(x∗) ̸= 0, lo cual asumiremos en adelante.

Bajo estricta monotonía, se tiene que ∂u(x∗)
∂xi

> 0 para algún i = 1, . . . , n. Dado
que pi > 0 para todo i, de la condición 2.4 se deduce que el multiplicador de
Lagrange será estrictamente positivo en la solución:

λ∗ =
ui(x

∗)

pi
> 0.

En consecuencia, para todo j:

∂u(x∗)

∂xj

= λ∗pj > 0,

lo que implica que la utilidad marginal es proporcional al precio de cada bien en
el óptimo.

Relación entre bienes. Para dos bienes cualesquiera j y k, podemos combinar
las condiciones y concluir que:

∂u(x∗)
∂xj

∂u(x∗)
∂xk

=
pj
pk

. (2.9)
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Esto indica que, en el óptimo, la tasa marginal de sustitución (MRS) entre dos
bienes es igual a la relación de los precios de dichos bienes.

Caso de dos bienes. En el caso de dos bienes, las condiciones 2.7 exigen que
la pendiente de la curva de indiferencia que pasa por x∗ sea igual a la pendiente
de la restricción presupuestaria, y que x∗ esté sobre la línea presupuestaria, y no
dentro de ella. Esto se muestra en las Figuras 2.3 y 2.4 superior.

Condiciones de optimalidad global. En general, las condiciones 2.7 son ne-
cesarias únicamente para un óptimo local. Sin embargo, en el caso particular de
este problema, estas condiciones de primer orden son también suficientes para
garantizar un óptimo global. Esto es importante señalar formalmente como se
enuncia en el siguiente teorema.

Teorema 2.1 (Suficiencia de las Condiciones de Primer Orden del Consumidor).
Sea u continua y cuasicóncava en Rn

+, sea (p, y) ≫ 0. Si u es diferenciable en x∗

y (x∗, λ∗) ≫ 0 resuelve 2.7, entonces x∗ es solución del problema de maximización
del consumidor a los precios p y nivel de ingreso y.

Demostración: Usaremos el escolio 2.1: Para todo x,x1 ≥ 0, dado que u es
cuasicóncava, se cumple que

∇u(x) · (x1 − x) ≥ 0 siempre que u(x1) ≥ u(x) y u es diferenciable en x.

Ahora, supongamos que ∇u(x∗) existe y (x∗, λ∗) ≫ 0 resuelve 2.7. Entonces,

∇u(x∗) = λ∗p, (2.10)

p · x∗ = y. (2.11)

Si x∗ no maximiza la utilidad, debe existir algún x0 ≥ 0 tal que

u(x0) > u(x∗),

p · x0 ≤ y.

Debido a que u es continua y y > 0, las desigualdades previas implican que

u(tx0) > u(x∗) (2.12)

p · tx0 < y, (2.13)

para algún t ∈ [0, 1] lo suficientemente cercano a uno. Sea x1 = tx0, entonces se
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tiene
∇u(x∗)(x1 − x∗) = (λ∗p) · (x1 − x∗)

= λ∗(p · x1 − p · x∗)

< λ∗(y − y)

= 0.

(2.14)

donde la primera igualdad se sigue de 2.10 y la segunda desigualdad de 2.11 y
2.13. Sin embargo, dado que por 2.12 u(x1) > u(x∗), 2.14 contradice el resultado
establecido al inicio de la demostración.

Con este resultado de suficiencia, basta encontrar una solución (x∗, λ∗) ≫ 0
para 2.7. Nótese que 2.7 es un sistema de n + 1 ecuaciones con n + 1 incógni-
tas desconocidas x∗

1, . . . , x
∗
n, λ

∗. Estas ecuaciones pueden usarse típicamente para
resolver las funciones de demanda xi(p, y), i = 1, . . . , n, como se muestra en el
siguiente ejemplo.

Escolio 2.1. Sea u : Rn → R una función cuasicóncava y diferenciable en x.
Si u(y) ≥ u(x), entonces se cumple:

∇u(x) · (y − x) ≥ 0.

Demostración: Consideremos la función ϕ(t) = u((1− t)x+ ty), que describe el
valor de utilidad a lo largo de la combinación convexa entre x y y, con t ∈ [0, 1]
haciendo esta demostración por pasos.

1. Como u es cuasicóncava(1.9), y dado que u(y) ≥ u(x), se tiene:

ϕ(t) = u((1− t)x+ ty) ≥ u(x) para todo t ∈ [0, 1].

Por tanto, ϕ(t) alcanza un mínimo (local) en t = 0.

2. Como u es diferenciable en x, entonces la función compuesta

ϕ(t) = u((1− t)x+ ty)

es diferenciable respecto a t. Podemos expresar esta función como ϕ(t) =
u(z(t)), donde z(t) = (1− t)x + ty describe el segmento de recta entre x y
y.

Aplicando la regla de la cadena para funciones de varias varibles:

ϕ′(t) = ∇u(z(t)) · z′(t).
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Evaluando en t = 0, obtenemos:

ϕ′(0) = ∇u(z(0)) · z′(0) = ∇u(x) · (y − x).

Esto se debe a que:

z(0) = (1− 0)x+ 0y = x, y z′(t) = −x+ y = y − x.

Así, el valor de la derivada ϕ′(0) representa el cambio instantáneo en la uti-
lidad u cuando nos movemos desde x hacia y, y se calcula como el producto
punto entre el gradiente ∇u(x) y el vector de dirección y − x.

3. Como t = 0 es un mínimo local de ϕ(t), se cumple ϕ′(0) ≥ 01, por lo tanto:

∇u(x) · (y − x) ≥ 0.

Esto completa el resultado

Ejemplo 2.1. Función de utilidad CES(Constant Elasticity of Substitu-
tion)
La función u(x1, x2) = (xρ

1 + xρ
2)

1/ρ, donde 0 < ρ < 1, es conocida como una
función de utilidad CES. Esta función de utilidad representa preferencias estric-
tamente monótonas y estrictamente convexas.

Nota 2.1. La función CES representa preferencias estrictamente monótonas
porque sus derivadas parciales respecto a cada bien son estrictamente positivas
en el dominio R2

++. Sin perdida de generalidad, calculemos la derivada parcial de
u(x1, x2) = (xρ

1 + xρ
2)

1/ρ respecto a x1:

∂u

∂x1

=
1

ρ
(xρ

1 + xρ
2)

1
ρ
−1 · ρxρ−1

1

Dado que ρ < 1, x1 > 0, x2 > 0, y ρ ̸= 0, se concluye que esta expresión es
estrictamente positiva. Por tanto, un incremento en x1 siempre eleva la utilidad,
lo que implica que el bien es deseado. Lo mismo se cumple para la derivada con
respecto a x2, por simetría.

Así, la función satisface el criterio de monotonía estricta en R2
++.

También representa preferencias estrictamente convexas, porque para
0 < ρ < 1, la función es estrictamente cuasicóncava. Esto asegura que toda
combinación convexa de dos canastas indiferentes es estrictamente preferida. Este
resultado es ampliamente conocido en Microeconomía(1.17) y documentado en
textos como [11] u [14].

1Si una función diferenciable alcanza un mínimo local en un punto interior de su dominio,
entonces su derivada en ese punto es cero o positiva.
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El problema del consumidor consiste en encontrar un conjunto de consumo no
negativo que resuelva

max
x1, x2

(xρ
1 + xρ

2)
1/ρ

s.a. p1x1 + p2x2 − y ≤ 0.
(2.15)

Para resolver este problema, primero se forma el Lagrangiano asociado:

L(x1, x2, λ) ≡ (xρ
1 + xρ

2)
1/ρ − λ (p1x1 + p2x2 − y) .

Dado que las preferencias son monótonas, la restricción presupuestaria se manten-
drá con igualdad en la solución. Suponiendo una solución interior, las condiciones
de Kuhn-Tucker coinciden con las condiciones de primer orden ordinarias del La-
grangiano, y las siguientes ecuaciones deben cumplirse en los valores solución x1, x2

y λ:

∂L
∂x1

= (xρ
1 + xρ

2)
(1/ρ)−1 xρ−1

1 − λp1 = 0, (2.16)

∂L
∂x2

= (xρ
1 + xρ

2)
(1/ρ)−1 xρ−1

2 − λp2 = 0, (2.17)

∂L
∂λ

= p1x1 + p2x2 − y = 0. (2.18)

Reordenando las ecuaciones 2.16 y 2.17, dividiendo la primera por la segunda
y reordenando, podemos reducir las tres ecuaciones con tres incógnitas a solo dos
ecuaciones en las dos incógnitas de interés, x1 y x2:

x1 = x2

(
p1
p2

)1/(ρ−1)

(2.19)

y = p1x1 + p2x2. (2.20)

Primero, sustituimos 2.19 en 2.20 para obtener una ecuación solo en términos
de x2:

y = p1x2

(
p1
p2

)1/(ρ−1)

+ p2x2 = x2

[
p
ρ/(ρ−1)
1 + p

ρ/(ρ−1)
2

]
p
−1/(ρ−1)
2 . (2.21)

Resolviendo 2.21 para x2, obtenemos:

x2 =
p
1/(ρ−1)
2 y

p
ρ/(ρ−1)
1 + p

ρ/(ρ−1)
2

. (2.22)

Para x1, sustituimos 2.22 en 2.19:
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x1 =
p
1/(ρ−1)
1 y

p
ρ/(ρ−1)
1 + p

ρ/(ρ−1)
2

. (2.23)

Las ecuaciones 2.22 y 2.23, que son las soluciones al problema del consumidor
2.15, corresponden a las funciones de demanda marshallianas del consumidor. Si
definimos el parámetro r = ρ/(ρ− 1), podemos simplificar estas expresiones:

x1(p, y) =
pr−1
1 y

pr1 + pr2
, (2.24)

x2(p, y) =
pr−1
2 y

pr1 + pr2
. (2.25)

Estas soluciones dependen únicamente de los parámetros p1, p2 y y. Cambios
en los precios y el ingreso, a través de 2.24 y 2.25, generarán diferentes cantidades
demandadas de cada bien. Por ejemplo, en la Figura 2.5, con precios p̄1, p̄2 e
ingreso ȳ, las soluciones al problema del consumidor serán las cantidades x̄1 y
x̄2. El par (p1, x1(p1, p̄2, ȳ)) será un punto en una de las curvas de demanda del
consumidor para el bien x1.

2.4. Propiedades de la función de demanda x(p, y)

La función de demanda x(p, y), obtenida del problema de maximización del
consumidor, satisface ciertas propiedades importantes. Hemos realizado suficien-
tes supuestos para garantizar, mediante el Teorema A.8 (teorema del máximo),
que x(p, y) es continua en Rn

+. Sin embargo, generalmente requeriremos algo más:
deseamos considerar las pendientes de las curvas de demanda y, por tanto, nece-
sitamos que x(p, y) sea diferenciable.

36



Teoría del consumidor 2.4. PROPIEDADES DE LA FUNCIÓN DE DEMANDA x(p, y)

Figura 2.5: Demanda del consumidor cuando hay preferencias representadas por
una función de utilidad CES.

A partir de este punto, asumiremos que x(p, y) es diferenciable siempre que
sea necesario para nuestros análisis. Aunque no probaremos este resultado, va-
le observar la nota 2.2, ya que es importante señalar que esta diferenciabilidad
implica ciertas condiciones adicionales sobre la función.

Nota 2.2. En particular, asumimos que x(p, y) es diferenciable porque este su-
puesto permite estudiar cómo responden las cantidades demandadas a pequeños
cambios en los precios y el ingreso, a través del uso de derivadas parciales. La di-
ferenciabilidad es una propiedad técnica útil que facilita el análisis de propiedades
como la elasticidad precio de la demanda, la convexidad de las curvas de deman-
da y los efectos de sustitución e ingreso. Además, bajo ciertos supuestos regulares
sobre la función de utilidad (como continuidad, diferenciabilidad y condiciones
de segundo orden), puede demostrarse que la solución óptima varía suavemen-
te con los parámetros del problema, lo que justifica este supuesto en contextos
económicos bien comportados.
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Capítulo 3

La función de utilidad von Neumann-
Morgenstern

Ityi kani kuu ñuu.
(Camino largo hacia nuestro pueblo)

Región mixteca baja

3.1. Incertidumbre

Hasta ahora, hemos asumido que los agentes encargados de la toma de deci-
siones actúan en un mundo de certeza absoluta. El consumidor conoce los precios
de todos los bienes y sabe que cualquier combinación de consumo factible pue-
de obtenerse con certeza. Sin embargo, en el mundo real estas condiciones no se
tienen. Muchas decisiones económicas tienden a tomarse bajo incertidumbre. Por
ejemplo, al asegurar un automóvil, el consumidor debe considerar el precio futuro
de la gasolina, los gastos en reparaciones, mantenimientos, pago de tenencias y el
valor de reventa del automóvil varios años después; ninguno de estos factores se
conoce con certeza en el momento de tomar la decisión. Decisiones como esta im-
plican incertidumbre sobre el resultado de la elección realizada. Aunque un agente
que toma decisiones puede conocer las probabilidades de diferentes resultados po-
sibles, el resultado final de la decisión no puede saberse hasta que ocurra.
Antes de pasar al problema de modelar la incertidumbre, es bueno observar que
en todo el capítulo dos no se definió formalmente un
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Definición 3.1 (Agente racional). Un agente racional es un individuo que toma
decisiones siguiendo un comportamiento sistemático. De acuerdo con la teoría de
la elección racional, un agente racional:

1. Tiene objetivos bien definidos (como maximizar su utilidad, beneficio o bien-
estar).

2. Elige entre alternativas disponibles comparando sus costos y beneficios, dados
sus recursos limitados (como tiempo, ingreso o información).

3. Toma decisiones de manera consistente, con base en la mejor información
disponible, buscando siempre maximizar su ganancia neta o minimizar sus
pérdidas.

Este concepto es central en la teoría económica, pues permite predecir el com-
portamiento de consumidores, empresas y otros agentes bajo distintas restricciones
y escenarios. En particular, supone que los individuos responden a incentivos, y
que sus elecciones reflejan un cálculo racional de ventajas relativas entre opciones.
Pero vale observar que en muchas ocasiones los individuos no toman las decisiones
de manera lógica y consistente sino que toman decisiones de manera impulsiva.

Nota 3.1. Ejemplo: Supongamos que un consumidor entra a una tienda con $100
disponibles. Este agente racional:

Sabe qué productos prefiere y en qué orden (por ejemplo, prefiere unas
manzanas a unas naranjas o una combinación de ambos y si esta elección es
indiferente a otra combinación).

Compara precios y sabe que no puede gastar más de $100, esto es una
restricción.

Elige la combinación de productos que le proporciona mayor satisfacción sin
exceder su presupuesto.

Este comportamiento refleja una toma de decisiones lógica y consistente,
que es precisamente lo que caracteriza a un agente racional en economía.

En un principio, la incertidumbre puede parecer algo complicado de entender
o resolver. Sin embargo, la teoría económica ha encontrado formas útiles de estu-
diarla. Una de las ideas más importantes para analizar decisiones cuando no se
sabe con certeza qué pasará fue desarrollada por von Neumann y Morgenstern en
1944, esto también marca una unión de áreas ya que un investigador era matemá-
tico y otro por su parte era economista y su enfoque en conjunto pudo modelar
un problema de la vida real al sentido matemático para darle una solución con
las herramientas que se tienen. Su propuesta ayuda a entender cómo las personas
pueden tomar decisiones cuando enfrentan distintos posibles resultados[16].
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Definición 3.2 (Incertidumbre). En teoría económica, incertidumbre se refiere
a una situación en la que los resultados futuros de las decisiones de un agente no
son conocidos con certeza, sino que están asociados a distintas probabilidades. Es
decir, el agente enfrenta un conjunto de posibles estados del mundo, cada uno con
una probabilidad asignada, pero desconoce de antemano cuál ocurrirá realmente.

Esta noción permite modelar decisiones bajo riesgo, en donde las preferencias
del agente se representan a través de funciones de utilidad esperada.

Para la Probabilidad en el área Matemática([10]) incertidumbre se refiera
a no saber con certeza el resultado de un experimento aleatorio, asignando a cada
evento posible de un espacio muestral un valor numérico.

3.2. Preferencias

Anteriormente en esta tesis, se asumió que el consumidor tenía una relación
de preferencia definida sobre algún conjunto de consumo R2

+. Para incorporar la
incertidumbre, necesitamos cambiar ligeramente nuestra perspectiva. Mantendre-
mos la noción relación de preferencia, pero, en lugar de conjuntos de consumo,
asumiremos que el individuo tiene una relación de preferencia definida sobre juegos
de azar.

Necesitamos ver las siguientes definiciones y notaciones.
Denotamos por G al conjunto de todos los juegos de azar. Si g ∈ G es un juego
cualquiera, entonces puede escribirse como

g = (p1 ◦ g1, . . . , pk ◦ gk) ,

donde g1, . . . , gk ∈ G también son juegos de azar (simples o compuestos), los
coeficientes p1, . . . , pk son no negativos y suman 1, es decir,

∑k
i=1 pi = 1. En otras

palabras, g representa un sorteo que con probabilidad pi conduce a jugar el juego
gi, el cual puede ser compuesto.

Para formalizar esto, sea A = {a1, . . . , an} un conjunto finito de resultados. Los
ai pueden ser conjuntos de consumo, cantidades de dinero (positivas o negativas).
Lo importante es que los ai no tengan incertidumbre en sí mismos. Por otro lado,
utilizaremos el conjunto A como base para crear juegos de azar.

Por ejemplo, sea A = {1,−1}, donde 1 representa el resultado de “ganar un
dólar” y −1 el resultado de “perder un dólar”. Supongamos que se ha realizado
la siguiente apuesta con un amigo: si el lanzamiento de una moneda justa resulta
en cara, él te paga un dólar; si resulta en cruz, tú le pagas un dólar. Desde tu
perspectiva, este juego de azar tendrá como resultado uno de los dos resultados
en A: ganar un dólar (1) o perder un dólar (−1), y cada uno ocurre con una
probabilidad de 1

2
, dado que la moneda es justa.

De manera más general, un juego de azar simple asigna una probabilidad pi a
cada uno de los resultados ai en A. Por supuesto, dado que los pi son probabili-
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dades, deben ser no negativos, y la suma de los pi debe ser igual a uno, ya que el
juego debe resultar en algún resultado en A. Denotamos este juego de azar simple
como (p1 ◦ a1, . . . , pn ◦ an). Definimos el conjunto de juegos de azar simples GS

como sigue:

Definición 3.3 (Apuestas Simples). Sea A = {a1, a2, . . . , an} el conjunto de re-
sultados posibles. El conjunto de apuestas simples GS, definido sobre A, se expresa
como:

GS ≡ {(p1 ◦ a1, . . . , pn ◦ an) | pi ≥ 0,
n∑

i=1

pi = 1}.

Cuando alguno de los pi es igual a cero, es habitual omitir estos componentes para
simplificar la notación. Por ejemplo, la apuesta (α ◦ a1, 0 ◦ a2, . . . , 0 ◦ an−1, (1 −
α) ◦ an) puede escribirse como (α ◦ a1, (1− α) ◦ an). Es importante notar que GS

contiene a A, ya que para cada i, la apuesta (1◦ai), que produce ai con probabilidad
uno, pertenece a GS. Para simplificar aún más, denotaremos ai en lugar de (1◦ai)
cuando el resultado ai sea garantizado con certeza.

Definición 3.4 (Apuesta compuesta). Una apuesta compuesta es un juego de
azar en el que los premios no son directamente resultados finales, sino otros juegos
de azar. Es decir, si g ∈ G es una apuesta compuesta, entonces puede expresarse
como

g = (p1 ◦ g1, . . . , pk ◦ gk),

donde cada gi ∈ G es a su vez un juego (posiblemente compuesto), y pi ≥ 0 con∑k
i=1 pi = 1. En este contexto, g representa un sorteo que, con probabilidad pi,

lleva a jugar el juego gi.

Volvamos al ejemplo del lanzamiento de una moneda, donde el conjunto de
resultados es A = {1,−1}. En este caso, el agente se enfrenta a un juego de azar
simple de la forma

(
1
2
◦ 1, 1

2
◦ −1

)
, es decir, una lotería que paga 1 con probabilidad

1
2

y paga −1 con probabilidad 1
2
. No todos los juegos de azar son simples: por

ejemplo, en algunas loterías nacionales los premios pueden consistir en boletos
para participar en futuras loterías. Este tipo de situaciones corresponde a juegos
de azar compuestos, los cuales, por simplicidad, no serán considerados en este
trabajo, solo para las demostraciones.

En este contexto, los objetos de elección del agente son los juegos de azar.
Siguiendo el enfoque adoptado en la teoría del consumidor, supondremos que el
agente tiene una relación de preferencias ≿ definida sobre G, que describe su
forma de comparar y elegir entre distintos juegos. Como antes, denotamos por
∼ la relación de indiferencia inducida por ≿, y por ≻ la relación de preferencia
estricta.

A continuación, presentaremos los axiomas fundamentales conocidos como
axiomas de preferencia bajo incertidumbre. Los primeros axiomas serán
muy similares a los del capítulo dos.
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Axioma 3.1. Completitud. Para cualquier par de apuestas g y g′ en G, se
cumple que g ≿ g′ o g′ ≿ g.

Axioma 3.2. Transitividad. Para cualquier tres apuestas g, g′ y g′′ en G, si
g ≿ g′ y g′ ≿ g′′, entonces g ≿ g′′.

Axioma 3.3. Continuidad. Para cualquier apuesta g en G, existe una probabi-
lidad α ∈ [0, 1] tal que g ∼ (α ◦ a1, (1− α) ◦ an).

Axioma 3.4. Monotonicidad. Para todas las probabilidades α, β ∈ [0, 1], se
cumple que

(α ◦ a1, (1− α) ◦ an) ≿ (β ◦ a1, (1− β) ◦ an) si y solo si α ≥ β.

Axioma 3.5. Sustitución. Si g = (p1 ◦g1, . . . , pk ◦gk) y h = (p1 ◦h1, . . . , pk ◦hk)
son apuestas en G, y gi ∼ hi para todo i, entonces g ∼ h.

Para definir el siguiente axioma necesitamos una definición antes, nos apoya-
remos con las definiciones que ya llevamos en este capítulo.

Definición 3.5 (Apuesta simple inducida). Dado un juego de azar g ∈ G, la
apuesta simple inducida por g es una lotería de la forma:

(p1 ◦ a1, . . . , pn ◦ an),

donde cada ai ∈ A es un resultado final, y cada pi es la probabilidad efectiva
de que el resultado ai ocurra al jugar g, considerando todas las etapas posibles
en caso de que g sea un juego compuesto. Esta apuesta simple tiene la misma
distribución de probabilidades sobre los resultados finales que g, y según el axioma
3.6, es indiferente a g, es decir, g ∼ (p1 ◦ a1, . . . , pn ◦ an).

Axioma 3.6. Reducción a Apuestas Simples. Para cualquier apuesta g ∈ G,
si (p1 ◦ a1, . . . , pn ◦ an) es la apuesta simple inducida por g, entonces g ∼ (p1 ◦
a1, . . . , pn ◦ an).

Nota 3.2. En el contexto de la teoría de utilidad bajo incertidumbre, es impor-
tante distinguir entre los distintos niveles de objetos involucrados en los juegos de
azar:

Los ai representan resultados finales o desenlaces básicos, como obtener
una cantidad fija de dinero (por ejemplo, ai = $100). Son los elementos del
conjunto de resultados A.

Los gi son juegos de azar, es decir, loterías que pueden ser simples o
compuestas. En un juego compuesto, jugar g puede llevar, con cierta proba-
bilidad, a jugar uno de estos gi como sub-juego.
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Los wi denotan cantidades monetarias que el agente recibe si ocurre el
resultado ai. Se trata de variables cuantitativas asociadas a los desenlaces.

Por ejemplo, en una apuesta compuesta g = (p1 ◦ g1, . . . , pk ◦ gk), con gi =
(αi ◦ a1, (1−αi) ◦ an), primero se selecciona con probabilidad pi uno de los juegos
gi, y luego este juego produce un desenlace específico aj, el cual a su vez genera
una cantidad monetaria wj.

Un matemático riguroso podría haber notado que el axioma 3.1 no se ocupa
para la demostración del Teorema 3.1. Esto se debe a que este axioma es con-
secuencia del resto de axiomas, vale observar el escolio 3.1. Consecuentemente,
podríamos haber procedido sin mencionar explícitamente la completitud. Sin em-
bargo, asumir transitividad sin completitud generaría confusión. Para evitar ese
tipo de discusión, optamos por el enfoque presentado.

Escolio 3.1. Supóngase que ≿ es una relación binaria sobre apuestas en G que
satisface los Axiomas 3.2 (Transitividad), 3.3 (Continuidad) y 3.4 (Monotonía).
Entonces ≿ también satisface el Axioma 3.1(Completitud)1 .

Demostración: Sea g, g′ ∈ G dos juegos de azar arbitrarios. Por el Axioma 3.3
(Continuidad), existen probabilidades α, β ∈ [0, 1] tales que:

g ∼ (α ◦ a1, (1− α) ◦ an) y g′ ∼ (β ◦ a1, (1− β) ◦ an). (3.1)

Por tanto, para comparar g y g′, basta comparar las loterías (α◦a1, (1−α)◦an)
y (β ◦ a1, (1− β) ◦ an).

Por el axioma 3.4 (Monotonía), se cumple por un lado asumiendo α ≥ β:

(α ◦ a1, (1− α) ◦ an) ≿ (β ◦ a1, (1− β) ◦ an) si y solo si α ≥ β.

De aquí que (α ◦ a1, (1− α) ◦ an) ≿ (β ◦ a1, (1− β) ◦ an)
Por 3.1 y transitividad (axioma 3.2) se sigue que g ≿ g′

De manera similar, asumiendo β ≥ α, por el axioma 3.4

(β ◦ a1, (1− β) ◦ an) ≿ (α ◦ a1, (1− α) ◦ an) si y solo si β ≥ α.

De aquí que (β ◦ a1, (1− β) ◦ an) ≿ (α ◦ a1, (1− α) ◦ an)
Por 3.1 y transitividad (axioma 3.2) se sigue que g′ ≿ g
Por lo tanto

g ≿ g′ o bien g′ ≿ g.

Esto demuestra que ≿ es completa.

1Note que este axioma nos puede parecer familiar al orden en los números reales o como su
nombre lo indica a la completitud en los números reales.
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Definición 3.6 (Nivel de riqueza). En el contexto de la teoría de utilidad bajo
incertidumbre, el nivel de riqueza wi representa la cantidad de recursos mo-
netarios que un agente económico tendrá si ocurre el estado del mundo i, donde
i ∈ {1, 2, . . . , n}. Estos niveles de riqueza están asociados a los distintos resultados
posibles de una lotería o decisión incierta.

Por su parte, w0 denota el nivel de riqueza inicial o actual del agente antes de
que ocurra la resolución de la incertidumbre, es decir, antes de que se sepa cuál
estado del mundo se realizará.

Note ahora que podemos tomar la siguiente definición para una lotería donde
no se toma ningún riesgo, es decir que no existe una función que altere el nivel de
riqueza wi.

Definición 3.7 (Valor esperado de un juego de azar simple). El valor esperado
de un juego de azar simple g, o valor esperado monetario (VEM), que otorga wi

con probabilidad pi, está dado por:

E(g) =
n∑

i=1

piwi.

3.3. Utilidad von Neumann-Morgenstern

Una vez que hemos establecido los axiomas que deben cumplir las preferencias
sobre juegos de azar, nos preguntamos si es posible representarlas mediante una
función de utilidad, como se hizo en el caso de elecciones bajo certeza en el capítulo
dos. La respuesta es que sí, y no debería sorprendernos. Lo cual tiene sentido ya
que si una relación de preferencia cumple ciertas las condiciones mencionadas
antes como completitud, transitividad y continuidad es posible representarla con
una función real y continua.

Sin embargo, en el contexto de decisiones bajo incertidumbre, hemos asumido
axiomas adicionales. Esto nos permite obtener una función de utilidad que no
solo sea continua, sino también linealen las probabilidades. Es decir, su valor
dependerá de los desenlaces posibles y de las probabilidades con que ocurren, de
forma que cada juego de azar se evalúa mediante una media ponderada de las
utilidades de sus resultados.

Formalmente, si u : G → R representa las preferencias del agente sobre el
conjunto de juegos de azar G, entonces u(g) es el valor de utilidad asignado al juego
g. En particular, para cada desenlace seguro ai, consideramos el juego degenerado
(1 ◦ ai), y denotamos su utilidad como u(ai).

Estamos ahora preparados para describir la propiedad de linealidad mencio-
nada anteriormente.

Definición 3.8 (Propiedad de utilidad esperada). Una función de utilidad u :
G → R tiene la propiedad de utilidad esperada si, para cada apuesta g ∈ G, se
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cumple:

u(g) =
n∑

i=1

piu(ai),

donde (p1 ◦ a1, . . . , pn ◦ an) es la apuesta simple inducida por g, y u(ai) representa
la utilidad del resultado ai.

Decir que una función u cumple con la propiedad de utilidad esperada
significa que el valor que asigna a un juego de azar es el promedio ponderado
de las utilidades de sus posibles desenlaces. Cada utilidad se multiplica por la
probabilidad con la que ocurre su desenlace correspondiente. En otras palabras, si
un juego puede dar como resultado el desenlace ai con probabilidad pi, entonces
la utilidad esperada de ese juego es la suma de cada u(ai) ponderada por pi, es
decir, por su probabilidad efectiva.

Si u tiene la propiedad de utilidad esperada y gs = (p1 ◦ a1, . . . , pn ◦ an) es un
juego de azar simple, entonces, se cumple que:

u(p1◦a1, . . . , pn◦an) =
n∑

i=1

piu(ai), para todo vector de probabilidad (p1, . . . , pn).

Con todo lo anterior, la función u queda completamente determinada en todo G
por los valores que asume sobre el conjunto finito de desenlaces A.

Si las preferencias de un individuo son representadas por una función de uti-
lidad que posee la propiedad de utilidad esperada(3.8), y si esta persona siempre
elige la alternativa más preferida en A, entonces ese individuo elegirá un juego de
azar sobre otro si, y solo si, la utilidad esperada del primero supera a la del segun-
do. Por lo tanto, dicho individuo es un Maximizador de utilidad esperada.

Una función con la propiedad de utilidad esperada resulta muy útil, ya que
nos permite calcular fácilmente la utilidad de cualquier juego de azar sumando
las utilidades de los posibles desenlaces, cada una ponderada por su probabilidad.
Sin embargo, esta propiedad es más exigente que la que pedimos en situaciones
sin incertidumbre. Por eso, cuando una función cumple con esta propiedad, la
llamamos función de utilidad de von Neumann-Morgenstern (VNM).
Lema 1 (Unicidad de la probabilidad de indiferencia). Sea g ∈ G un juego de
azar. Si existen α, β ∈ [0, 1] tales que

g ∼ (α ◦ a1, (1− α) ◦ an) y g ∼ (β ◦ a1, (1− β) ◦ an),

entonces se tiene necesariamente que α = β. Es decir, la probabilidad de indife-
rencia de g es única.
Demostración: Supongamos, por contradicción, que existen dos probabilidades
distintas α ̸= β tales que:

g ∼ (α ◦ a1, (1− α) ◦ an) y g ∼ (β ◦ a1, (1− β) ◦ an).
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Sin pérdida de generalidad, supongamos que α > β. Entonces, por la transi-
tividad del axioma 3.2, tenemos:

(α ◦ a1, (1− α) ◦ an) ∼ (β ◦ a1, (1− β) ◦ an).

Ahora, aplicando el axioma 3.4 de monotonicidad, que establece que:

(α ◦ a1, (1− α) ◦ an) ≻ (β ◦ a1, (1− β) ◦ an) si α > β.

Esto contradice la suposición de que ambos juegos son indiferentes. Por tanto,
no puede haber dos valores distintos α ̸= β que cumplan:

g ∼ (α ◦ a1, (1− α) ◦ an) y g ∼ (β ◦ a1, (1− β) ◦ an).

Concluimos entonces que α = β, es decir, la probabilidad de indiferencia es
única, como se quería demostrar.

A continuación, presentamos un teorema fundamental en la teoría de elección
bajo incertidumbre.

Teorema 3.1. Existencia de una Función de Utilidad VNM en G
Sea una relación de preferencias ≿ sobre juegos de azar en G que satisfaga los
axiomas 3.1 a 3.6. Entonces, existe una función de utilidad u : G → R que
representa ≿ en G, y dicha función posee la propiedad de utilidad esperada.

Demostración: Para esta demostración la haremos de manera constructiva. Sea
un juego de azar arbitrario g de G. Definimos u(g) como el número que satisface:

g ∼ (u(g) ◦ a1, (1− u(g)) ◦ an).

Por el Axioma 3.3, dicho número debe existir, y se demuestra en el lema 1 que, por
el Axioma 3.4, este número es único. Esto define una función real u en G.(Note
que, por definición, u(g) ∈ [0, 1] para todo g2).

Resta probar que u representa ≿, y que posee la propiedad de utilidad espe-
rada(3.8). Comenzaremos con la primera de estas propiedades.

Sean g, g′ ∈ G juegos de azar arbitrarios. Afirmamos que las siguientes equi-
valencias son ciertas:

g ≿ g′ (3.2)

si y solo si

(u(g) ◦ a1, (1− u(g)) ◦ an) ≿ (u(g′) ◦ a1, (1− u(g′)) ◦ an) (3.3)
2u(g) ∈ [0, 1] para todo g ∈ G, ya que representa la probabilidad asignada al mejor resultado

a1 en una lotería binaria del tipo (α ◦ a1, (1 − α) ◦ an) con la cual el individuo es indiferente
frente al juego g. Dado que α es una probabilidad, debe pertenecer al intervalo [0, 1].
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si y solo si
u(g) ≥ u(g′) (3.4)

En efecto, note que ( 3.2) ⇐⇒ ( 3.3) debido a la transitividad de ≿, y dado
que g ∼ (u(g) ◦ a1, (1− u(g)) ◦ an) y g′ ∼ (u(g′) ◦ a1, (1− u(g′)) ◦ an), ambas por
la definición de u. Además, (3.3 ) ⇐⇒ (3.4 sigue directamente de la monotonía
(Axioma 3.4).

Para completar la demostración, debemos probar que u posee la propiedad
de utilidad esperada. Sea g ∈ G un juego de azar arbitrario, y sea gs ≡ (p1 ◦
a1, . . . , pn ◦ an) ∈ GS el juego de azar simple asociado. Debemos mostrar que:

u(g) =
n∑

i=1

piu(ai).

Dado que por 3.6 se tiene que g ∼ gs, y dado que u representa ≿, debe cumplirse
que u(g) = u(gs). Por lo tanto, es suficiente demostrar que:

u(gs) =
n∑

i=1

piu(ai). (3.5)

Para cada i = 1, . . . , n, por definición, u(ai) satisface:

ai ∼ (u(ai) ◦ a1, (1− u(ai)) ◦ an). (3.6)

Sea qi el juego de azar simple en el lado derecho de 3.6. Es decir, qi ≡ (u(ai) ◦
a1, (1− u(ai)) ◦ an) para todo i = 1, . . . , n. En consecuencia, qi ∼ ai para todo i,
por lo que, aplicando el axioma de sustitución 3.5:

g′ ≡ (p1 ◦ q1, . . . , pn ◦ qn) ∼ (p1 ◦ a1, . . . , pn ◦ an) = gs. (3.7)

Queremos encontrar el juego de azar simple que resulta de g′. Como cada qi solo
puede dar como resultado a1 o an, entonces g′ también terminará en uno de esos
dos. La probabilidad de que ocurra a1 es la siguiente: para cada i, se necesita que
ocurra qi (lo cual pasa con probabilidad pi) y que dentro de ese qi, se obtenga a1,
lo que ocurre con probabilidad u(ai). Así, en total, la probabilidad de que ocurra
a1 es piu(ai) para cada i, y sumando sobre todos los i, obtenemos la probabilidad
total:

n∑
i=1

piu(ai).

De manera similar, la probabilidad efectiva de que an ocurra es 1−
∑n

i=1 piu(ai).
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Por lo tanto, g′ es equivalente al juego de azar simple:

g′s ≡

(
n∑

i=1

piu(ai) ◦ a1,

(
1−

n∑
i=1

piu(ai)

)
◦ an

)
.

Por el axioma de reducción 3.6, debe cumplirse que g′ ∼ g′s. Sin embargo, la
transitividad de ∼, junto con la ecuación (3.7), implica que:

gs ∼

(
n∑

i=1

piu(ai) ◦ a1,

(
1−

n∑
i=1

piu(ai)

)
◦ an

)
. (3.8)

Sin embargo, por definición y el lema 1, u(gs) es el único número que satisface:

gs ∼ (u(gs) ◦ a1, (1− u(gs)) ◦ an). (3.9)

Por lo tanto, de (3.8) y (3.9, concluimos que:

u(gs) =
n∑

i=1

piu(ai),

como se deseaba probar.

La conclusión del Teorema 3.1 es la siguiente: si las preferencias de un individuo
sobre juegos de azar satisfacen los Axiomas 3.1 a 3.6, entonces existen números de
utilidad que pueden ser asignados a los resultados en A de forma que el individuo
prefiera un juego sobre otro si y solo si el primero tiene una utilidad esperada
mayor que el segundo.

El Teorema 3.1 no solo nos dice que existe una función de utilidad con la
propiedad de utilidad esperada (3.8), sino que también explica cómo construirla
en la práctica.

Para encontrar la utilidad de un resultado ai, basta con preguntarle al agente
económico qué probabilidad del mejor resultado lo haría indiferente entre una
apuesta del tipo (α ◦ a1, (1− α) ◦ an) y recibir ai con certeza.

Si hacemos esta misma pregunta para cada resultado en A, entonces ya pode-
mos calcular la utilidad de cualquier juego g ∈ G como el valor esperado de esas
utilidades. Siempre que las preferencias del agente cumplan con los axiomas 3.1 al
3.6, el teorema asegura que esa función representa correctamente sus preferencias.

Ejemplo 3.1 (Construcción de una función de utilidad VNM). Supongamos que
A = {$10, $4,−$2}, donde cada valor representa miles de dólares. Es razonable
asumir que el mejor resultado es $10 y el peor es −$2.

Para construir la función de utilidad VNM utilizada en la demostración del
Teorema 3.1, primero debemos determinar las probabilidades de indiferencia aso-

49



La función de utilidad von Neumann-Morgenstern 3.3. UTILIDAD VON NEUMANN-MORGENSTERN

ciadas a cada uno de los tres resultados. Esto se logra componiendo apuestas que
ofrecen $10 y −$2 con probabilidades desconocidas que suman 1. Luego, se le
pregunta al individuo: ¿Qué probabilidad para el mejor resultado te haría indi-
ferente entre la apuesta compuesta y el resultado ai con certeza? Las respuestas
obtenidas serán los valores de utilidad asignados a cada resultado. Supongamos
que encontramos lo siguiente:

$10 ∼ (1 ◦ $10, 0 ◦ −$2), por lo que u($10) ≡ 1. (3.10)

$4 ∼ (0.6 ◦ $10, 0.4 ◦ −$2), por lo que u($4) ≡ 0.6 (3.11)

−$2 ∼ (0 ◦ $10, 1 ◦ −$2), por lo que u(−$2) ≡ 0. (3.12)

Nota 3.3. La utilidad asignada al resultado intermedio $4, es decir u($4) = 0.6,
se determina con base en una pregunta clave al individuo: ¿Qué probabilidad de
obtener el mejor resultado ($10) te haría indiferente entre una apuesta entre $10
y -$2, y recibir $4 con certeza?

Si la persona responde que se siente indiferente cuando la probabilidad de
obtener $10 es 0.6 (y de -$2 es 0.4), entonces se establece, por construcción de la
función de utilidad de von Neumann-Morgenstern, que:

$4 ∼ (0.6 ◦ $10, 0.4 ◦ −$2),

y por lo tanto:
u($4) = 0.6.

Este valor refleja la disposición del individuo a aceptar riesgo: cuanto más alto
sea u($4), mayor será su aversión al riesgo. Un valor de utilidad cercano a 1 para
$4 indica que el individuo prefiere la seguridad de ese monto frente a una apuesta
riesgosa, mientras que un valor bajo sugiere mayor disposición a aceptar riesgo. La
función de utilidad VNM se construye a partir de estas indiferencias observadas
o declaradas, por lo que estos valores no se derivan matemáticamente, sino que
se asignan empíricamente o mediante juicio informado del comportamiento del
agente.

Es importante destacar que, bajo este mapeo, la utilidad del mejor resultado
siempre será 1 y la del peor resultado siempre será 0. Sin embargo, la utilidad
asignada a resultados intermedios, como $4 en este caso, dependerá de la actitud
del individuo hacia el riesgo.

Una vez obtenidos los valores de utilidad para cada resultado, tenemos toda
la información necesaria para clasificar todas las apuestas que los involucren. Por
ejemplo, consideremos las siguientes apuestas:

g1 ≡ (.2 ◦ $4, .8 ◦ $10) (3.13)

g2 ≡ (.07 ◦ −$2, .03 ◦ $4, .9 ◦ $10) (3.14)
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Este enfoque permite modelar y analizar las decisiones bajo incertidumbre, in-
tegrando conceptos de la teoría de la utilidad esperada de von Neumann-Morgenstern.

Asumiendo que las preferencias del individuo sobre las apuestas satisfacen los
axiomas 3.1 a 3.6, podemos recurrir al Teorema 3.1. Este teorema nos indica
que solo necesitamos calcular la utilidad esperada de cada apuesta, utilizando los
valores de utilidad generados en (3.10) a ( 3.12), para determinar cuál es preferida.
Al hacer estos cálculos, obtenemos:

u(g1) = 0.2u($4) + 0.8u($10)

= 0.2(0.6) + 0.8(1) = 0.92

u(g2) = 0.07u(−$2) + 0.03u($4) + 0.9u($10)

= 0.07(0) + 0.03(0.6) + 0.9(1) = 0.918

Dado que g1 tiene una mayor utilidad esperada, debe ser la apuesta preferida.
De manera similar, utilizando solo los valores de utilidad generados en (3.10)
a (3.12), podemos clasificar cualquier cantidad infinita de apuestas que podrían
construirse a partir de los tres resultados en A.

Analizando sobre la información que hemos descubierto en este ejemplo. Al
comparar $4 con certeza y la apuesta mejor–peor en (3.11), notamos que la apuesta
g ofrecida tiene un valor esperado de E(g) = 0.6($10) + 0.4(−$2) = $5.2. Este
valor supera el $4 que obtendría con certeza, pero el individuo es indiferente
entre ambas opciones. Dado que asumimos que sus preferencias son monótonas,
podemos concluir que preferiría estrictamente $4 con certeza a cualquier apuesta
mejor–peor que ofrezca el mejor resultado con una probabilidad menor a 0.6. Esto
incluye apuestas con probabilidades iguales de 0.5 para $10 y -$2, a pesar de que
dicha apuesta y $4 con certeza tienen el mismo valor esperado de $4. Esto sugiere
que el individuo prefiere evitar el riesgo.

Esta tendencia también se refleja en su clasificación de g1 y g2 en (3.13) y
(3.14).
Aquí, se prefiere g1 a g2, a pesar de que el valor esperado(3.7) de g1.

E(g1) = 0.2(4) + 0.8(10) = $8.80

es menor que el de g2.

E(g2) = 0.07(−2) + 0.03(4) + 0.9(10) = $8.98

En este caso, g2 se evita porque incluye un riesgo significativo del peor resulta-
do. Más adelante, mencionaremos la aversión al riesgo y su medición, pero este
ejemplo ayuda a ilustrar cómo una función de utilidad VNM resume aspectos im-
portantes sobre la disposición de un individuo a asumir riesgos. Y este ejemplo
muestra el caso en que las decisiones entre apuestas difieren según las condiciones
de incertidumbre o certeza.
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3.3.1. Relación entre la función de utilidad VNM y la uti-

lidad bajo certeza

Veremos la relación entre la función de utilidad VNM con la función de utilidad
ordinaria bajo certeza. En el caso estándar, si un individuo es indiferente entre
dos canastas de bienes, ambas reciben el mismo número de utilidad, mientras que
si una canasta es preferida sobre otra, su número de utilidad debe ser mayor.
Esto también es cierto para la función de utilidad VNM u(g), aunque debemos
sustituir “canasta de bienes” por “apuesta”, al decir sustituir nos referimos a la
interpretación de los términos que ahora manejaremos.

Sin embargo, en la teoría del consumidor, los números de utilidad tienen solo
un significado ordinal. Cualquier transformación monótona de una representación
de utilidad da lugar a otra representación válida. Por otro lado, los números de
utilidad asociados con una representación VNM de preferencias sobre apuestas
tienen un contenido que va más allá de la ordinalidad.

Para ilustrar esto, supongamos que A = {a, b, c}, donde a ≻ b ≻ c, y que las
preferencias satisfacen 3.1 a 3.6. Por 3.3 y 3.4, existe un α ∈ (0, 1) tal que:

b ∼ (α ◦ a, (1− α) ◦ c).

Este resultado nos permite entender cómo la función de utilidad VNM no solo
ordena las preferencias, sino que también captura la actitud del individuo hacia
el riesgo, lo que es fundamental para el análisis de decisiones bajo incertidumbre.

Note que el número de probabilidad α está determinado por las preferencias
del individuo o agente que toma las decisiones. Este número tiene un significa-
do intrínseco y no puede ser modificado (duplicado, sumado a una constante o
transformado de cualquier manera) sin alterar las preferencias que representa.

Supongamos que u es una representación de utilidad VNM de las preferencias
≿. Entonces, la relación de indiferencia mencionada anteriormente implica que:

u(b) = u(α ◦ a, (1− α) ◦ c)

= αu(a) + (1− α)u(c),

donde la segunda igualdad se deriva de la propiedad de utilidad esperada de
u. Esta igualdad puede reorganizarse para obtener:

u(a)− u(b)

1− α
=

u(b)− u(c)

α
.

u(a)− u(b)

u(b)− u(c)
=

1− α

α
.
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Por lo tanto, los cocientes de las diferencias entre los números de utilidad están
únicamente determinados por α. Dado que α está determinado de manera única
por las preferencias del agente que toma decisiones, este cociente de diferencias
de utilidad también está determinado de manera única.

Se concluye que el cociente de diferencias de utilidad tiene un significado inhe-
rente con respecto a las preferencias del individuo y debe tomar el mismo valor
para cualquier representación de utilidad VNM de ≿. Por lo tanto, las representa-
ciones de utilidad VNM proporcionan información que va más allá de lo ordinal,
ya que, de lo contrario, mediante transformaciones monótonas adecuadas, estos
cocientes podrían asumir muchos valores diferentes.

Claramente, una transformación estrictamente creciente de una representación
de utilidad VNM no necesariamente dará lugar a otra representación de utilidad
VNM. (Por supuesto, sigue siendo una representación de utilidad, pero no nece-
sariamente conserva la propiedad de utilidad esperada). Esto plantea la siguiente
pregunta: ¿cuál es la clase de representaciones de utilidad VNM para un orden
de preferencia dado?. Con base en las consideraciones anteriores, estas represen-
taciones deben preservar los cocientes de diferencias de utilidad. Como muestra el
siguiente resultado, esta propiedad proporciona una caracterización completa.

Teorema 3.2 (Unicidad de funciones de utilidad VNM salvo transformaciones
afines positivas). Supongamos que la función de utilidad VNM u(·) representa las
preferencias ≿. Entonces, la función de utilidad VNM v(·) representa las mismas
preferencias si y solo si, para algún escalar α y algún escalar β > 0, se cumple
que:

v(g) = α + βu(g),

para todas las apuestas g.

Este teorema solo lo pondremos de manera expositiva.
Antes de enunciar el Teorema 3.2, mencionamos que la clase de representaciones
de utilidad de von Neumann-Morgenstern (VNM) de una relación de preferencia
única se caracteriza por la constancia de los cocientes entre las diferencias de
utilidad.

El Teorema 3.2 dice que las funciones de utilidad esperada (VNM) no son úni-
cas: se pueden transformar multiplicando por un número positivo y/o sumando
una constante, y aún así seguir representando las mismas preferencias y mante-
niendo la propiedad de utilidad esperada.

Sin embargo, esto no significa que el valor numérico de la utilidad tenga un
significado absoluto. Solo podemos decir si un juego es preferido a otro, pero no
podemos medir cuánta más utilidad da, ni comparar utilidades entre personas.
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3.4. Aversión al riesgo

En el Ejemplo 3.1 se argumentó que la función de utilidad de von Neumann-
Morgenstern (VNM) construida es afectada por cierta aversión al riesgo. Ahora
estamos en condiciones de definir y describir formalmente la aversión al riesgo con
base en la teoría desarrollada hasta ahora.

Consideramos juegos de azar cuyos resultados son niveles de riqueza wi ≥
0, con probabilidades pi que suman 1. Aunque el conjunto de resultados A = R+

es infinito, supondremos que cada juego tiene sólo un número finito de resultados
con probabilidad estrictamente positiva.

Además, se asume que la función de utilidad VNM u(w) del agente es
diferenciable y estrictamente creciente, es decir, u′(w) > 0 para todo w ∈
R+. Esto refleja que niveles más altos de riqueza son siempre preferibles.

Bajo estas condiciones, podemos estudiar la actitud del agente frente al
riesgo comparando el valor esperado de un juego con la utilidad esperada que le
asigna. La definición 3.7 nos permite calcular dicho valor esperado para analizar
estas decisiones, dando paso a dos definiciones.
Definición 3.9 (Utilidad esperada de un juego de azar (VNM)). Sea g = (p1 ◦
w1, . . . , pn ◦ wn) un juego de azar simple, donde cada wi representa un nivel de
riqueza y cada pi ∈ [0, 1] es la probabilidad asociada a ese resultado, con

∑n
i=1 pi =

1. Si u(·) es una función de utilidad de von Neumann-Morgenstern que representa
las preferencias del individuo sobre G, entonces la utilidad esperada del juego
de azar g está dada por:

u(g) =
n∑

i=1

piu(wi) (3.15)

Esta expresión corresponde al valor esperado de la función de utilidad u aplicada
a los posibles niveles de riqueza del juego. Se asume que el individuo elige entre
juegos de azar maximizando esta utilidad esperada.
Definición 3.10 (Utilidad VNM del valor esperado de un juego). Sea g = (p1 ◦
w1, . . . , pn ◦ wn) un juego de azar simple con valor esperado E(g) =

∑n
i=1 piwi.

Entonces, la utilidad de recibir con certeza el valor esperado del juego g
está dada por:

u(E(g)) = u

(
n∑

i=1

piwi

)
(3.16)

Esta expresión representa la utilidad que tendría el individuo si, en lugar de en-
frentar la incertidumbre del juego, recibiera con certeza la riqueza promedio que
dicho juego ofrece. Comparar esta cantidad con la utilidad esperada del juego (3.9)
permite estudiar la actitud del individuo frente al riesgo.

Si las preferencias del agente satisfacen los Axiomas 3.1 a 3.6, entonces siempre
elegirá el juego con mayor utilidad esperada. En este contexto, si una persona
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prefiere recibir con certeza el valor esperado de un juego en lugar de asumir el
riesgo, decimos que es aversa al riesgo.

Sin embargo, también es posible que un individuo sea neutral o incluso aman-
te del riesgo sin violar los axiomas anteriores. Estas diferencias se reflejan en la
forma de su función de utilidad.

Como se explicó tras la Definición 3.8, una función de utilidad VNM queda
completamente determinada por los valores que asigna a cada resultado posible.
Por ello, es suficiente analizar la función en juegos de azar simples GS para en-
tender cómo una persona percibe y reacciona ante el riesgo.

Esta idea nos lleva a clasificar formalmente las distintas actitudes frente al
riesgo.

Definición 3.11 (Aversión, Neutralidad y Preferencia por el Riesgo). Sea u(·) la
función de utilidad de von Neumann-Morgenstern (VNM) de un individuo para
juegos de azar sobre niveles no negativos de riqueza. Dado un juego de azar simple
g = (p1 ◦ w1, . . . , pn ◦ wn), se dice que el individuo es:

1. Adverso al riesgo en g si u(E(g)) > u(g).

2. Neutral al riesgo en g si u(E(g)) = u(g).

3. Preferente del riesgo en g si u(E(g)) < u(g).

Si el individuo exhibe una de estas actitudes para todo juego de azar simple no
degenerado g 3, se dice simplemente que es adverso al riesgo, neutral al riesgo o
preferente al riesgo ( sobre G para enfatizarlo).

Las actitudes de: adverso, neutral o preferente al riesgo, equivalen matemática-
mente a las propiedades de la función de utilidad: cóncava, lineal y estricatamente
convexa, respectivamente.

Para ilustrar la aversión al riesgo, consideremos un juego de azar simple con
dos posibles resultados:

g ≡ (p ◦ w1, (1− p) ◦ w2).

Supongamos que el individuo debe elegir entre recibir con certeza el valor esperado
del juego, E(g) = pw1+(1−p)w2, o participar en el juego mismo. Evaluamos ambas
opciones:

u(g) = pu(w1) + (1− p)u(w2)

u(E(g)) = u(pw1 + (1− p)w2).

En la Figura 3.1, se ha representado gráficamente una función de utilidad estric-
tamente cóncava en la riqueza. La linea entre los puntos R = (w1, u(w1)) y S =

3Un juego de azar simple es no degenerado si asigna una probabilidad estrictamente positiva
a al menos dos niveles de riqueza distintos.
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(w2, u(w2)) representa sus combinaciones convexas, con el punto T = pR+(1−p)S.
Como se observa en la gráfica, la concavidad de u(w) implica que u(E(g)) > u(g),
lo que confirma la aversión al riesgo del individuo.

Figura 3.1: Aversión al riesgo y estricta concavidad de una función de utilidad
VNM

El individuo prefiere recibir E(g) con certeza en lugar de enfrentar la apuesta
g. Sin embargo, existe un nivel de riqueza que haría al individuo indiferente entre
aceptar dicha cantidad con certeza o enfrentar la apuesta g. A este nivel de riqueza
se le denomina equivalente cierto de la apuesta g. En esencia, una persona adversa
al riesgo está dispuesta a pagar una cantidad positiva de riqueza para evitar la
incertidumbre inherente a la apuesta. Esta disposición a pagar para evitar el riesgo
se mide mediante la prima de riesgo.

Tanto el equivalente cierto como la prima de riesgo se ilustran en la Figura
3.1.

Definición 3.12 (Equivalencia de certeza y Prima de Riesgo). El equivalente
cierto de una apuesta simple g sobre niveles de riqueza es la cantidad de riqueza
CE ofrecida con certeza tal que u(g) ≡ u(CE).
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La prima de riesgo es la cantidad de riqueza P tal que u(g) ≡ u(E(g) − P ).
Claramente, se cumple que P ≡ E(g)− CE.

Ejemplo 3.2. Supongamos que la función de utilidad del individuo está dada por
u(w) ≡ ln(w). Dado que esta función es estrictamente cóncava en la riqueza, el
individuo es adverso al riesgo.

Consideremos una apuesta g con probabilidades 50–50 de ganar o perder una
cantidad de riqueza h, de modo que si la riqueza inicial del individuo es w0, la
apuesta se expresa como:

g ≡
(
1

2
◦ (w0 + h),

1

2
◦ (w0 − h)

)
,

note que E(g) = w0.
El equivalente cierto de g debe satisfacer:

ln(CE) =
1

2
ln(w0 + h) +

1

2
ln(w0 − h) = ln

(√
w2

0 − h2

)
.

Por lo tanto, se obtiene que:

CE =
√

w2
0 − h2 < E(g),

P = w0 −
√

w2
0 − h2 > 0.

En muchos casos, no solo nos interesa saber si un individuo es adverso al riesgo,
sino también en cuánto adverso es, es decir medir el riesgo. Idealmente, deseamos
una medida que nos permita comparar el grado de aversión al riesgo entre distintos
individuos y analizar cómo varía esta aversión en función del nivel de riqueza de
un mismo individuo.

Dado que la aversión al riesgo y la concavidad de la función de utilidad VNM
en términos de riqueza son equivalentes, una medida natural de la aversión al
riesgo es la segunda derivada de la función de utilidad, u′′(w), la cual cuantifica
la curvatura de la función. En principio, podríamos pensar que cuanto mayor sea
el valor absoluto de esta derivada, mayor será el grado de aversión al riesgo.

La segunda derivada de la función de utilidad proporciona información sobre
la actitud del individuo hacia el riesgo. Sin embargo, su magnitud por sí sola
no es una medida adecuada de la aversión al riesgo. El Teorema 3.2 establece
que las funciones de utilidad VNM son únicas bajo transformaciones afines, lo
que implica que cualquier segunda derivada puede modificarse arbitrariamente
mediante la multiplicación de u(·) por una constante positiva apropiada.

Tomando en cuenta este problema, Arrow [1] y Pratt [18] propusieron la si-
guiente medida de aversión absoluta al riesgo.

57



La función de utilidad von Neumann-Morgenstern 3.4. AVERSIÓN AL RIESGO

Definición 3.13 (Medida de Aversión Absoluta al Riesgo de Arrow-Pratt). La
medida de aversión absoluta al riesgo de Arrow-Pratt está dada por:

Ra(w) ≡ −u′′(w)

u′(w)
.

El signo de esta medida proporciona inmediatamente información sobre la
actitud del individuo frente al riesgo:

Si Ra(w) > 0, el individuo es adverso al riesgo.

Si Ra(w) = 0, el individuo es neutral al riesgo.

Si Ra(w) < 0, el individuo es preferente al riesgo.

Además, esta medida es invariante ante transformaciones afines de la función
de utilidad.Para demostrar la relevancia de la medida de Arrow-Pratt, se puede
establecer que los consumidores con mayores valores de Ra(w) son efectivamente
más adversos al riesgo. Para ilustrar esta idea, supongamos que existen dos con-
sumidores, 1 y 2, con funciones de utilidad VNM u(w) y v(w), respectivamente.
La riqueza w puede tomar cualquier valor no negativo.
Suponemos que, para todo nivel de riqueza w, la medida de aversión absoluta al
riesgo de Arrow-Pratt del consumidor 1 es mayor que la del consumidor 2:

R1
a(w) = −u′′(w)

u′(w)
> −v′′(w)

v′(w)
= R2

a(w), ∀w ≥ 0.

donde asumimos que u′(w) y v′(w) son estrictamente positivas.
Para simplificar, suponemos que v(w) toma todos los valores en [0,∞). Defi-

nimos la función auxiliar h : [0,∞) → R como:

h(x) = u(v−1(x)), ∀x ≥ 0 (3.17)

Dado que u y v son dos veces diferenciables, la función h hereda esta propiedad y
satisface:

h′(x) =
u′(v−1(x))

v′(v−1(x))
> 0,

h′′(x) =
u′(v−1(x))

[v′(v−1(x))]2

[
u′′(v−1(x))

u′(v−1(x))
− v′′(v−1(x))

v′(v−1(x))

]
< 0.

La primera desigualdad se debe a que u′ y v′ son estrictamente positivas, mientras
que la segunda sigue de la condición inicial sobre R1

a(w) y R2
a(w). Por lo tanto, h

es estrictamente creciente y estrictamente cóncava.
Ahora consideremos una apuesta g = (p1 ◦ w1, . . . , pn ◦ wn) sobre distintos

niveles de riqueza. Podemos usar la función h (3.17) y el hecho de que es cóncava
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para demostrar que esta apuesta es menor para el consumidor 1 que para el
consumidor 2.

Sea ŵi el monto que hace indiferente entre la apuesta y recibir dicho monto
con certeza para el consumidor i:

n∑
i=1

piu(wi) = u(ŵ1),

n∑
i=1

piv(wi) = v(ŵ2).

Queremos demostrar que ŵ1 < ŵ2. Sustituyendo x = v(w) en la función h y
aplicando las ecuaciones anteriores, obtenemos:

u(ŵ1) =
n∑

i=1

pih(v(wi)) < h

(
n∑

i=1

piv(wi)

)
= h(v(ŵ2)) = u(ŵ2).

La desigualdad proviene de la desigualdad de Jensen A.3 [9, p. 25], ya que h
es estrictamente cóncava. Dado que u es estrictamente creciente, se sigue que
ŵ1 < ŵ2.

Por lo tanto para cualquier apuesta es menor para el consumidor 1 que para el
consumidor 2. Esto implica que, si ambos consumidores tienen la misma riqueza
inicial, el consumidor 2 aceptará cualquier apuesta que el consumidor 1 acepte,
pero no necesariamente al revés. Es decir, el consumidor 1 está menos dispuesto
a aceptar apuestas en comparación con el consumidor 2.

Además, hemos demostrado que si la medida de Arrow-Pratt satisface la re-
lación R1

a(w) > R2
a(w) para todo w, entonces la función de utilidad u(w) es una

transformación cóncava de v(w) en el sentido de que:

u(w) = h(v(w)), ∀w ≥ 0,

donde h es una función estrictamente cóncava. Esto refuerza la idea de que el
consumidor 1 es más adverso al riesgo que el consumidor 2.

La medida de aversión absoluta al riesgo Ra(w) es una medida local, por lo
que no necesariamente se mantiene constante en todos los niveles de riqueza. En
general, se espera que las actitudes hacia el riesgo varíen con la riqueza de manera
coherente. Arrow propuso una clasificación de funciones de utilidad VNM basada
en la forma en que Ra(w) cambia con la riqueza. Específicamente, se dice que
una función de utilidad exhibe aversión absoluta al riesgo constante, decreciente
o creciente sobre un cierto dominio de riqueza si Ra(w) permanece constante,
disminuye o aumenta a medida que la riqueza aumenta, respectivamente.

Entre estas clasificaciones, la aversión absoluta al riesgo decreciente (Decrea-
sing Absolute Risk Aversion, DARA) es una restricción generalmente razonable
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de imponer. Si la aversión absoluta al riesgo fuera constante, un individuo no
mostraría mayor disposición a aceptar pequeñas apuestas a medida que su rique-
za aumenta. Por otro lado, si la aversión absoluta al riesgo fuera creciente, se
presentaría un comportamiento poco intuitivo: a mayor riqueza, mayor aversión
a aceptar una misma apuesta. En contraste, la condición DARA impone la res-
tricción más plausible de que un individuo con mayor riqueza sea menos adverso
a tomar pequeños riesgos.

Ejemplo 3.3. Considérese a un inversionista que debe decidir cuánto de su ri-
queza inicial w asignar a un activo riesgoso. Dicho activo puede generar tasas de
retorno ri positivas o negativas con probabilidades pi, donde i = 1, . . . , n. Si β
representa la cantidad de riqueza invertida en el activo riesgoso, la riqueza final
en el estado i estará dada por:

(w − β) + (1 + ri)β = w + βri.

El problema del inversionista consiste en elegir β para maximizar la utilidad es-
perada de su riqueza, lo cual se puede formular como el siguiente problema de
optimización en una variable:

max
β

n∑
i=1

piu(w + βri)

s.a. 0 ≤ β ≤ w.

(3.18)

Primero, se analiza en qué condiciones un inversionista adverso al riesgo deci-
diría no invertir en el activo riesgoso. En tal caso, se obtendría una solución en la
frontera, es decir, β∗ = 0, lo que implica que la derivada de la función objetivo en
β∗ debe ser no positiva. Derivando la utilidad esperada respecto de β y evaluando
en β∗ = 0, se obtiene:

n∑
i=1

piu
′(w + β∗ri)ri = u′(w)

n∑
i=1

piri ≤ 0.

La sumatoria del lado derecho es el retorno esperado del activo riesgoso. Como
u′(w) > 0, se concluye que un inversionista adverso al riesgo evitará completa-
mente el activo riesgoso si y solo si su retorno esperado es no positivo. Alternati-
vamente, si el activo riesgoso tiene un retorno esperado estrictamente positivo, el
inversionista siempre preferirá invertir parte de su riqueza en él.

Supongamos ahora que el activo riesgoso tiene un retorno esperado positivo, de
modo que se descarta la posibilidad de β∗ = 0. Además, asumimos que la solución
óptima es interior, es decir, β∗ < w. Las condiciones de primer y segundo orden
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para un máximo interior de la función objetivo son:

n∑
i=1

piu
′(w + β∗ri)ri = 0 (3.19)

n∑
i=1

piu
′′(w + β∗ri)r

2
i < 0 (3.20)

donde la segunda condición es estricta debido a la aversión al riesgo del inver-
sionista.
A continuación, se analiza cómo varía la cantidad de riqueza invertida en el activo
riesgoso conforme la riqueza inicial w aumenta. La observación empírica sugiere
que, en general, a mayor riqueza, el inversionista destina una cantidad absoluta
mayor de su riqueza a activos riesgosos, lo que sugiere que estos activos se com-
portan como bienes normales. Se demostrará que esto es cierto bajo la hipótesis
de Decreasing Absolute Risk Aversion (DARA).
Tratando a β∗ como una función de w, diferenciando la ecuación de primer orden
(3.20) respecto a w, se obtiene:

dβ∗

dw
=

−
n∑

i=1

piu
′′(w + β∗ri)ri

n∑
i=1

piu
′′(w + β∗ri)r

2
i

(3.21)

La aversión al riesgo asegura que el denominador en (3.21) es negativo, por lo
que los activos riesgosos serán normales si el numerador también es negativo. En
textos como [14] y [11] se tiene que DARA es suficiente para garantizar esto.

Se usa la definición de la medida de aversión absoluta al riesgo Ra(w + β∗ri):

−u′′(w + β∗ri)ri = Ra(w + β∗ri)riu
′(w + β∗ri), i = 1, . . . , n (3.22)

Bajo la hipótesis DARA, se cumple que Ra(w) > Ra(w + β∗ri) cuando ri > 0
y Ra(w) < Ra(w + β∗ri) cuando ri < 0. Multiplicando ambos lados de estas
desigualdades por ri, se obtiene en ambos casos:

Ra(w)ri > Ra(w + β∗ri)ri, i = 1, . . . , n (3.23)

Sustituyendo Ra(w) en la ecuación (3.22) y usando la ecuación (3.23), se obtiene:

−u′′(w + β∗ri)ri < Ra(w)riu
′(w + β∗ri), i = 1, . . . , n.

Tomando valores esperados en ambos lados, se obtiene:
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−
n∑

i=1

piu
′′(w + β∗ri)ri < Ra(w)

n∑
i=1

piriu
′(w + β∗ri) = 0 (3.24)

donde la última igualdad se sigue de (3.19).
Se concluye entonces que, cuando el comportamiento del individuo exhibe

DARA, la expresión obtenida en (3.21) es positiva, lo que implica que la cantidad
de riqueza invertida en el activo riesgoso aumenta conforme la riqueza inicial se
incrementa.

Para terminar este capítulo debemos notar que toda la teoría desarrollada en
los capítulos es sobre una economía ideal y no consideramos variaciones en los
precios ni tampoco como afecta la situación global al mercado.

Nota 3.4. En el contexto de la teoría económica, los mercados bursátiles repre-
sentan un entorno ideal para aplicar y evaluar el comportamiento de un agente
racional(3.1). Según esta teoría, los individuos toman decisiones para maximizar
su utilidad esperada bajo condiciones de incertidumbre.

En los mercados financieros, los agentes eligen entre diversas alternativas de
inversión como acciones, bonos, derivados que implican distintos niveles de riesgo y
retorno. Desde este enfoque, cada alternativa se modela como un juego de azar, lo
que permite aplicar la teoría de utilidad esperada de Von Neumann-Morgenstern.

La racionalidad económica implica que los agentes evalúan las decisiones según
sus preferencias y actitud frente al riesgo. Sin embargo, la evidencia empírica
muestra que los agentes no siempre se comportan racionalmente. Estos fenómenos
han motivado el desarrollo de la economía del comportamiento, que extiende
el modelo tradicional del agente racional para capturar desviaciones observadas
en los mercados reales.
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Capítulo 4

Algunas aplicaciones de la utilidad
de von Neumann-Morgenster

Ituvi-Shaa.
(Nuevo Amanecer)

Región mixteca baja

Para este capítulo se construye una aplicación acorde al titulo de la tesis y
damos una breve descripción de como se extiende la teoría del consumidor a
contextos de incertidumbre, donde la probabilidad juega un papel importante en la
utilidad ya que nos ayuda a comprender la ocurrencia de un evento y su influencia
en la toma de decisiones donde se busca maximizar la utilidad esperada.

4.1. Evaluación de productos financieros bajo in-

certidumbre: una aplicación de utilidad espe-

rada con datos de la CONDUSEF

El objetivo de esta sección es aplicar de forma sencilla la teoría de utilidad
esperada de von Neumann-Morgenstern (VNM) para modelar la elección racional
de un consumidor entre distintas alternativas de productos financieros ofrecidos
por instituciones registradas ante la CONDUSEF. La comparación se realiza bajo
condiciones de riesgo, utilizando funciones de utilidad específicas que capturan la
aversión al riesgo.
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4.1. EVALUACIÓN DE PRODUCTOS FINANCIEROS BAJO INCERTIDUMBRE: UNA APLICACIÓN DE UTILIDAD

ESPERADA CON DATOS DE LA CONDUSEF

4.1.1. Selección del producto financiero

Después de una revisión de los datos públicos ofrecidos por la Comisión Nacio-
nal para la Protección y Defensa de los Usuarios de Servicios Financieros (CON-
DUSEF), se eligieron seguros de automóvil de cobertura amplia, debido a
su alta disponibilidad de datos comparativos, su impacto directo sobre el bienestar
financiero de los usuarios, y su relevancia práctica como decisión de consumo bajo
incertidumbre.

4.1.2. Obtención de datos

La CONDUSEF publica periódicamente evaluaciones de aseguradoras con base
en el número de reclamaciones por cada millón de riesgos asegurados, así como
el porcentaje de resoluciones favorables al usuario. Estos datos se encuentran
disponibles en la herramienta “Buró de Entidades Financieras”, en el sitio web
oficial de la CONDUSEF obtenidos en su página oficial [4] y [7]. Vale observar
la siguiente definición para la tabla de datos recopilados de CONDUSEF para la
cuarta columnas de la tabla.

Definición 4.1 (Prima estimada). La prima estimada en un seguro de auto es
el precio que el asegurado paga a la aseguradora para recibir la cobertura de la
póliza. Es decir, es la cantidad de dinero que pagas para que la aseguradora te
cubra los daños o gastos en caso de accidente, robo u otros eventos contemplados
en tu póliza.

Con esto en mente para la prima estimada de este ejercicio usaremos de base
un auto compacto 2022 ya que para la columna 4 se consultaron los precios en
simuladores en linea ofrecidos por las aseguradoras correspondientes seleccionando
el código postal de Oaxaca (68000), obteniendo así el precio anual de cobertura
amplia. 1 A continuación incluimos las referencias de estos simuladores de precios.

Aseguradora 1:[15]
Aseguradora 2:[20]
Aseguradora 3:[19]
Para esta aplicación se utilizaron los siguientes datos correspondientes al año

2023:

1Para efectos ilustrativos y sin pérdida de generalidad, se han asumido primas promedio
anuales basadas en simulaciones aproximadas de mercado con vehículos estándar en la región
de Oaxaca, esto también debido a las diferentes versiones del auto compacto. Estos valores se
mantienen constantes para facilitar la comparación.
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Aseguradora Reclamaciones /
millón

% Resoluciones
a favor

Prima estimada

1 1146 24 % $7,500

2 909 10 % $6,800

3 866 40 % $6,200

Tabla 4.1: Datos de aseguradoras disponibles en CONDUSEF (2023).

4.2. Modelo de incertidumbre

Para cada uno de los productos financieros anteriores (seguros), representamos
el posible resultado de contratar el producto como una lotería:

g = (p1 ◦ a1, p2 ◦ a2)

Donde:

a1 representa el resultado favorable para el usuario: recibir la indemnización
en caso de siniestro (por ejemplo,$300,000 - prima estimada(4.1).)2

a2 representa el resultado desfavorable: no recibir indemnización, incurriendo
en una pérdida total por daños ( asumida en $0).

p1 es la probabilidad de resolución favorable (éxito), estimada mediante el
porcentaje de resoluciones a favor del cliente.

p2 = 1− p1 es la probabilidad de no recibir compensación.
3

g1 ≡ (0.24 ◦ $300000, 0.76 ◦ $0) (4.1)

g2 ≡ (0.10 ◦ $300000, 0.9 ◦ $0) (4.2)

g3 ≡ (0.40 ◦ $300000, 0.60 ◦ $0) (4.3)

Observese que para nuestro ejemplo el nivel de riqueza asegurado w0 de $3000,000
lo tomamos con base en que el valor del auto esta dentro del tope que cubren las
asegurados para el informe del 18 de enero de 2024 consultado en [6].

2Note que esta indemnización la tomamos con base en el valor comercial asegurado que
cubren los seguros según la CONDUSEF para enero de 2024, esto pues no en su sitio no tenian
información para 2023.

3Vale observar que el símbolo ≡ se esta usando aquí de esta manera pues este no es el
resultado total favorable o desfavorable de la apuesta, falta restar la prima estimada(4.1) y falta
aplicar la función de utilidad VNM.
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Función de utilidad

Para capturar la actitud del consumidor frente al riesgo, utilizamos una fun-
ción de utilidad VNM con aversión al riesgo, definida sobre la riqueza final del
individuo:

u(w) =
√
w

Vale observar que a diferencia del ejemplo (3.1) aquí estamos dando esta fun-
ción exponiendo que el consumidor es adverso al riesgo. Dado que el consumidor
cuenta con una riqueza inicial w0 = $300, 000 este valor con base al precio de
agencia del auto tomado, que por las versiones puede variar (además de que la
versión “austera” superaba esta cantidad), pero nosotros por estas razones toma-
remos su valor inferior en ciento de miles de pesos mexicanos.

Nota 4.1. Note que la función u(w) =
√
w la pudimos haber tomado como

u(w) =
√
w√

300,000
la cual garantiza que u(0) = 0 y u(3000, 000) = 1 esto si queremos

modelar una apuesta del tipo mejor-peor, pero no es nuestro caso ya que las
probabilidades están dadas por el porcentaje de resoluciones a favor de la tabla
4.1, con base a esto contruimos las apuestas mejor-peor, pero vale observar que el
teorema 3.2 garantiza unicidad de la función VNM salvo transformaciones afines
además que el axioma 3.6 da la seguridad de poder reducir esta apuesta a alguna
apuesta simple con las condiciones sobre la utilidad que hablamos en el teorema
3.1 ya que aquí se utilizo u(g) ∈ [0, 1] pero al final se trabajo sobre u(gs).

La utilidad esperada al contratar un seguro de auto se modela como una fun-
ción de utilidad de von Neumann-Morgenstern:

u(g) =
n∑

i=1

piu(ai)

= p1 · u(w0 − prima) + p2 · u(0)
(4.4)

Note que para a1 la modelamos como a1 = w0 − prima, para a2 la modelamos
como 0 pues para nuestras funciones no tienen dominio en los números negativos,
pues es el nivel de riqueza que tiene un individuo, esto es la cantidad asegurada
menos la cantidad que paga por contar con el seguro que es la prima.
Cada aseguradora puede ser evaluada con esta fórmula.

Para la aseguradora 1 (p1 = 0.24, prima = $7,500):

u(g1) = 0.24 ·
√

300,000− 7,500 + 0.76 ·
√
0

= 129.8
(4.5)

Para la aseguradora 2 (p1 = 0.10, prima = $6,800):
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u(g2) = 0.10 ·
√
300,000− 6,800 + 0.90 ·

√
0

= 54.148
(4.6)

Para la aseguradora 3 (p1 = 0.40, prima = $6,200):

u(g3) = 0.40 ·
√

300,000− 6,200 + 0.60 ·
√
0

= 216.81
(4.7)

Los valores resultantes permiten comparar las opciones disponibles desde la pers-
pectiva de un consumidor racional con aversión al riesgo, eligiendo la aseguradora
3.
Analicemos la información obtenida hasta aquí, con base en el ejemplo 3.1, nece-
sitamos también calcular el valor esperado(3.7).

Para la aseguradora 1 (p1 = 0.24, prima = $7,500):
E(g1) = 0.24(300,000− 7,500) + 0.76(0) = 70200.

Para la aseguradora 2 (p1 = 0.10, prima = $6,800):
E(g2) = 0.10(300,000− 6,800) + 0.90(0) = 29320.

Para la aseguradora 3 (p1 = 0.40, prima = $6,200):
E(g3) = 0.4(300,000− 6,200) + 0.6(0) = 117520.

Ahora con base en la definición 3.10, conviene evaluar este resultado en la
función de untilidad VNM

√
w.

Para la aseguradora 1:

u(E(g1)) = u

(
n∑

i=1

piwi

)
= u(70200) =

√
70200 = 264.95

Para la aseguradora 2:

u(E(g2)) = u

(
n∑

i=1

piwi

)
= u(29320) =

√
29320 = 171.23

Para la aseguradora 3:

u(E(g3)) = u

(
n∑

i=1

piwi

)
= u(117520) =

√
117520 = 342.81

Aquí a diferencia del ejemplo 3.1 tenemos que g3 se prefiere pues su valor
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Aseguradora Utilidad esperada u(gi) Utilidad del valor
esperado u(E(gi))

1 129.80 264.95
2 54.148 171.23
3 216.81 342.81

Tabla 4.2: Comparación entre utilidad esperada y utilidad del valor esperado con
función u(w) =

√
w.

esperado del juego(3.7) es mayor al de g2 y g1, además que en este caso coincidió
que la utilidad del valor esperado del juego(3.10), sea también mayor para g3
que para g2 y g1. Esto implica que el agente encargado de tomar decisiones tiene
una actitud positiva a tomar el riesgo de elegir el juego g3, es decir escogerá la
aseguradora 3.

A diferencia del ejemplo 3.1, donde el individuo evita apuestas con mayor valor
esperado debido a su aversión al riesgo, en este caso se prefiere g3 (la aseguradora
3) tanto por su valor esperado como por la utilidad que genera bajo una función
VNM. Esto indica que, en el contexto específico del seguro automotriz evaluado,
la alternativa con mayor exposición al riesgo es también la que ofrece mayor be-
neficio esperado y mayor satisfacción esperada para un consumidor racional.
Este resultado sugiere que el consumidor percibe que los posibles beneficios de
contratar con la aseguradora 3 compensan el riesgo involucrado. La coincidencia
entre el valor esperado y la utilidad esperada indica que, en este caso, el consu-
midor no evita el riesgo, sino que lo acepta como parte de una decisión racional.
Esto muestra cómo la teoría de utilidad VNM permite entender mejor cómo se
toman decisiones financieras bajo incertidumbre.

Note que en caso contrario modelando un consumidor preferente del riesgo
debemos tomar la funcion convexa u(w) = w2.

Función de utilidad

Para capturar la actitud del consumidor frente al riesgo, ahora utilizamos una
función de utilidad VNM con preferencia al riesgo, definida sobre la riqueza
final del individuo:

u(w) = w2

A diferencia del caso anterior, esta función representa a un consumidor que
prefiere tomar riesgos, ya que su utilidad crece más que proporcionalmente con la
riqueza. Conservamos la misma riqueza inicial w0 = $300,000.

Nota 4.2. La función u(w) = w2 también cumple las condiciones necesarias para
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ser una función de utilidad VNM, y su elección refleja actitudes distintas frente
al riesgo. De acuerdo con el teorema 3.2, cualquier otra función que represente las
mismas preferencias debe ser una transformación afín positiva de esta.

La utilidad esperada al contratar un seguro de auto se modela como una fun-
ción de utilidad de von Neumann-Morgenstern:

u(g) =
n∑

i=1

piu(ai)

= p1 · u(w0 − prima) + p2 · u(0)
(4.8)

Para la aseguradora 1 (p1 = 0.24, prima = $7,500):

u(g1) = 0.24 · (300,000− 7,500)2 + 0.76 · 0

= 20,533,500,000
(4.9)

Para la aseguradora 2 (p1 = 0.10, prima = $6,800):

u(g2) = 0.10 · (300,000− 6,800)2 + 0.90 · 0

= 8,596,624,000
(4.10)

Para la aseguradora 3 (p1 = 0.40, prima = $6,200):

u(g3) = 0.40 · (300,000− 6,200)2 + 0.60 · 0

= 34,527,376,000
(4.11)

Ahora evaluamos el valor esperado en la función de utilidad:

Para la aseguradora 1:

u(E(g1)) = (70,200)2 = 4,928,040,000

Para la aseguradora 2:

u(E(g2)) = (29,320)2 = 859,662,400

Para la aseguradora 3:

u(E(g3)) = (117,520)2 = 13,810,950,400
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Aseguradora Utilidad esperada u(gi) Utilidad del valor
esperado u(E(gi))

1 20,533,500,000 4,928,040,000

2 8,596,624,000 859,662,400

3 34,527,376,000 13,810,950,400

Tabla 4.3: Comparación entre utilidad esperada y utilidad del valor esperado con
función u(w) = w2.

Nota 4.3. En resumen, al comparar los dos escenarios uno con un consumidor
adverso al riesgo utilizando u(w) =

√
w y otro con un consumidor preferente

del riesgo utilizando u(w) = w2 se observa una diferencia clave en las decisiones.
El agente adverso al riesgo valora más la seguridad que el beneficio potencial, por
lo que podría evitar opciones con alta variabilidad en los resultados, incluso si
su valor esperado es alto. En cambio, el agente preferente del riesgo se inclina
por alternativas con mayor exposición al riesgo si estas prometen una utilidad
esperada más elevada. Esta comparación ilustra cómo la forma funcional de la
utilidad captura distintas actitudes frente al riesgo y permite modelar decisiones
financieras personalizadas bajo incertidumbre.

4.3. Aplicación de la Medida de Aversión Absoluta

al Riesgo de Arrow-Pratt

En esta sección aplicamos la medida propuesta por Arrow y Pratt para eva-
luar el grado de aversión al riesgo de un consumidor, con base en la función de
utilidad usada en nuestro modelo anterior. Esto nos permite entender mejor cómo
la actitud hacia el riesgo puede influir en la decisión de contratar un seguro.

Es bueno observar, aunque pueda ser redundante, que u(E(g3)) = 342.81 >
216.81 = u(g3) , esto por la definición 3.11 tenemos que la función de utilidad
u(w) =

√
w es adversa al riesgo, aunque esto ya lo sabíamos pues así la elegimos.

4.3.1. Medida de Aversión Absoluta al Riesgo

La medida de aversión absoluta al riesgo de Arrow-Pratt se define(3.13) como:

Ra(w) = −u′′(w)

u′(w)
.
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Esta fórmula nos dice cuánto cambia la utilidad marginal cuando aumenta la
riqueza. Si esta medida es mayor a cero, el consumidor es adverso al riesgo.

Para nuestra función de utilidad usada anteriormente u(w) =
√
w, derivamos

lo siguiente:

u′(w) =
1

2
√
w
, u′′(w) = − 1

4w3/2
.

Luego:

Ra(w) =
1

2w
.

Esto muestra que el consumidor es adverso al riesgo, pues es el primer caso de
la definición (3.13) y que, conforme aumenta su riqueza, se vuelve más tolerante al
riesgo. Este comportamiento se conoce como DARA (Decreasing Absolute Risk
Aversion).

4.3.2. Cálculo del Equivalente Cierto y Prima de Riesgo

Otra forma de ver la aversión al riesgo es a través del equivalente cierto (CE)4,
que se define como la cantidad de dinero segura que da la misma utilidad que
una apuesta riesgosa(3.12) . Para una función u(w), el equivalente cierto de una
lotería g se obtiene resolviendo:

u(CE) = u(g).

Por ejemplo, para la aseguradora 3 calculamos:

u(g3) = 216.81 ⇒ u(CE) = 216.81 ⇒ CE = (216.81)2 = 47,008.

Esto debido a que la inversa de u(w) =
√
w es u−1(w) = w2

La prima de riesgo se calcula como la diferencia entre el valor esperado y el
equivalente cierto:

Prima de riesgo = E(g3)− CE = 117,520− 47,008 = 70,512

Este valor nos dice cuánto estaría dispuesto a pagar el consumidor para evitar
el riesgo. En este caso, aunque la aseguradora 3 tiene buen valor esperado, el con-
sumidor estaría dispuesto a aceptar una cantidad mucho menor si fuera segura,

4El equivalente cierto (CE) es la cantidad de dinero que el consumidor considera igual, en
términos de utilidad, a una apuesta con resultado incierto. Es decir, aunque la apuesta podría dar
más dinero en promedio, el consumidor preferiría recibir el CE con seguridad. Esto refleja cuánto
valora la certeza frente al riesgo. Cuanto menor sea el CE comparado con el valor esperado, mayor
es la aversión al riesgo del individuo.
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lo que confirma su aversión al riesgo. La medida de Arrow-Pratt y el cálculo del
equivalente cierto nos permiten analizar con más detalle el comportamiento del
consumidor ante el riesgo. En particular, muestran que incluso cuando un produc-
to como el de la aseguradora 3 tiene buen desempeño esperado, un consumidor
muy adverso podría no estar dispuesto a tomar el riesgo completo. De aquí la im-
portancia de considerar el perfil del consumidor al momento de evaluar productos
financieros.
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Conclusiones

“If people do not believe that mathematics is simple, it is
only because they do not realize how complicated life is.”
[Si las personas no creen que las matemáticas son simples,
es solo porque no se dan cuenta de lo complicada que es la
vida.]

John von Neumann (discurso en Yale, 1954)

El presente trabajo ofrece una exposición clara y rigurosa de la teoría del
consumidor, así como de los axiomas fundamentales que permiten su formaliza-
ción matemática. Se recurre a herramientas analíticas adquiridas a lo largo de la
formación de licenciatura, adoptando un enfoque económico que posibilita cierta
flexibilización de las condiciones matemáticas tradicionales, al fundamentarlas en
el comportamiento empírico de los consumidores.
En el capítulo final se presentan las conclusiones derivadas del análisis desarrolla-
do a lo largo de esta tesis, en el cual se aplicó la teoría de la utilidad esperada de
Von Neumann-Morgenstern a decisiones financieras reales, utilizando datos publi-
cados por la CONDUSEF relativos a seguros de automóvil.

Se mostró cómo la estructura de preferencias del consumidor, así como su acti-
tud frente al riesgo influyen de manera determinante en la elección de un producto
financiero. Se mostró una aplicación del tema desarrollado, usando datos del in-
forme de seguros de automóviles 2023, publicado en la página de la CONDUSEF.
Una de las principales conclusiones es que el comportamiento del consumidor ante
el riesgo influye directamente en su elección. Al modelar su utilidad mediante una
función cóncava como u(w) =

√
w, observamos que la opción más arriesgada (la

aseguradora 3) fue también la preferida, debido a que ofrecía una mayor utilidad
esperada.
En contraste con el caso anterior, al utilizar la función de utilidad convexa u(w) =
w2, que representa a un consumidor preferente del riesgo, observamos que la ase-
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guradora 3 sigue siendo la opción preferida, pero ahora con una diferencia aún más
marcada en términos de utilidad esperada. Además, la utilidad del valor esperado
resulta menor que la utilidad esperada del juego, lo que indica que este tipo de
consumidor valora positivamente la incertidumbre.
En este caso, el agente estaría dispuesto a rechazar un pago cierto equivalente al
valor esperado si con ello puede asegurar mejores pólizas de seguro con posibles
ganancias mayores, incluso si hay riesgo de perderlo todo.
Sin embargo, regresando al consumidor adverso al riesgo, al calcular el equivalente
cierto(CE) y la prima de riesgo(P), notamos que el consumidor estaría dispuesto
a aceptar mucho menos que el valor esperado a cambio de certeza, lo que refleja
su aversión al riesgo.

La aplicación de la medida de aversión absoluta al riesgo de Arrow-Pratt per-
mitió cuantificar este comportamiento. El resultado confirmó que el consumidor
es adverso al riesgo y que, conforme aumenta su riqueza, su disposición a asu-
mir riesgos también se incrementa, lo cuál confirma (DARA) desarrollada en los
primeros capítulos.

Finalmente, esta aplicación muestra cómo las herramientas de la teoría de
utilidad permiten ir más allá del análisis puramente monetario, integrando las
preferencias individuales frente al riesgo y brindando un marco sólido para eva-
luar productos financieros.
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Apéndice A

Continuidad, desigualdades y teore-
mas de optimización

En esta parte del apéndice se definen conceptos y enuncian teoremas concer-
nientes a la caracterización de funciones necesarios para completar el texto y su
relación con la teoría económica.

Teorema A.1 (Todo Conjunto Abierto es una Unión de Bolas Abiertas). Sea S
un conjunto abierto. Para cada x ∈ S, existe εx > 0 tal que Bεx(x) ⊂ S. Entonces,

S =
⋃
x∈S

Bεx(x).

Demostración: Los conceptos clave ya han sido discutidos, por lo que podemos
demostrar esto de manera directa.

Sea S ⊂ Rn un conjunto abierto. Para cada x ∈ S, existe εx > 0 tal que
Bεx(x) ⊂ S, ya que S es abierto. Debemos probar que x ∈ S implica x ∈⋃

x∈S Bεx(x) y, recíprocamente, que x ∈
⋃

x∈S Bεx(x) implica x ∈ S.
Si x ∈ S, entonces, por la definición de bola abierta, x ∈ Bεx(x). Como

esta bola abierta está incluida en una unión que la contiene, se sigue que x ∈⋃
x∈S Bεx(x), completando la primera parte de la prueba.
Para la otra dirección, si x ∈

⋃
x∈S Bεx(x), entonces x ∈ Bεs(s) para algún

s ∈ S. Como cada bola abierta elegida está completamente contenida en S, se
tiene que x ∈ S.

Esto completa la demostración.

Teorema A.2 (Continuidad e Imágenes Inversas). Sea D ⊆ Rm. Las siguientes
condiciones son equivalentes:
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1. f : D → Rn es continua.

2. Para todo conjunto abierto S ⊆ Rn, la preimagen f−1(S) es abierta en D.

Demostración: (1) ⇒ (2). Supongamos que f es continua y sea S ⊆ Rn un
conjunto abierto. Sea x ∈ f−1(S), lo cual implica que f(x) ∈ S. Como S es
abierto, existe ε > 0 tal que Bε(f(x)) ⊆ S. Por la continuidad de f , existe δ > 0
tal que:

f(Bδ(x) ∩D) ⊆ Bε(f(x)) ⊆ S.

Por lo tanto, Bδ(x) ∩ D ⊆ f−1(S). Como esto ocurre para todo x ∈ f−1(S),
concluimos que f−1(S) es abierto en D.

(2) ⇒ (1). Supongamos ahora que para todo conjunto abierto S ⊆ Rn, la pre-
imagen f−1(S) es abierta en D. Para probar que f es continua en x ∈ D, tomemos
ε > 0. Entonces, Bε(f(x)) es abierto, por lo que su preimagen f−1(Bε(f(x))) es
abierta en D y contiene a x. Por tanto, existe δ > 0 tal que:

Bδ(x) ∩D ⊆ f−1(Bε(f(x))).

Esto implica que:
f(Bδ(x) ∩D) ⊆ Bε(f(x)),

y por tanto f es continua en x. Como x fue arbitrario, f es continua en todo
D.

El siguiente lema y teorema la usamos en el capítulo 3 y lo extrajimos de [9].

Lema 2. Un subconjunto C de un espacio vectorial E es convexo si y solo si, para
todo x1, . . . , xn ∈ C y p1, . . . , pn números positivos tales que p1 + · · ·+ pn = 1, se
cumple que

p1x1 + · · ·+ pnxn ∈ C.

Demostración: La condición es ciertamente suficiente. Demostraremos la nece-
sidad por inducción sobre n. El resultado es trivialmente cierto para n = 1, y es
cierto para n = 2, ya que esto reduce a la definición de conjunto convexo.

Supongamos que el resultado es cierto para n−1, y consideremos x1, . . . , xn ∈
C y p1, . . . , pn > 0 tales que p1 + · · ·+ pn = 1. Definimos

y =
pn−1

pn−1 + pn
xn−1 +

pn
pn−1 + pn

xn.

Por la convexidad de C, se tiene que y ∈ C. Usando la hipótesis inductiva, obte-
nemos que

p1x1 + · · ·+ pnxn = p1x1 + · · ·+ pn−2xn−2 + (pn−1 + pn)y ∈ C,

lo cual completa la demostración.
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Teorema A.3 (Desigualdad de Jensen). Sea f una función convexa sobre un
conjunto convexo C, y sean p1, . . . , pn números positivos tales que p1+· · ·+pn = 1.
Entonces,

f(p1x1 + · · ·+ pnxn) ≤ p1f(x1) + · · ·+ pnf(xn).

Si además f es estrictamente convexa, entonces la igualdad se cumple si y solo si
x1 = · · · = xn.

Demostración: El primer enunciado se deduce directamente aplicando el lema
2 al conjunto Uf . Supongamos ahora que f es estrictamente convexa, y que los
puntos x1, . . . , xn no son todos iguales. Sin pérdida de generalidad (re-etiquetando
si es necesario), podemos suponer que xn−1 ̸= xn.

Definimos
y =

pn−1

pn−1 + pn
xn−1 +

pn
pn−1 + pn

xn.

Entonces, por la estricta convexidad de f ,

f(y) <
pn−1

pn−1 + pn
f(xn−1) +

pn
pn−1 + pn

f(xn).

Por lo tanto,

f(p1x1 + · · ·+ pnxn) = f(p1x1 + · · ·+ pn−2xn−2 + (pn−1 + pn)y)

≤ p1f(x1) + · · ·+ pn−2f(xn−2) + (pn−1 + pn)f(y)

< p1f(x1) + · · ·+ pnf(xn),

lo que demuestra que la desigualdad es estricta cuando x1, . . . , xn no son todos
iguales.

En esta parte del apéndice se definen conceptos y enuncian (sin demostración)
teoremas concernientes a la teoría de optimización necesarios para completar el
texto.

Teorema A.4 (Teorema de Young). Sea f(x) una función dos veces continua-
mente diferenciable. Entonces, para todo i y j, se cumple que:

∂2f(x)

∂xi∂xj

=
∂2f(x)

∂xj∂xi

. (A.1)

Los siguientes teoremas se puede consultar su demostración en [11] de donde nos
basamos en gran parte para el capítulo de Teoría del consumidor.

Teorema A.5 (Pendiente, curvatura y concavidad en varias variables). Sea D un
subconjunto convexo de Rn con interior no vacío y sea f dos veces continuamente
diferenciable en D. Las siguientes afirmaciones son equivalentes:
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1. f es cóncava.

2. La matriz Hessiana H(x) es semidefinida negativa para todo x en el interior
de D.

3. Para todo x0 ∈ D, se cumple:

f(x) ≤ f(x0) +∇f(x0) · (x− x0), ∀x ∈ D.

Además, si H(x) es definida negativa para todo x ∈ D, entonces f es estric-
tamente cóncava.

Teorema A.6 (Concavidad, convexidad y derivadas parciales segundas propias).
Sea f : D → R una función dos veces diferenciable.

1. Si f es cóncava, entonces fii(x) ≤ 0 para todo x en el interior de D, i =
1, . . . , n.

2. Si f es convexa, entonces fii(x) ≥ 0 para todo x en el interior de D, i =
1, . . . , n.

Teorema A.7 (Condiciones de Kuhn-Tucker para máximos con restricciones de
desigualdad). Sean f(x) y gj(x), con j = 1, . . . ,m, funciones reales continuas
definidas sobre un dominio D ⊆ Rn. Supongamos que x∗ es un punto interior de
D y que x∗ maximiza f(x) sujeto a las restricciones gj(x) ≤ 0, con j = 1, . . . ,m, y
además que tanto f como cada gj son continuamente diferenciables en un conjunto
abierto que contiene a x∗.

Si los vectores gradiente ∇gj(x∗) correspondientes a las restricciones activas
en x∗ son linealmente independientes, entonces existe un único vector λ∗ ∈ Rn tal
que el par (x∗,λ∗) satisface las condiciones de Kuhn-Tucker:

∂L(x∗,λ∗)

∂xi

=
∂f(x∗)

∂xi

−
m∑
j=1

λ∗
j

∂gj(x∗)

∂xi

= 0, i = 1, . . . , n,

λ∗
j ≥ 0, gj(x∗) ≤ 0, λ∗

jg
j(x∗) = 0, j = 1, . . . ,m.

Definición A.1 (Continuidad en las restricciones). Se dice que se satisface la
continuidad en las restricciones si cada función gj : Rn × A → R es continua
y, para todo par (x0, a0) ∈ Rn × A que satisface las m restricciones g1(x, a) ≤
0, . . . , gm(x, a) ≤ 0, y para toda sucesión ak en A que converge a a0, existe una
sucesión xk ∈ Rn que converge a x0 tal que cada par (xk, ak) satisface las restric-
ciones para todo k.1

1Esta definición es equivalente a las nociones de semicontinuidad superior e inferior en la
teoría de correspondencias.
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Para los siguientes teoremas se ocupara resolver el siguiente problema:

max
x∈Rn

f(x, a)

sujeto a gj(x, a) ≤ 0, j = 1, . . . ,m.
(A.2)

Teorema A.8 (Teorema del máximo). Sean D como en el glosario y A compacto,
que f : D → R es continua y que se satisface la continuidad en las restricciones.
Entonces se tiene:

1. Existe solución para la ecuación (A.2) para todo a ∈ A, y por lo tanto, la
función valor V (a) está definida en todo A.

2. La función valor V : A → R es continua.

3. Sea (xk, ak) una sucesión en Rn ×A tal que (xk, ak) → (x∗, a∗) ∈ Rn ×A, y
supóngase que para todo k, xk es solución de (A.2) cuando a = ak. Entonces
x∗ es solución de (A.2) cuando a = a∗.

4. Si para cada a ∈ A la solución de (A.2) es única y está dada por una función
x(a), entonces x : A → Rn es continua.
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